- -

Enhancement of PLA-PVA surface adhesion in bilayer assemblies by PLA aminolization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhancement of PLA-PVA surface adhesion in bilayer assemblies by PLA aminolization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tampau, Alina es_ES
dc.contributor.author González Martínez, María Consuelo es_ES
dc.contributor.author Vicente, Antonio A. es_ES
dc.contributor.author Chiralt Boix, Mª Amparo es_ES
dc.date.accessioned 2021-05-05T03:30:58Z
dc.date.available 2021-05-05T03:30:58Z
dc.date.issued 2020-07 es_ES
dc.identifier.issn 1935-5130 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165954
dc.description.abstract [EN] Poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA) present complementary barrier properties, and their combination in multilayer assemblies (laminates) could provide materials with more effective barrier capacity for food packaging purposes. However, their low chemical affinity compromises adequate polymer adhesion. Surface free energy modification of thermo-processed PLA films through treatment with 1,6-hexanediamine was used to enhance adhesion with polar PVA aqueous solutions. Treatments of 1 and 3 min increased the polar component of the solid surface tension, while treatments above 10 min provoked a corrosive effect in the films' structure. Extensibility analyses of PVA solutions loaded with carvacrol (15 wt.%) and different Tween 85 ratios on PLA-activated surfaces allowed the selection of the 1-min aminolysed surface for obtaining PLA-PVA bilayers, by casting PVA solutions on the PLA films. This study revealed that despite aminolisation enhancing the PLA surface affinity for aqueous PVA solutions, casting-obtained bilayers presented limited oxygen barrier effectiveness due to heterogeneous thickness of PVA layer in the laminates. es_ES
dc.description.sponsorship The authors acknowledge the financial support provided by the Ministerio de Economia y Competitividad (MINECO) of Spain (project AGL2016-76699-R). The author A. Tampau thanks MINECO for the pre-doctoral research grant #BES-2014-068100. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Aminolisation es_ES
dc.subject Surface activation es_ES
dc.subject Poly(lactic acid) es_ES
dc.subject Poly(vinyl alcohol) es_ES
dc.subject Carvacrol es_ES
dc.subject Bilayer assembly es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Enhancement of PLA-PVA surface adhesion in bilayer assemblies by PLA aminolization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-020-02475-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2014-068100/ES/BES-2014-068100/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Tampau, A.; González Martínez, MC.; Vicente, AA.; Chiralt Boix, MA. (2020). Enhancement of PLA-PVA surface adhesion in bilayer assemblies by PLA aminolization. Food and Bioprocess Technology. 13(7):1215-1228. https://doi.org/10.1007/s11947-020-02475-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11947-020-02475-0 es_ES
dc.description.upvformatpinicio 1215 es_ES
dc.description.upvformatpfin 1228 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\433472 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Anwar, R. W., Sugiarto, & Warsiki, E. (2018). The comparison of antimicrobial packaging properties with different applications incorporation method of active material. IOP Conference Series: Earth and Environmental Science, 141(1), 012002. es_ES
dc.description.references ASTM. (2001). Standard test method for tensile properties of thin plastic sheeting. Standard D882. Annual book of American standard testing methods (pp. 162–170). Philadelphia: American Society for Testing and Materials. es_ES
dc.description.references ASTM. (2005). Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor. Standard designations: 3985-05. Annual book of ASTM standards. West Conshohocken, PA: American Society for Testing and Materials. es_ES
dc.description.references ASTM. (1995). Standard test methods for water vapor transmission of materials. Standard designations: E96-95. Annual book of ASTM standards (pp. 406–413). Philadelphia: American Society for Testing and Materials. es_ES
dc.description.references Bonilla, J., Fortunati, E., Vargas, M., Chiralt, A., & Kenny, J. M. (2013). Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. Journal of Food Engineering, 119(2), 236–243. es_ES
dc.description.references Bonilla, J., Fortunati, E., Atarés, L., Chiralt, A., & Kenny, J. M. (2014). Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocolloids, 35, 463–470. es_ES
dc.description.references Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology, 94(3), 223–253. es_ES
dc.description.references Can Baser, K. (2008). Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Current Pharmaceutical Design, 14(29), 3106–3119. es_ES
dc.description.references Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543–555. es_ES
dc.description.references Cano, A., Fortunati, E., Cháfer, M., Kenny, J. M., Chiralt, A., & González-Martínez, C. (2015). Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol). Food Hydrocolloids, 48, 84–93. es_ES
dc.description.references Cano, A. I., Cháfer, M., Chiralt, A., & González-Martínez, C. (2016). Biodegradation behaviour of starch-PVA films as affected by the incorporation of different antimicrobials. Polymer Degradation and Stability, 132, 11–20. es_ES
dc.description.references Carneiro-da-Cunha, M. G., Cerqueira, M. A., Souza, B. W. S., Souza, M. P., Teixeira, J. A., & Vicente, A. A. (2009). Physical properties of edible coatings and films made with a polysaccharide from Anacardium occidentale L. Journal of Food Engineering, 95(3), 379–385. es_ES
dc.description.references Carneiro-da-Cunha, M. G., Cerqueira, M. A., Souza, B. W. S., Carvalho, S., Quintas, M. A. C., Teixeira, J. A., & Vicente, A. A. (2010). Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydrate Polymers, 82(1), 153–159. es_ES
dc.description.references Cerqueira, M. A., Lima, Á. M., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2009). Suitability of novel galactomannans as edible coatings for tropical fruits. Journal of Food Engineering, 94(3–4), 372–378. es_ES
dc.description.references Collazo-Bigliardi, S., Ortega-Toro, R., & Chiralt, A. (2018). Properties of micro- and nano-reinforced biopolymers for food applications. Polymers for Food Applications (T. J. Gutiérrez, ed.). es_ES
dc.description.references Debeaufort, F., Martin-Polo, M., & Voilley, A. (1993). Polarity homogeneity and structure affect water vapor permeability of model edible films. Journal of Food Science, 58(2), 426–429. es_ES
dc.description.references DeMerlis, C. C., & Schoneker, D. R. (2003). Review of the oral toxicity of polyvinyl alcohol (PVA). Food and Chemical Toxicology, 41(3), 319–326. es_ES
dc.description.references Drobota, M., Persin, Z., Zemljic, L., Mohan, T., Stana-Kleinschek, K., Doliska, A., & Coseri, S. (2013). Chemical modification and characterization of poly(ethylene terephthalate) surfaces for collagen immobilization. Open Chemistry, 11(11). es_ES
dc.description.references Fabra, M. J., Flores-López, M. L., Cerqueira, M. A., de Rodriguez, D. J., Lagaron, J. M., & Vicente, A. A. (2016). Layer-by-layer technique to developing functional nanolaminate films with antifungal activity. Food and Bioprocess Technology, 9(3), 471–480. es_ES
dc.description.references Farrington, D. W., Lunt, J., Davies, S., & Blackburn, R. S. (2005). 6-Poly(lactic acid) fibers. In R. S. B. T.-B. and S. F. Blackburn (Ed.), Woodhead Publishing Series in Textiles (pp. 191–220). es_ES
dc.description.references Gennadios, A., Weller, C. L., & Gooding, C. H. (1994). Measurement errors in water vapour permeability of highly permeable, hydrophilic edible films. Journal of Food Engineering, 21(4), 395–409. es_ES
dc.description.references Hejda, F., Solař, P., & Kousal, J. (2010). Surface free energy determination by contact angle measurements–a comparison of various approaches. (3), 25–30. Retrieved online from: https://pdfs.semanticscholar.org/e5a0/e7dc916cfeb7f0b4a3e24027cf7421d5d5e0.pdf (September 2019). es_ES
dc.description.references Hsu J. C.-H., & Guckenberger, A. C. (1985). EP0175451A2. Retrieved from https://patents.google.com/patent/EP0175451A2/ru (September 2019). es_ES
dc.description.references Hutchings, J. B. (1999). Food and colour appearance. Chapman and Hall food science book (2nd ed.). Gaithersburg: Aspen Publication. es_ES
dc.description.references Kamimura, J. A., Santos, E. H., Hill, L. E., & Gomes, C. L. (2014). Antimicrobial and antioxidant activities of carvacrol microencapsulated in hydroxypropyl-beta-cyclodextrin. LWT - Food Science and Technology, 57(2), 701–709. es_ES
dc.description.references Kwok, D. Y., & Neumann, A. W. (1999). Contact angle measurement and contact angle interpretation. In Advances in Colloid and Interface Science, 81(3), 167–249. es_ES
dc.description.references Mascheroni, E., Guillard, V., Gastaldi, E., Gontard, N., & Chalier, P. (2011). Anti-microbial effectiveness of relative humidity-controlled carvacrol release from wheat gluten/montmorillonite coated papers. Food Control, 22(10), 1582–1591. es_ES
dc.description.references Medeiros, B. G. D. S., Pinheiro, A. C., Teixeira, J. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2012). Polysaccharide/protein nanomultilayer coatings: construction, characterization and evaluation of their effect on “Rocha” pear (Pyrus communis L.) Shelf-Life. Food and Bioprocess Technology, 5(6), 2435–2445. es_ES
dc.description.references Medeiros, B. G. D. S., Souza, M. P., Pinheiro, A. C., Bourbon, A. I., Cerqueira, M. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2014). Physical characterisation of an alginate/lysozyme nano-laminate coating and its evaluation on “Coalho” cheese shelf life. Food and Bioprocess Technology, 7(4), 1088–1098. es_ES
dc.description.references Muller, J., Jiménez, A., González-Martínez, C., & Chiralt, A. (2016). Influence of plasticizers on thermal properties and crystallization behaviour of poly(lactic acid) films obtained by compression moulding. Polymer International, 65(8), 970–978. es_ES
dc.description.references Muller, J., González-Martínez, C., & Chiralt, A. (2017a). Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 95(July), 56–70. es_ES
dc.description.references Muller, J., Casado Quesada, A., González-Martínez, C., & Chiralt, A. (2017b). Antimicrobial properties and release of cinnamaldehyde in bilayer films based on polylactic acid (PLA) and starch. European Polymer Journal, 96(May), 316–325. es_ES
dc.description.references Noel, S., Liberelle, B., Yogi, A., Moreno, M. J., Bureau, M. N., Robitaille, L., & De Crescenzo, G. (2013). A non-damaging chemical amination protocol for poly(ethylene terephthalate)–application to the design of functionalized compliant vascular grafts. J. Mater. Chem. B, 1(2), 230–238. es_ES
dc.description.references Ortega-Toro, R., Contreras, J., Talens, P., & Chiralt, A. (2015). Physical and structural properties and thermal behaviour of starch-poly(ε-caprolactone) blend films for food packaging. Food Packaging and Shelf Life, 5, 10–20. es_ES
dc.description.references Owusu Apenten, R. K., & Zhu, Q.-H. (1996). Interfacial parameters for selected Spans and Tweens at the hydrocarbon—water interface. Food Hydrocolloids, 10(1), 27–30. es_ES
dc.description.references Perdones, Á., Chiralt, A., & Vargas, M. (2016). Properties of film-forming dispersions and films based on chitosan containing basil or thyme essential oil. Food Hydrocolloids, 57, 271–279. es_ES
dc.description.references Petersen, K., Væggemose Nielsen, P., Bertelsen, G., Lawther, M., Olsen, M. B., Nilsson, N. H., & Mortensen, G. (1999). Potential of biobased materials for food packaging. Trends in Food Science and Technology, 10(2), 52–68. es_ES
dc.description.references Pinheiro, A. C., Bourbon, A. I., Quintas, M. A. C., Coimbra, M. A., & Vicente, A. A. (2012). Κ-carrageenan/chitosan nanolayered coating for controlled release of a model bioactive compound. Innovative Food Science and Emerging Technologies, 16, 227–232. es_ES
dc.description.references Ramos, M., Beltrán, A., Peltzer, M., Valente, A. J. M., & Garrigós, M. d. C. (2014). Release and antioxidant activity of carvacrol and thymol from polypropylene active packaging films. LWT - Food Science and Technology, 58(2), 470–477. es_ES
dc.description.references Requena, R., Vargas, M., & Chiralt, A. (2018). Obtaining antimicrobial bilayer starch and polyester-blend films with carvacrol. Food Hydrocolloids, 83, 118–133. es_ES
dc.description.references Rhim, J. W., Mohanty, K. A., Singh, S. P., & Ng, P. K. W. (2006). Preparation and properties of biodegradable multilayer films based on soy protein isolate and poly(lactide). Industrial and Engineering Chemistry Research, 45(9), 3059–3066. es_ES
dc.description.references Ribeiro, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44(1), 63–70. es_ES
dc.description.references Sapper, M., & Chiralt, A. (2018). Starch-based coatings for preservation of fruits and vegetables. Coatings, 8(5). es_ES
dc.description.references Sapper, M., Bonet, M., & Chiralt, A. (2019). Wettability of starch-gellan coatings on fruits, as affected by the incorporation of essential oil and/or surfactants. Lwt, 116(March), 108574. es_ES
dc.description.references Siracusa, V. (2012). Food packaging permeability behaviour: a report. International Journal of Polymer Science, 2012(i), 1–11. es_ES
dc.description.references Souza, M. P., Vaz, A. F. M., Costa, T. B., Cerqueira, M. A., De Castro, C. M. M. B., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2018). Construction of a biocompatible and antioxidant multilayer coating by layer-by-layer assembly of κ-carrageenan and quercetin nanoparticles. Food and Bioprocess Technology, 11(5), 1050–1060. es_ES
dc.description.references Tampau, A., González-Martínez, C., & Chiralt, A. (2018). Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocolloids, 79, 158–169. es_ES
dc.description.references Tampau, A., González-Martínez, C., & Chiralt, A. (2020). Polyvinyl alcohol-based materials encapsulating carvacrol obtained by solvent casting and electrospinning. Reactive and Functional Polymers, 153(April), 104603. es_ES
dc.description.references Turek, C., & Stintzing, F. C. (2013). Stability of essential oils: a review. Comprehensive reviews in food science and food safety, 12(1), 40–53. es_ES
dc.description.references Zhu, Y., Gao, C., Liu, X., & Shen, J. (2002). Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules, 3(6), 1312–1319. es_ES
dc.description.references Zhu, Y., Gao, C., Liu, X., He, T., & Shen, J. (2004). Immobilization of biomacromolecules onto aminolyzed poly(L-lactic acid) toward acceleration of endothelium regeneration. Tissue Engineering, 10(1–2), 53–61. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem