- -

Effect of the Front and Back Illumination on Sub-Terahertz Detection Using n-Channel Strained-Silicon MODFETs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of the Front and Back Illumination on Sub-Terahertz Detection Using n-Channel Strained-Silicon MODFETs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Delgado-Notario, Juan A. es_ES
dc.contributor.author Calvo-Gallego, Jaime es_ES
dc.contributor.author Velázquez-Pérez, Jesús E. es_ES
dc.contributor.author Ferrando Bataller, Miguel es_ES
dc.contributor.author Fobelets, Kristel es_ES
dc.contributor.author Meziani, Yahya M. es_ES
dc.date.accessioned 2021-05-05T03:32:16Z
dc.date.available 2021-05-05T03:32:16Z
dc.date.issued 2020-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165958
dc.description.abstract [EN] Plasma waves in semiconductor gated 2-D systems can be used to efficiently detect Terahertz (THz) electromagnetic radiation. This work reports on the response of a strained-Si Modulation-doped Field-Effect Transistor (MODFET) under front and back sub-THz illumination. The response of the MODFET has been characterized using a two-tones solid-state continuous wave source at 0.15 and 0.30 THz. The DC drain-to-source voltage of 500-nm gate length transistors transducing the sub-THz radiation (photovoltaic mode) exhibited a non-resonant response in agreement with literature results. Two configurations of the illumination were investigated: (i) front side illumination in which the transistor was shined on its top side, and (ii) back illumination side where the device received the sub-THz radiation on its bottom side, i.e., on the Si substrate. Under excitation at 0.15 THz clear evidence of the coupling of terahertz radiation by the bonding wires was found, this coupling leads to a stronger response under front illumination than under back illumination. When the radiation is shifted to 0.3 THz, as a result of a lesser efficient coupling of the EM radiation through the bonding wires, the response under front illumination was considerably weakened while it was strengthened under back illumination. Electromagnetic simulations explained this behavior as the magnitude of the induced electric field in the channel of the MODFET was considerably stronger under back illumination. es_ES
dc.description.sponsorship This research was funded by the Ministerio de Ciencia, Investigacion y Universidades of Spain andFEDER (ERDF: European Regional Development Fund) under the Research Grants numbers RTI2018-097180-B-100 and TEC2016-78028-C3-3-P and FEDER/Junta de Castilla y Leon Research Grant number SA256P18. Also by Conselleria d'Educacio, lnvestigacio, Cultura i Esport, Generalitat Valenciana (Spain) through the grant AIC0/2019/018. The APC received no external funding. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Terahertz es_ES
dc.subject SiGe es_ES
dc.subject MODFET es_ES
dc.subject Silicon es_ES
dc.subject Electromagnetic simulation es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Effect of the Front and Back Illumination on Sub-Terahertz Detection Using n-Channel Strained-Silicon MODFETs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10175959 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2016-78028-C3-3-P/ES/DISEÑO DE ANTENAS MULTIHAZ DE ALTA GANANCIA PARA LOS SISTEMAS DE COMUNICACIONES DE NUEVA GENERACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097180-B-I00/ES/NUEVA GENERACION DE TRANSISTORES FET PARA TECNOLOGIA DE THZ/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Castilla y León//SA256P18/ES/TECNOLOGÍAS BASADAS EN MATERIALES HÍBRIDOS AVANZADOS: GRAFENO, MATERIALES 2D Y AISLANTES TOPOLÓGICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F018/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Delgado-Notario, JA.; Calvo-Gallego, J.; Velázquez-Pérez, JE.; Ferrando Bataller, M.; Fobelets, K.; Meziani, YM. (2020). Effect of the Front and Back Illumination on Sub-Terahertz Detection Using n-Channel Strained-Silicon MODFETs. Applied Sciences. 10(17):1-9. https://doi.org/10.3390/app10175959 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10175959 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 17 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\421768 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Junta de Castilla y León es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Lewis, R. A. (2019). A review of terahertz detectors. Journal of Physics D: Applied Physics, 52(43), 433001. doi:10.1088/1361-6463/ab31d5 es_ES
dc.description.references Dragoman, D., & Dragoman, M. (2004). Terahertz fields and applications. Progress in Quantum Electronics, 28(1), 1-66. doi:10.1016/s0079-6727(03)00058-2 es_ES
dc.description.references Mittleman, D. M. (2017). Perspective: Terahertz science and technology. Journal of Applied Physics, 122(23), 230901. doi:10.1063/1.5007683 es_ES
dc.description.references Pawar, A. Y., Sonawane, D. D., Erande, K. B., & Derle, D. V. (2013). Terahertz technology and its applications. Drug Invention Today, 5(2), 157-163. doi:10.1016/j.dit.2013.03.009 es_ES
dc.description.references Federici, J., & Moeller, L. (2010). Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, 107(11), 111101. doi:10.1063/1.3386413 es_ES
dc.description.references Federici, J. F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F., & Zimdars, D. (2005). THz imaging and sensing for security applications—explosives, weapons and drugs. Semiconductor Science and Technology, 20(7), S266-S280. doi:10.1088/0268-1242/20/7/018 es_ES
dc.description.references Dyakonov, M., & Shur, M. (1993). Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current. Physical Review Letters, 71(15), 2465-2468. doi:10.1103/physrevlett.71.2465 es_ES
dc.description.references Dyakonov, M., & Shur, M. (1996). Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Transactions on Electron Devices, 43(3), 380-387. doi:10.1109/16.485650 es_ES
dc.description.references Tauk, R., Teppe, F., Boubanga, S., Coquillat, D., Knap, W., Meziani, Y. M., … Shur, M. S. (2006). Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power. Applied Physics Letters, 89(25), 253511. doi:10.1063/1.2410215 es_ES
dc.description.references Rumyantsev, S. L., Fobelets, K., Veksler, D., Hackbarth, T., & Shur, M. S. (2008). Strained-Si modulation doped field effect transistors as detectors of terahertz and sub-terahertz radiation. Semiconductor Science and Technology, 23(10), 105001. doi:10.1088/0268-1242/23/10/105001 es_ES
dc.description.references Javadi, E., Delgado-Notario, J. A., Masoumi, N., Shahabadi, M., Velázquez-Pérez, J. E., & Meziani, Y. M. (2018). Continuous Wave Terahertz Sensing Using GaN HEMTs. physica status solidi (a), 215(11), 1700607. doi:10.1002/pssa.201700607 es_ES
dc.description.references Delgado-Notario, J. A., Clericò, V., Diez, E., Velázquez-Pérez, J. E., Taniguchi, T., Watanabe, K., … Meziani, Y. M. (2020). Asymmetric dual-grating gates graphene FET for detection of terahertz radiations. APL Photonics, 5(6), 066102. doi:10.1063/5.0007249 es_ES
dc.description.references Lewis, R. A. (2014). A review of terahertz sources. Journal of Physics D: Applied Physics, 47(37), 374001. doi:10.1088/0022-3727/47/37/374001 es_ES
dc.description.references Delgado-Notario, J., Velazquez-Perez, J., Meziani, Y., & Fobelets, K. (2018). Sub-THz Imaging Using Non-Resonant HEMT Detectors. Sensors, 18(2), 543. doi:10.3390/s18020543 es_ES
dc.description.references Gaspari, V., Fobelets, K., Velazquez-Perez, J. E., Ferguson, R., Michelakis, K., Despotopoulos, S., & Papavassilliou, C. (2004). Effect of temperature on the transfer characteristic of a 0.5 μm-gate Si:SiGe depletion-mode n-MODFET. Applied Surface Science, 224(1-4), 390-393. doi:10.1016/j.apsusc.2003.08.066 es_ES
dc.description.references Fobelets, K., Jeamsaksiri, W., Papavasilliou, C., Vilches, T., Gaspari, V., Velazquez-Perez, J. E., … König, U. (2004). Comparison of sub-micron Si:SiGe heterojunction nFETs to Si nMOSFET in present-day technologies. Solid-State Electronics, 48(8), 1401-1406. doi:10.1016/j.sse.2004.01.017 es_ES
dc.description.references Delgado Notario, J. A., Javadi, E., Calvo-Gallego, J., Diez, E., Velázquez, J. E., Meziani, Y. M., & Fobelets, K. (2016). Sub-Micron Gate Length Field Effect Transistors as Broad Band Detectors of Terahertz Radiation. International Journal of High Speed Electronics and Systems, 25(03n04), 1640020. doi:10.1142/s0129156416400206 es_ES
dc.description.references Sakowicz, M., Łusakowski, J., Karpierz, K., Grynberg, M., Gwarek, W., Boubanga, S., … Studart, N. (2010). A High Mobility Field-Effect Transistor as an Antenna for sub-THz Radiation. doi:10.1063/1.3295528 es_ES
dc.description.references Knap, W., Teppe, F., Meziani, Y., Dyakonova, N., Lusakowski, J., Boeuf, F., … Shur, M. S. (2004). Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Applied Physics Letters, 85(4), 675-677. doi:10.1063/1.1775034 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem