- -

One-Cycle Zero-Integral-Error Current Control for Shunt Active Power Filters

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

One-Cycle Zero-Integral-Error Current Control for Shunt Active Power Filters

Show full item record

Orts-Grau, S.; Balaguer-Herrero, P.; Alfonso-Gil, JC.; Martínez-Márquez, CI.; Gimeno Sales, FJ.; Segui-Chilet, S. (2020). One-Cycle Zero-Integral-Error Current Control for Shunt Active Power Filters. Electronics. 9(12):1-16. https://doi.org/10.3390/electronics9122008

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165963

Files in this item

Item Metadata

Title: One-Cycle Zero-Integral-Error Current Control for Shunt Active Power Filters
Author: Orts-Grau, Salvador Balaguer-Herrero, Pedro Alfonso-Gil, Jose Carlos Martínez-Márquez, Camilo I. Gimeno Sales, Francisco José Segui-Chilet, Salvador
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
[EN] Current control has, for decades, been one of the more challenging research fields in the development of power converters. Simple and robust nonlinear methods like hysteresis or sigma-delta controllers have been ...[+]
Subjects: Current control , Power converters , One-cycle controller , Active power filters , Power quality
Copyrigths: Reconocimiento (by)
Source:
Electronics. (eissn: 2079-9292 )
DOI: 10.3390/electronics9122008
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/electronics9122008
Type: Artículo

References

Orts-Grau, S., Gimeno-Sales, F. J., Abellan-Garcia, A., Segui-Chilet, S., & Alfonso-Gil, J. C. (2010). Improved Shunt Active Power Compensator for IEEE Standard 1459 Compliance. IEEE Transactions on Power Delivery, 25(4), 2692-2701. doi:10.1109/tpwrd.2010.2049033

Orts-Grau, S., Gimeno-Sales, F. J., Segui-Chilet, S., Abellan-Garcia, A., Alcaniz-Fillol, M., & Masot-Peris, R. (2009). Selective Compensation in Four-Wire Electric Systems Based on a New Equivalent Conductance Approach. IEEE Transactions on Industrial Electronics, 56(8), 2862-2874. doi:10.1109/tie.2009.2014368

Trinh, Q.-N., & Lee, H.-H. (2013). An Advanced Current Control Strategy for Three-Phase Shunt Active Power Filters. IEEE Transactions on Industrial Electronics, 60(12), 5400-5410. doi:10.1109/tie.2012.2229677 [+]
Orts-Grau, S., Gimeno-Sales, F. J., Abellan-Garcia, A., Segui-Chilet, S., & Alfonso-Gil, J. C. (2010). Improved Shunt Active Power Compensator for IEEE Standard 1459 Compliance. IEEE Transactions on Power Delivery, 25(4), 2692-2701. doi:10.1109/tpwrd.2010.2049033

Orts-Grau, S., Gimeno-Sales, F. J., Segui-Chilet, S., Abellan-Garcia, A., Alcaniz-Fillol, M., & Masot-Peris, R. (2009). Selective Compensation in Four-Wire Electric Systems Based on a New Equivalent Conductance Approach. IEEE Transactions on Industrial Electronics, 56(8), 2862-2874. doi:10.1109/tie.2009.2014368

Trinh, Q.-N., & Lee, H.-H. (2013). An Advanced Current Control Strategy for Three-Phase Shunt Active Power Filters. IEEE Transactions on Industrial Electronics, 60(12), 5400-5410. doi:10.1109/tie.2012.2229677

Bosch, S., Staiger, J., & Steinhart, H. (2018). Predictive Current Control for an Active Power Filter With <italic>LCL</italic>-Filter. IEEE Transactions on Industrial Electronics, 65(6), 4943-4952. doi:10.1109/tie.2017.2772176

Balasubramanian, R., Parkavikathirvelu, K., Sankaran, R., & Amirtharajan, R. (2019). Design, Simulation and Hardware Implementation of Shunt Hybrid Compensator Using Synchronous Rotating Reference Frame (SRRF)-Based Control Technique. Electronics, 8(1), 42. doi:10.3390/electronics8010042

Imam, A. A., Sreerama Kumar, R., & Al-Turki, Y. A. (2020). Modeling and Simulation of a PI Controlled Shunt Active Power Filter for Power Quality Enhancement Based on P-Q Theory. Electronics, 9(4), 637. doi:10.3390/electronics9040637

Panigrahi, R., Subudhi, B., & Panda, P. C. (2016). A Robust LQG Servo Control Strategy of Shunt-Active Power Filter for Power Quality Enhancement. IEEE Transactions on Power Electronics, 31(4), 2860-2869. doi:10.1109/tpel.2015.2456155

Herman, L., Papic, I., & Blazic, B. (2014). A Proportional-Resonant Current Controller for Selective Harmonic Compensation in a Hybrid Active Power Filter. IEEE Transactions on Power Delivery, 29(5), 2055-2065. doi:10.1109/tpwrd.2014.2344770

Panigrahi, R., & Subudhi, B. (2017). Performance Enhancement of Shunt Active Power Filter Using a Kalman Filter-Based ${{{\rm H}}_\infty }$ Control Strategy. IEEE Transactions on Power Electronics, 32(4), 2622-2630. doi:10.1109/tpel.2016.2572142

Jiang, W., Ding, X., Ni, Y., Wang, J., Wang, L., & Ma, W. (2018). An Improved Deadbeat Control for a Three-Phase Three-Line Active Power Filter With Current-Tracking Error Compensation. IEEE Transactions on Power Electronics, 33(3), 2061-2072. doi:10.1109/tpel.2017.2693325

Buso, S., Caldognetto, T., & Brandao, D. (2015). Dead-Beat Current Controller for Voltage Source Converters with Improved Large Signal Response. IEEE Transactions on Industry Applications, 1-1. doi:10.1109/tia.2015.2488644

Tarisciotti, L., Formentini, A., Gaeta, A., Degano, M., Zanchetta, P., Rabbeni, R., & Pucci, M. (2017). Model Predictive Control for Shunt Active Filters With Fixed Switching Frequency. IEEE Transactions on Industry Applications, 53(1), 296-304. doi:10.1109/tia.2016.2606364

Kumar, M., & Gupta, R. (2017). Sampled-Time-Domain Analysis of a Digitally Implemented Current Controlled Inverter. IEEE Transactions on Industrial Electronics, 64(1), 217-227. doi:10.1109/tie.2016.2609840

Ho, C. N.-M., Cheung, V. S. P., & Chung, H. S.-H. (2009). Constant-Frequency Hysteresis Current Control of Grid-Connected VSI Without Bandwidth Control. IEEE Transactions on Power Electronics, 24(11), 2484-2495. doi:10.1109/tpel.2009.2031804

Wu, F., Feng, F., Luo, L., Duan, J., & Sun, L. (2015). Sampling period online adjusting-based hysteresis current control without band with constant switching frequency. IEEE Transactions on Industrial Electronics, 62(1), 270-277. doi:10.1109/tie.2014.2326992

Holmes, D. G., Davoodnezhad, R., & McGrath, B. P. (2013). An Improved Three-Phase Variable-Band Hysteresis Current Regulator. IEEE Transactions on Power Electronics, 28(1), 441-450. doi:10.1109/tpel.2012.2199133

Komurcugil, H., Bayhan, S., & Abu-Rub, H. (2017). Variable- and Fixed-Switching-Frequency-Based HCC Methods for Grid-Connected VSI With Active Damping and Zero Steady-State Error. IEEE Transactions on Industrial Electronics, 64(9), 7009-7018. doi:10.1109/tie.2017.2686331

Chang, C.-H., Wu, F.-Y., & Chen, Y.-M. (2012). Modularized Bidirectional Grid-Connected Inverter With Constant-Frequency Asynchronous Sigma–Delta Modulation. IEEE Transactions on Industrial Electronics, 59(11), 4088-4100. doi:10.1109/tie.2011.2176693

Mertens, A. (1994). Performance analysis of three-phase inverters controlled by synchronous delta-modulation systems. IEEE Transactions on Industry Applications, 30(4), 1016-1027. doi:10.1109/28.297919

Morales, J., de Vicuna, L. G., Guzman, R., Castilla, M., & Miret, J. (2018). Modeling and Sliding Mode Control for Three-Phase Active Power Filters Using the Vector Operation Technique. IEEE Transactions on Industrial Electronics, 65(9), 6828-6838. doi:10.1109/tie.2018.2795528

Guzman, R., de Vicuna, L. G., Morales, J., Castilla, M., & Miret, J. (2016). Model-Based Control for a Three-Phase Shunt Active Power Filter. IEEE Transactions on Industrial Electronics, 63(7), 3998-4007. doi:10.1109/tie.2016.2540580

Pichan, M., & Rastegar, H. (2017). Sliding-Mode Control of Four-Leg Inverter With Fixed Switching Frequency for Uninterruptible Power Supply Applications. IEEE Transactions on Industrial Electronics, 64(8), 6805-6814. doi:10.1109/tie.2017.2686346

E. S., S., E. K., P., Chatterjee, K., & Bandyopadhyay, S. (2014). An Active Harmonic Filter Based on One-Cycle Control. IEEE Transactions on Industrial Electronics, 61(8), 3799-3809. doi:10.1109/tie.2013.2286558

Wang, L., Han, X., Ren, C., Yang, Y., & Wang, P. (2018). A Modified One-Cycle-Control-Based Active Power Filter for Harmonic Compensation. IEEE Transactions on Industrial Electronics, 65(1), 738-748. doi:10.1109/tie.2017.2682021

Jin, T., & Smedley, K. M. (2006). Operation of One-Cycle Controlled Three-Phase Active Power Filter With Unbalanced Source and Load. IEEE Transactions on Power Electronics, 21(5), 1403-1412. doi:10.1109/tpel.2006.880264

Hirve, S., Chatterjee, K., Fernandes, B. G., Imayavaramban, M., & Dwari, S. (2007). PLL-Less Active Power Filter Based on One-Cycle Control for Compensating Unbalanced Loads in Three-Phase Four-Wire System. IEEE Transactions on Power Delivery, 22(4), 2457-2465. doi:10.1109/tpwrd.2007.893450

Qiao, C., Smedley, K. M., & Maddaleno, F. (2004). A Single-Phase Active Power Filter With One-Cycle Control Under Unipolar Operation. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(8), 1623-1630. doi:10.1109/tcsi.2004.832801

Qiao, C., Jin, T., & MaSmedley, K. (2004). One-Cycle Control of Three-Phase Active Power Filter With Vector Operation. IEEE Transactions on Industrial Electronics, 51(2), 455-463. doi:10.1109/tie.2004.825223

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record