Mostrar el registro sencillo del ítem
dc.contributor.author | Delgado-Notario, Juan A. | es_ES |
dc.contributor.author | Calvo-Gallego, Jaime | es_ES |
dc.contributor.author | Velázquez-Pérez, Jesús E. | es_ES |
dc.contributor.author | Ferrando Bataller, Miguel | es_ES |
dc.contributor.author | Fobelets, Kristel | es_ES |
dc.contributor.author | Meziani, Yahya M. | es_ES |
dc.date.accessioned | 2021-05-05T03:32:16Z | |
dc.date.available | 2021-05-05T03:32:16Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165958 | |
dc.description.abstract | [EN] Plasma waves in semiconductor gated 2-D systems can be used to efficiently detect Terahertz (THz) electromagnetic radiation. This work reports on the response of a strained-Si Modulation-doped Field-Effect Transistor (MODFET) under front and back sub-THz illumination. The response of the MODFET has been characterized using a two-tones solid-state continuous wave source at 0.15 and 0.30 THz. The DC drain-to-source voltage of 500-nm gate length transistors transducing the sub-THz radiation (photovoltaic mode) exhibited a non-resonant response in agreement with literature results. Two configurations of the illumination were investigated: (i) front side illumination in which the transistor was shined on its top side, and (ii) back illumination side where the device received the sub-THz radiation on its bottom side, i.e., on the Si substrate. Under excitation at 0.15 THz clear evidence of the coupling of terahertz radiation by the bonding wires was found, this coupling leads to a stronger response under front illumination than under back illumination. When the radiation is shifted to 0.3 THz, as a result of a lesser efficient coupling of the EM radiation through the bonding wires, the response under front illumination was considerably weakened while it was strengthened under back illumination. Electromagnetic simulations explained this behavior as the magnitude of the induced electric field in the channel of the MODFET was considerably stronger under back illumination. | es_ES |
dc.description.sponsorship | This research was funded by the Ministerio de Ciencia, Investigacion y Universidades of Spain andFEDER (ERDF: European Regional Development Fund) under the Research Grants numbers RTI2018-097180-B-100 and TEC2016-78028-C3-3-P and FEDER/Junta de Castilla y Leon Research Grant number SA256P18. Also by Conselleria d'Educacio, lnvestigacio, Cultura i Esport, Generalitat Valenciana (Spain) through the grant AIC0/2019/018. The APC received no external funding. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Terahertz | es_ES |
dc.subject | SiGe | es_ES |
dc.subject | MODFET | es_ES |
dc.subject | Silicon | es_ES |
dc.subject | Electromagnetic simulation | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Effect of the Front and Back Illumination on Sub-Terahertz Detection Using n-Channel Strained-Silicon MODFETs | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app10175959 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2016-78028-C3-3-P/ES/DISEÑO DE ANTENAS MULTIHAZ DE ALTA GANANCIA PARA LOS SISTEMAS DE COMUNICACIONES DE NUEVA GENERACION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097180-B-I00/ES/NUEVA GENERACION DE TRANSISTORES FET PARA TECNOLOGIA DE THZ/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Castilla y León//SA256P18/ES/TECNOLOGÍAS BASADAS EN MATERIALES HÍBRIDOS AVANZADOS: GRAFENO, MATERIALES 2D Y AISLANTES TOPOLÓGICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F018/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Delgado-Notario, JA.; Calvo-Gallego, J.; Velázquez-Pérez, JE.; Ferrando Bataller, M.; Fobelets, K.; Meziani, YM. (2020). Effect of the Front and Back Illumination on Sub-Terahertz Detection Using n-Channel Strained-Silicon MODFETs. Applied Sciences. 10(17):1-9. https://doi.org/10.3390/app10175959 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app10175959 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 17 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\421768 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Junta de Castilla y León | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Lewis, R. A. (2019). A review of terahertz detectors. Journal of Physics D: Applied Physics, 52(43), 433001. doi:10.1088/1361-6463/ab31d5 | es_ES |
dc.description.references | Dragoman, D., & Dragoman, M. (2004). Terahertz fields and applications. Progress in Quantum Electronics, 28(1), 1-66. doi:10.1016/s0079-6727(03)00058-2 | es_ES |
dc.description.references | Mittleman, D. M. (2017). Perspective: Terahertz science and technology. Journal of Applied Physics, 122(23), 230901. doi:10.1063/1.5007683 | es_ES |
dc.description.references | Pawar, A. Y., Sonawane, D. D., Erande, K. B., & Derle, D. V. (2013). Terahertz technology and its applications. Drug Invention Today, 5(2), 157-163. doi:10.1016/j.dit.2013.03.009 | es_ES |
dc.description.references | Federici, J., & Moeller, L. (2010). Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, 107(11), 111101. doi:10.1063/1.3386413 | es_ES |
dc.description.references | Federici, J. F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F., & Zimdars, D. (2005). THz imaging and sensing for security applications—explosives, weapons and drugs. Semiconductor Science and Technology, 20(7), S266-S280. doi:10.1088/0268-1242/20/7/018 | es_ES |
dc.description.references | Dyakonov, M., & Shur, M. (1993). Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current. Physical Review Letters, 71(15), 2465-2468. doi:10.1103/physrevlett.71.2465 | es_ES |
dc.description.references | Dyakonov, M., & Shur, M. (1996). Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Transactions on Electron Devices, 43(3), 380-387. doi:10.1109/16.485650 | es_ES |
dc.description.references | Tauk, R., Teppe, F., Boubanga, S., Coquillat, D., Knap, W., Meziani, Y. M., … Shur, M. S. (2006). Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power. Applied Physics Letters, 89(25), 253511. doi:10.1063/1.2410215 | es_ES |
dc.description.references | Rumyantsev, S. L., Fobelets, K., Veksler, D., Hackbarth, T., & Shur, M. S. (2008). Strained-Si modulation doped field effect transistors as detectors of terahertz and sub-terahertz radiation. Semiconductor Science and Technology, 23(10), 105001. doi:10.1088/0268-1242/23/10/105001 | es_ES |
dc.description.references | Javadi, E., Delgado-Notario, J. A., Masoumi, N., Shahabadi, M., Velázquez-Pérez, J. E., & Meziani, Y. M. (2018). Continuous Wave Terahertz Sensing Using GaN HEMTs. physica status solidi (a), 215(11), 1700607. doi:10.1002/pssa.201700607 | es_ES |
dc.description.references | Delgado-Notario, J. A., Clericò, V., Diez, E., Velázquez-Pérez, J. E., Taniguchi, T., Watanabe, K., … Meziani, Y. M. (2020). Asymmetric dual-grating gates graphene FET for detection of terahertz radiations. APL Photonics, 5(6), 066102. doi:10.1063/5.0007249 | es_ES |
dc.description.references | Lewis, R. A. (2014). A review of terahertz sources. Journal of Physics D: Applied Physics, 47(37), 374001. doi:10.1088/0022-3727/47/37/374001 | es_ES |
dc.description.references | Delgado-Notario, J., Velazquez-Perez, J., Meziani, Y., & Fobelets, K. (2018). Sub-THz Imaging Using Non-Resonant HEMT Detectors. Sensors, 18(2), 543. doi:10.3390/s18020543 | es_ES |
dc.description.references | Gaspari, V., Fobelets, K., Velazquez-Perez, J. E., Ferguson, R., Michelakis, K., Despotopoulos, S., & Papavassilliou, C. (2004). Effect of temperature on the transfer characteristic of a 0.5 μm-gate Si:SiGe depletion-mode n-MODFET. Applied Surface Science, 224(1-4), 390-393. doi:10.1016/j.apsusc.2003.08.066 | es_ES |
dc.description.references | Fobelets, K., Jeamsaksiri, W., Papavasilliou, C., Vilches, T., Gaspari, V., Velazquez-Perez, J. E., … König, U. (2004). Comparison of sub-micron Si:SiGe heterojunction nFETs to Si nMOSFET in present-day technologies. Solid-State Electronics, 48(8), 1401-1406. doi:10.1016/j.sse.2004.01.017 | es_ES |
dc.description.references | Delgado Notario, J. A., Javadi, E., Calvo-Gallego, J., Diez, E., Velázquez, J. E., Meziani, Y. M., & Fobelets, K. (2016). Sub-Micron Gate Length Field Effect Transistors as Broad Band Detectors of Terahertz Radiation. International Journal of High Speed Electronics and Systems, 25(03n04), 1640020. doi:10.1142/s0129156416400206 | es_ES |
dc.description.references | Sakowicz, M., Łusakowski, J., Karpierz, K., Grynberg, M., Gwarek, W., Boubanga, S., … Studart, N. (2010). A High Mobility Field-Effect Transistor as an Antenna for sub-THz Radiation. doi:10.1063/1.3295528 | es_ES |
dc.description.references | Knap, W., Teppe, F., Meziani, Y., Dyakonova, N., Lusakowski, J., Boeuf, F., … Shur, M. S. (2004). Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Applied Physics Letters, 85(4), 675-677. doi:10.1063/1.1775034 | es_ES |