- -

Enhancement of PLA-PVA surface adhesion in bilayer assemblies by PLA aminolization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhancement of PLA-PVA surface adhesion in bilayer assemblies by PLA aminolization

Mostrar el registro completo del ítem

Tampau, A.; González Martínez, MC.; Vicente, AA.; Chiralt Boix, MA. (2020). Enhancement of PLA-PVA surface adhesion in bilayer assemblies by PLA aminolization. Food and Bioprocess Technology. 13(7):1215-1228. https://doi.org/10.1007/s11947-020-02475-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165954

Ficheros en el ítem

Metadatos del ítem

Título: Enhancement of PLA-PVA surface adhesion in bilayer assemblies by PLA aminolization
Autor: Tampau, Alina González Martínez, María Consuelo Vicente, Antonio A. Chiralt Boix, Mª Amparo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] Poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA) present complementary barrier properties, and their combination in multilayer assemblies (laminates) could provide materials with more effective barrier capacity ...[+]
Palabras clave: Aminolisation , Surface activation , Poly(lactic acid) , Poly(vinyl alcohol) , Carvacrol , Bilayer assembly
Derechos de uso: Reserva de todos los derechos
Fuente:
Food and Bioprocess Technology. (issn: 1935-5130 )
DOI: 10.1007/s11947-020-02475-0
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11947-020-02475-0
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BES-2014-068100/ES/BES-2014-068100/
info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/
Agradecimientos:
The authors acknowledge the financial support provided by the Ministerio de Economia y Competitividad (MINECO) of Spain (project AGL2016-76699-R). The author A. Tampau thanks MINECO for the pre-doctoral research grant ...[+]
Tipo: Artículo

References

Anwar, R. W., Sugiarto, & Warsiki, E. (2018). The comparison of antimicrobial packaging properties with different applications incorporation method of active material. IOP Conference Series: Earth and Environmental Science, 141(1), 012002.

ASTM. (2001). Standard test method for tensile properties of thin plastic sheeting. Standard D882. Annual book of American standard testing methods (pp. 162–170). Philadelphia: American Society for Testing and Materials.

ASTM. (2005). Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor. Standard designations: 3985-05. Annual book of ASTM standards. West Conshohocken, PA: American Society for Testing and Materials. [+]
Anwar, R. W., Sugiarto, & Warsiki, E. (2018). The comparison of antimicrobial packaging properties with different applications incorporation method of active material. IOP Conference Series: Earth and Environmental Science, 141(1), 012002.

ASTM. (2001). Standard test method for tensile properties of thin plastic sheeting. Standard D882. Annual book of American standard testing methods (pp. 162–170). Philadelphia: American Society for Testing and Materials.

ASTM. (2005). Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor. Standard designations: 3985-05. Annual book of ASTM standards. West Conshohocken, PA: American Society for Testing and Materials.

ASTM. (1995). Standard test methods for water vapor transmission of materials. Standard designations: E96-95. Annual book of ASTM standards (pp. 406–413). Philadelphia: American Society for Testing and Materials.

Bonilla, J., Fortunati, E., Vargas, M., Chiralt, A., & Kenny, J. M. (2013). Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. Journal of Food Engineering, 119(2), 236–243.

Bonilla, J., Fortunati, E., Atarés, L., Chiralt, A., & Kenny, J. M. (2014). Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocolloids, 35, 463–470.

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology, 94(3), 223–253.

Can Baser, K. (2008). Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Current Pharmaceutical Design, 14(29), 3106–3119.

Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543–555.

Cano, A., Fortunati, E., Cháfer, M., Kenny, J. M., Chiralt, A., & González-Martínez, C. (2015). Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol). Food Hydrocolloids, 48, 84–93.

Cano, A. I., Cháfer, M., Chiralt, A., & González-Martínez, C. (2016). Biodegradation behaviour of starch-PVA films as affected by the incorporation of different antimicrobials. Polymer Degradation and Stability, 132, 11–20.

Carneiro-da-Cunha, M. G., Cerqueira, M. A., Souza, B. W. S., Souza, M. P., Teixeira, J. A., & Vicente, A. A. (2009). Physical properties of edible coatings and films made with a polysaccharide from Anacardium occidentale L. Journal of Food Engineering, 95(3), 379–385.

Carneiro-da-Cunha, M. G., Cerqueira, M. A., Souza, B. W. S., Carvalho, S., Quintas, M. A. C., Teixeira, J. A., & Vicente, A. A. (2010). Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydrate Polymers, 82(1), 153–159.

Cerqueira, M. A., Lima, Á. M., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2009). Suitability of novel galactomannans as edible coatings for tropical fruits. Journal of Food Engineering, 94(3–4), 372–378.

Collazo-Bigliardi, S., Ortega-Toro, R., & Chiralt, A. (2018). Properties of micro- and nano-reinforced biopolymers for food applications. Polymers for Food Applications (T. J. Gutiérrez, ed.).

Debeaufort, F., Martin-Polo, M., & Voilley, A. (1993). Polarity homogeneity and structure affect water vapor permeability of model edible films. Journal of Food Science, 58(2), 426–429.

DeMerlis, C. C., & Schoneker, D. R. (2003). Review of the oral toxicity of polyvinyl alcohol (PVA). Food and Chemical Toxicology, 41(3), 319–326.

Drobota, M., Persin, Z., Zemljic, L., Mohan, T., Stana-Kleinschek, K., Doliska, A., & Coseri, S. (2013). Chemical modification and characterization of poly(ethylene terephthalate) surfaces for collagen immobilization. Open Chemistry, 11(11).

Fabra, M. J., Flores-López, M. L., Cerqueira, M. A., de Rodriguez, D. J., Lagaron, J. M., & Vicente, A. A. (2016). Layer-by-layer technique to developing functional nanolaminate films with antifungal activity. Food and Bioprocess Technology, 9(3), 471–480.

Farrington, D. W., Lunt, J., Davies, S., & Blackburn, R. S. (2005). 6-Poly(lactic acid) fibers. In R. S. B. T.-B. and S. F. Blackburn (Ed.), Woodhead Publishing Series in Textiles (pp. 191–220).

Gennadios, A., Weller, C. L., & Gooding, C. H. (1994). Measurement errors in water vapour permeability of highly permeable, hydrophilic edible films. Journal of Food Engineering, 21(4), 395–409.

Hejda, F., Solař, P., & Kousal, J. (2010). Surface free energy determination by contact angle measurements–a comparison of various approaches. (3), 25–30. Retrieved online from: https://pdfs.semanticscholar.org/e5a0/e7dc916cfeb7f0b4a3e24027cf7421d5d5e0.pdf (September 2019).

Hsu J. C.-H., & Guckenberger, A. C. (1985). EP0175451A2. Retrieved from https://patents.google.com/patent/EP0175451A2/ru (September 2019).

Hutchings, J. B. (1999). Food and colour appearance. Chapman and Hall food science book (2nd ed.). Gaithersburg: Aspen Publication.

Kamimura, J. A., Santos, E. H., Hill, L. E., & Gomes, C. L. (2014). Antimicrobial and antioxidant activities of carvacrol microencapsulated in hydroxypropyl-beta-cyclodextrin. LWT - Food Science and Technology, 57(2), 701–709.

Kwok, D. Y., & Neumann, A. W. (1999). Contact angle measurement and contact angle interpretation. In Advances in Colloid and Interface Science, 81(3), 167–249.

Mascheroni, E., Guillard, V., Gastaldi, E., Gontard, N., & Chalier, P. (2011). Anti-microbial effectiveness of relative humidity-controlled carvacrol release from wheat gluten/montmorillonite coated papers. Food Control, 22(10), 1582–1591.

Medeiros, B. G. D. S., Pinheiro, A. C., Teixeira, J. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2012). Polysaccharide/protein nanomultilayer coatings: construction, characterization and evaluation of their effect on “Rocha” pear (Pyrus communis L.) Shelf-Life. Food and Bioprocess Technology, 5(6), 2435–2445.

Medeiros, B. G. D. S., Souza, M. P., Pinheiro, A. C., Bourbon, A. I., Cerqueira, M. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2014). Physical characterisation of an alginate/lysozyme nano-laminate coating and its evaluation on “Coalho” cheese shelf life. Food and Bioprocess Technology, 7(4), 1088–1098.

Muller, J., Jiménez, A., González-Martínez, C., & Chiralt, A. (2016). Influence of plasticizers on thermal properties and crystallization behaviour of poly(lactic acid) films obtained by compression moulding. Polymer International, 65(8), 970–978.

Muller, J., González-Martínez, C., & Chiralt, A. (2017a). Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 95(July), 56–70.

Muller, J., Casado Quesada, A., González-Martínez, C., & Chiralt, A. (2017b). Antimicrobial properties and release of cinnamaldehyde in bilayer films based on polylactic acid (PLA) and starch. European Polymer Journal, 96(May), 316–325.

Noel, S., Liberelle, B., Yogi, A., Moreno, M. J., Bureau, M. N., Robitaille, L., & De Crescenzo, G. (2013). A non-damaging chemical amination protocol for poly(ethylene terephthalate)–application to the design of functionalized compliant vascular grafts. J. Mater. Chem. B, 1(2), 230–238.

Ortega-Toro, R., Contreras, J., Talens, P., & Chiralt, A. (2015). Physical and structural properties and thermal behaviour of starch-poly(ε-caprolactone) blend films for food packaging. Food Packaging and Shelf Life, 5, 10–20.

Owusu Apenten, R. K., & Zhu, Q.-H. (1996). Interfacial parameters for selected Spans and Tweens at the hydrocarbon—water interface. Food Hydrocolloids, 10(1), 27–30.

Perdones, Á., Chiralt, A., & Vargas, M. (2016). Properties of film-forming dispersions and films based on chitosan containing basil or thyme essential oil. Food Hydrocolloids, 57, 271–279.

Petersen, K., Væggemose Nielsen, P., Bertelsen, G., Lawther, M., Olsen, M. B., Nilsson, N. H., & Mortensen, G. (1999). Potential of biobased materials for food packaging. Trends in Food Science and Technology, 10(2), 52–68.

Pinheiro, A. C., Bourbon, A. I., Quintas, M. A. C., Coimbra, M. A., & Vicente, A. A. (2012). Κ-carrageenan/chitosan nanolayered coating for controlled release of a model bioactive compound. Innovative Food Science and Emerging Technologies, 16, 227–232.

Ramos, M., Beltrán, A., Peltzer, M., Valente, A. J. M., & Garrigós, M. d. C. (2014). Release and antioxidant activity of carvacrol and thymol from polypropylene active packaging films. LWT - Food Science and Technology, 58(2), 470–477.

Requena, R., Vargas, M., & Chiralt, A. (2018). Obtaining antimicrobial bilayer starch and polyester-blend films with carvacrol. Food Hydrocolloids, 83, 118–133.

Rhim, J. W., Mohanty, K. A., Singh, S. P., & Ng, P. K. W. (2006). Preparation and properties of biodegradable multilayer films based on soy protein isolate and poly(lactide). Industrial and Engineering Chemistry Research, 45(9), 3059–3066.

Ribeiro, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44(1), 63–70.

Sapper, M., & Chiralt, A. (2018). Starch-based coatings for preservation of fruits and vegetables. Coatings, 8(5).

Sapper, M., Bonet, M., & Chiralt, A. (2019). Wettability of starch-gellan coatings on fruits, as affected by the incorporation of essential oil and/or surfactants. Lwt, 116(March), 108574.

Siracusa, V. (2012). Food packaging permeability behaviour: a report. International Journal of Polymer Science, 2012(i), 1–11.

Souza, M. P., Vaz, A. F. M., Costa, T. B., Cerqueira, M. A., De Castro, C. M. M. B., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2018). Construction of a biocompatible and antioxidant multilayer coating by layer-by-layer assembly of κ-carrageenan and quercetin nanoparticles. Food and Bioprocess Technology, 11(5), 1050–1060.

Tampau, A., González-Martínez, C., & Chiralt, A. (2018). Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocolloids, 79, 158–169.

Tampau, A., González-Martínez, C., & Chiralt, A. (2020). Polyvinyl alcohol-based materials encapsulating carvacrol obtained by solvent casting and electrospinning. Reactive and Functional Polymers, 153(April), 104603.

Turek, C., & Stintzing, F. C. (2013). Stability of essential oils: a review. Comprehensive reviews in food science and food safety, 12(1), 40–53.

Zhu, Y., Gao, C., Liu, X., & Shen, J. (2002). Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules, 3(6), 1312–1319.

Zhu, Y., Gao, C., Liu, X., He, T., & Shen, J. (2004). Immobilization of biomacromolecules onto aminolyzed poly(L-lactic acid) toward acceleration of endothelium regeneration. Tissue Engineering, 10(1–2), 53–61.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem