- -

Using conceptual modeling to improve genome data management

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using conceptual modeling to improve genome data management

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pastor López, Oscar es_ES
dc.contributor.author León-Palacio, Ana es_ES
dc.contributor.author REYES ROMÁN, JOSÉ FABIÁN es_ES
dc.contributor.author García-Simón, Alberto es_ES
dc.contributor.author Casamayor Rodenas, Juan Carlos es_ES
dc.date.accessioned 2021-05-04T03:32:14Z
dc.date.available 2021-05-04T03:32:14Z
dc.date.issued 2020-06-12 es_ES
dc.identifier.issn 1467-5463 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165909
dc.description.abstract [EN] With advances in genomic sequencing technology, a large amount of data is publicly available for the research community to extract meaningful and reliable associations among risk genes and the mechanisms of disease. However, this exponential growth of data is spread in over thousand heterogeneous repositories, represented in multiple formats and with different levels of quality what hinders the differentiation of clinically valid relationships from those that are less well-sustained and that could lead to wrong diagnosis. This paper presents how conceptual models can play a key role to efficiently manage genomic data. These data must be accessible, informative and reliable enough to extract valuable knowledge in the context of the identification of evidence supporting the relationship between DNA variants and disease. The approach presented in this paper provides a solution that help researchers to organize, store and process information focusing only on the data that are relevant and minimizing the impact that the information overload has in clinical and research contexts. A case-study (epilepsy) is also presented, to demonstrate its application in a real context. es_ES
dc.description.sponsorship Spanish State Research Agency and the Generalitat Valenciana under the projects TIN2016-80811-P and PROMETEO/2018/176; ERDF. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Briefings in Bioinformatics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Genomic data es_ES
dc.subject Information systems es_ES
dc.subject Framework es_ES
dc.subject Case study es_ES
dc.subject CSHG es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Using conceptual modeling to improve genome data management es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/bib/bbaa100 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-80811-P/ES/UN METODO DE PRODUCCION DE SOFTWARE DIRIGIDO POR MODELOS PARA EL DESARROLLO DE APLICACIONES BIG DATA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F176/ES/GISPRO-GENOMIC INFORMATION SYSTEMS PRODUCTION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Pastor López, O.; León-Palacio, A.; Reyes Román, JF.; García-Simón, A.; Casamayor Rodenas, JC. (2020). Using conceptual modeling to improve genome data management. Briefings in Bioinformatics. 22(1):45-54. https://doi.org/10.1093/bib/bbaa100 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/bib/bbaa100 es_ES
dc.description.upvformatpinicio 45 es_ES
dc.description.upvformatpfin 54 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 32533135 es_ES
dc.relation.pasarela S\413986 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references McCombie, W. R., McPherson, J. D., & Mardis, E. R. (2018). Next-Generation Sequencing Technologies. Cold Spring Harbor Perspectives in Medicine, 9(11), a036798. doi:10.1101/cshperspect.a036798 es_ES
dc.description.references Condit, C. M., Achter, P. J., Lauer, I., & Sefcovic, E. (2001). The changing meanings of ?mutation:? A contextualized study of public discourse. Human Mutation, 19(1), 69-75. doi:10.1002/humu.10023 es_ES
dc.description.references Karki, R., Pandya, D., Elston, R. C., & Ferlini, C. (2015). Defining «mutation» and «polymorphism» in the era of personal genomics. BMC Medical Genomics, 8(1). doi:10.1186/s12920-015-0115-z es_ES
dc.description.references Hamid, J. S., Hu, P., Roslin, N. M., Ling, V., Greenwood, C. M. T., & Beyene, J. (2009). Data Integration in Genetics and Genomics: Methods and Challenges. Human Genomics and Proteomics, 1(1). doi:10.4061/2009/869093 es_ES
dc.description.references Baudhuin, L. M., Biesecker, L. G., Burke, W., Green, E. D., & Green, R. C. (2019). Predictive and Precision Medicine with Genomic Data. Clinical Chemistry, 66(1), 33-41. doi:10.1373/clinchem.2019.304345 es_ES
dc.description.references Amaral, G., & Guizzardi, G. (2019). On the Application of Ontological Patterns for Conceptual Modeling in Multidimensional Models. Lecture Notes in Computer Science, 215-231. doi:10.1007/978-3-030-28730-6_14 es_ES
dc.description.references Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29. doi:10.1038/75556 es_ES
dc.description.references Eilbeck, K., Lewis, S. E., Mungall, C. J., Yandell, M., Stein, L., Durbin, R., & Ashburner, M. (2005). Genome Biology, 6(5), R44. doi:10.1186/gb-2005-6-5-r44 es_ES
dc.description.references Vihinen, M. (2013). Variation Ontology for annotation of variation effects and mechanisms. Genome Research, 24(2), 356-364. doi:10.1101/gr.157495.113 es_ES
dc.description.references Köhler, S., Carmody, L., Vasilevsky, N., Jacobsen, J. O. B., Danis, D., Gourdine, J.-P., … McMurry, J. A. (2018). Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Research, 47(D1), D1018-D1027. doi:10.1093/nar/gky1105 es_ES
dc.description.references Proceedings of the Eleventh International Conference on Data Engineering. (1995). Proceedings of the Eleventh International Conference on Data Engineering. doi:10.1109/icde.1995.380416 es_ES
dc.description.references Okayama, T., Tamura, T., Gojobori, T., Tateno, Y., Ikeo, K., Miyazaki, S., … Sugawara, H. (1998). Formal design and implementation of an improved DDBJ DNA database with a new schema and object-oriented library. Bioinformatics, 14(6), 472-478. doi:10.1093/bioinformatics/14.6.472 es_ES
dc.description.references Medigue, C., Rechenmann, F., Danchin, A., & Viari, A. (1999). Imagene: an integrated computer environment for sequence annotation and analysis. Bioinformatics, 15(1), 2-15. doi:10.1093/bioinformatics/15.1.2 es_ES
dc.description.references Paton, N. W., Khan, S. A., Hayes, A., Moussouni, F., Brass, A., Eilbeck, K., … Oliver, S. G. (2000). Conceptual modelling of genomic information. Bioinformatics, 16(6), 548-557. doi:10.1093/bioinformatics/16.6.548 es_ES
dc.description.references Vihinen, M., Hancock, J. M., Maglott, D. R., Landrum, M. J., Schaafsma, G. C. P., & Taschner, P. (2016). Human Variome Project Quality Assessment Criteria for Variation Databases. Human Mutation, 37(6), 549-558. doi:10.1002/humu.22976 es_ES
dc.description.references Fleuren, W. W. M., & Alkema, W. (2015). Application of text mining in the biomedical domain. Methods, 74, 97-106. doi:10.1016/j.ymeth.2015.01.015 es_ES
dc.description.references Salzberg, S. L. (2007). Genome re-annotation: a wiki solution? Genome Biology, 8(1). doi:10.1186/gb-2007-8-1-102 es_ES
dc.description.references Rigden, D. J., & Fernández, X. M. (2018). The 26th annual Nucleic Acids Research database issue and Molecular Biology Database Collection. Nucleic Acids Research, 47(D1), D1-D7. doi:10.1093/nar/gky1267 es_ES
dc.description.references Reyes Román, J. F., García, A., Rueda, U., & Pastor, Ó. (2019). GenesLove.Me 2.0: Improving the Prioritization of Genetic Variations. Evaluation of Novel Approaches to Software Engineering, 314-333. doi:10.1007/978-3-030-22559-9_14 es_ES
dc.description.references Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., … Rehm, H. L. (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405-423. doi:10.1038/gim.2015.30 es_ES
dc.description.references Kelly, M. A., Caleshu, C., Morales, A., Buchan, J., Wolf, Z., … Funke, B. (2018). Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel. Genetics in Medicine, 20(3), 351-359. doi:10.1038/gim.2017.218 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem