Mostrar el registro sencillo del ítem
dc.contributor.author | Pastor López, Oscar | es_ES |
dc.contributor.author | León-Palacio, Ana | es_ES |
dc.contributor.author | REYES ROMÁN, JOSÉ FABIÁN | es_ES |
dc.contributor.author | García-Simón, Alberto | es_ES |
dc.contributor.author | Casamayor Rodenas, Juan Carlos | es_ES |
dc.date.accessioned | 2021-05-04T03:32:14Z | |
dc.date.available | 2021-05-04T03:32:14Z | |
dc.date.issued | 2020-06-12 | es_ES |
dc.identifier.issn | 1467-5463 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165909 | |
dc.description.abstract | [EN] With advances in genomic sequencing technology, a large amount of data is publicly available for the research community to extract meaningful and reliable associations among risk genes and the mechanisms of disease. However, this exponential growth of data is spread in over thousand heterogeneous repositories, represented in multiple formats and with different levels of quality what hinders the differentiation of clinically valid relationships from those that are less well-sustained and that could lead to wrong diagnosis. This paper presents how conceptual models can play a key role to efficiently manage genomic data. These data must be accessible, informative and reliable enough to extract valuable knowledge in the context of the identification of evidence supporting the relationship between DNA variants and disease. The approach presented in this paper provides a solution that help researchers to organize, store and process information focusing only on the data that are relevant and minimizing the impact that the information overload has in clinical and research contexts. A case-study (epilepsy) is also presented, to demonstrate its application in a real context. | es_ES |
dc.description.sponsorship | Spanish State Research Agency and the Generalitat Valenciana under the projects TIN2016-80811-P and PROMETEO/2018/176; ERDF. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.relation.ispartof | Briefings in Bioinformatics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Genomic data | es_ES |
dc.subject | Information systems | es_ES |
dc.subject | Framework | es_ES |
dc.subject | Case study | es_ES |
dc.subject | CSHG | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Using conceptual modeling to improve genome data management | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/bib/bbaa100 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2016-80811-P/ES/UN METODO DE PRODUCCION DE SOFTWARE DIRIGIDO POR MODELOS PARA EL DESARROLLO DE APLICACIONES BIG DATA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F176/ES/GISPRO-GENOMIC INFORMATION SYSTEMS PRODUCTION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Pastor López, O.; León-Palacio, A.; Reyes Román, JF.; García-Simón, A.; Casamayor Rodenas, JC. (2020). Using conceptual modeling to improve genome data management. Briefings in Bioinformatics. 22(1):45-54. https://doi.org/10.1093/bib/bbaa100 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1093/bib/bbaa100 | es_ES |
dc.description.upvformatpinicio | 45 | es_ES |
dc.description.upvformatpfin | 54 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 32533135 | es_ES |
dc.relation.pasarela | S\413986 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | McCombie, W. R., McPherson, J. D., & Mardis, E. R. (2018). Next-Generation Sequencing Technologies. Cold Spring Harbor Perspectives in Medicine, 9(11), a036798. doi:10.1101/cshperspect.a036798 | es_ES |
dc.description.references | Condit, C. M., Achter, P. J., Lauer, I., & Sefcovic, E. (2001). The changing meanings of ?mutation:? A contextualized study of public discourse. Human Mutation, 19(1), 69-75. doi:10.1002/humu.10023 | es_ES |
dc.description.references | Karki, R., Pandya, D., Elston, R. C., & Ferlini, C. (2015). Defining «mutation» and «polymorphism» in the era of personal genomics. BMC Medical Genomics, 8(1). doi:10.1186/s12920-015-0115-z | es_ES |
dc.description.references | Hamid, J. S., Hu, P., Roslin, N. M., Ling, V., Greenwood, C. M. T., & Beyene, J. (2009). Data Integration in Genetics and Genomics: Methods and Challenges. Human Genomics and Proteomics, 1(1). doi:10.4061/2009/869093 | es_ES |
dc.description.references | Baudhuin, L. M., Biesecker, L. G., Burke, W., Green, E. D., & Green, R. C. (2019). Predictive and Precision Medicine with Genomic Data. Clinical Chemistry, 66(1), 33-41. doi:10.1373/clinchem.2019.304345 | es_ES |
dc.description.references | Amaral, G., & Guizzardi, G. (2019). On the Application of Ontological Patterns for Conceptual Modeling in Multidimensional Models. Lecture Notes in Computer Science, 215-231. doi:10.1007/978-3-030-28730-6_14 | es_ES |
dc.description.references | Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29. doi:10.1038/75556 | es_ES |
dc.description.references | Eilbeck, K., Lewis, S. E., Mungall, C. J., Yandell, M., Stein, L., Durbin, R., & Ashburner, M. (2005). Genome Biology, 6(5), R44. doi:10.1186/gb-2005-6-5-r44 | es_ES |
dc.description.references | Vihinen, M. (2013). Variation Ontology for annotation of variation effects and mechanisms. Genome Research, 24(2), 356-364. doi:10.1101/gr.157495.113 | es_ES |
dc.description.references | Köhler, S., Carmody, L., Vasilevsky, N., Jacobsen, J. O. B., Danis, D., Gourdine, J.-P., … McMurry, J. A. (2018). Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Research, 47(D1), D1018-D1027. doi:10.1093/nar/gky1105 | es_ES |
dc.description.references | Proceedings of the Eleventh International Conference on Data Engineering. (1995). Proceedings of the Eleventh International Conference on Data Engineering. doi:10.1109/icde.1995.380416 | es_ES |
dc.description.references | Okayama, T., Tamura, T., Gojobori, T., Tateno, Y., Ikeo, K., Miyazaki, S., … Sugawara, H. (1998). Formal design and implementation of an improved DDBJ DNA database with a new schema and object-oriented library. Bioinformatics, 14(6), 472-478. doi:10.1093/bioinformatics/14.6.472 | es_ES |
dc.description.references | Medigue, C., Rechenmann, F., Danchin, A., & Viari, A. (1999). Imagene: an integrated computer environment for sequence annotation and analysis. Bioinformatics, 15(1), 2-15. doi:10.1093/bioinformatics/15.1.2 | es_ES |
dc.description.references | Paton, N. W., Khan, S. A., Hayes, A., Moussouni, F., Brass, A., Eilbeck, K., … Oliver, S. G. (2000). Conceptual modelling of genomic information. Bioinformatics, 16(6), 548-557. doi:10.1093/bioinformatics/16.6.548 | es_ES |
dc.description.references | Vihinen, M., Hancock, J. M., Maglott, D. R., Landrum, M. J., Schaafsma, G. C. P., & Taschner, P. (2016). Human Variome Project Quality Assessment Criteria for Variation Databases. Human Mutation, 37(6), 549-558. doi:10.1002/humu.22976 | es_ES |
dc.description.references | Fleuren, W. W. M., & Alkema, W. (2015). Application of text mining in the biomedical domain. Methods, 74, 97-106. doi:10.1016/j.ymeth.2015.01.015 | es_ES |
dc.description.references | Salzberg, S. L. (2007). Genome re-annotation: a wiki solution? Genome Biology, 8(1). doi:10.1186/gb-2007-8-1-102 | es_ES |
dc.description.references | Rigden, D. J., & Fernández, X. M. (2018). The 26th annual Nucleic Acids Research database issue and Molecular Biology Database Collection. Nucleic Acids Research, 47(D1), D1-D7. doi:10.1093/nar/gky1267 | es_ES |
dc.description.references | Reyes Román, J. F., García, A., Rueda, U., & Pastor, Ó. (2019). GenesLove.Me 2.0: Improving the Prioritization of Genetic Variations. Evaluation of Novel Approaches to Software Engineering, 314-333. doi:10.1007/978-3-030-22559-9_14 | es_ES |
dc.description.references | Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., … Rehm, H. L. (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405-423. doi:10.1038/gim.2015.30 | es_ES |
dc.description.references | Kelly, M. A., Caleshu, C., Morales, A., Buchan, J., Wolf, Z., … Funke, B. (2018). Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel. Genetics in Medicine, 20(3), 351-359. doi:10.1038/gim.2017.218 | es_ES |