Mostrar el registro sencillo del ítem
dc.contributor.author | Orts-Grau, Salvador | es_ES |
dc.contributor.author | Balaguer-Herrero, Pedro | es_ES |
dc.contributor.author | Alfonso-Gil, Jose Carlos | es_ES |
dc.contributor.author | Martínez-Márquez, Camilo I. | es_ES |
dc.contributor.author | Gimeno Sales, Francisco José | es_ES |
dc.contributor.author | Segui-Chilet, Salvador | es_ES |
dc.date.accessioned | 2021-05-05T03:32:43Z | |
dc.date.available | 2021-05-05T03:32:43Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165963 | |
dc.description.abstract | [EN] Current control has, for decades, been one of the more challenging research fields in the development of power converters. Simple and robust nonlinear methods like hysteresis or sigma-delta controllers have been commonly used, while sophisticated linear controllers based on classical control theory have been developed for PWM-based converters. The one-cycle current control technique is a nonlinear technique based on cycle-by-cycle calculation of the ON time of the converter switches for the next switching period. This kind of controller requires accurate measurement of voltages and currents in order achieve a precise current tracking. These techniques have been frequently used in the control of power converters generating low-frequency currents, where the reference varies slowly compared with the switching frequency. Its application is not so common in active power filter current controllers due to the fast variation of the references that demands not only accurate measurements but also high-speed computing. This paper proposes a novel one-cycle digital current controller based on the minimization of the integral error of the current. Its application in a three-leg four-wire shunt active power filter is presented, including a stability analysis considering the switching pattern selection. Furthermore, simulated and experimental results are presented to validate the proposed controller. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Electronics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Current control | es_ES |
dc.subject | Power converters | es_ES |
dc.subject | One-cycle controller | es_ES |
dc.subject | Active power filters | es_ES |
dc.subject | Power quality | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | One-Cycle Zero-Integral-Error Current Control for Shunt Active Power Filters | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/electronics9122008 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Orts-Grau, S.; Balaguer-Herrero, P.; Alfonso-Gil, JC.; Martínez-Márquez, CI.; Gimeno Sales, FJ.; Segui-Chilet, S. (2020). One-Cycle Zero-Integral-Error Current Control for Shunt Active Power Filters. Electronics. 9(12):1-16. https://doi.org/10.3390/electronics9122008 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/electronics9122008 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.eissn | 2079-9292 | es_ES |
dc.relation.pasarela | S\425914 | es_ES |
dc.description.references | Orts-Grau, S., Gimeno-Sales, F. J., Abellan-Garcia, A., Segui-Chilet, S., & Alfonso-Gil, J. C. (2010). Improved Shunt Active Power Compensator for IEEE Standard 1459 Compliance. IEEE Transactions on Power Delivery, 25(4), 2692-2701. doi:10.1109/tpwrd.2010.2049033 | es_ES |
dc.description.references | Orts-Grau, S., Gimeno-Sales, F. J., Segui-Chilet, S., Abellan-Garcia, A., Alcaniz-Fillol, M., & Masot-Peris, R. (2009). Selective Compensation in Four-Wire Electric Systems Based on a New Equivalent Conductance Approach. IEEE Transactions on Industrial Electronics, 56(8), 2862-2874. doi:10.1109/tie.2009.2014368 | es_ES |
dc.description.references | Trinh, Q.-N., & Lee, H.-H. (2013). An Advanced Current Control Strategy for Three-Phase Shunt Active Power Filters. IEEE Transactions on Industrial Electronics, 60(12), 5400-5410. doi:10.1109/tie.2012.2229677 | es_ES |
dc.description.references | Bosch, S., Staiger, J., & Steinhart, H. (2018). Predictive Current Control for an Active Power Filter With <italic>LCL</italic>-Filter. IEEE Transactions on Industrial Electronics, 65(6), 4943-4952. doi:10.1109/tie.2017.2772176 | es_ES |
dc.description.references | Balasubramanian, R., Parkavikathirvelu, K., Sankaran, R., & Amirtharajan, R. (2019). Design, Simulation and Hardware Implementation of Shunt Hybrid Compensator Using Synchronous Rotating Reference Frame (SRRF)-Based Control Technique. Electronics, 8(1), 42. doi:10.3390/electronics8010042 | es_ES |
dc.description.references | Imam, A. A., Sreerama Kumar, R., & Al-Turki, Y. A. (2020). Modeling and Simulation of a PI Controlled Shunt Active Power Filter for Power Quality Enhancement Based on P-Q Theory. Electronics, 9(4), 637. doi:10.3390/electronics9040637 | es_ES |
dc.description.references | Panigrahi, R., Subudhi, B., & Panda, P. C. (2016). A Robust LQG Servo Control Strategy of Shunt-Active Power Filter for Power Quality Enhancement. IEEE Transactions on Power Electronics, 31(4), 2860-2869. doi:10.1109/tpel.2015.2456155 | es_ES |
dc.description.references | Herman, L., Papic, I., & Blazic, B. (2014). A Proportional-Resonant Current Controller for Selective Harmonic Compensation in a Hybrid Active Power Filter. IEEE Transactions on Power Delivery, 29(5), 2055-2065. doi:10.1109/tpwrd.2014.2344770 | es_ES |
dc.description.references | Panigrahi, R., & Subudhi, B. (2017). Performance Enhancement of Shunt Active Power Filter Using a Kalman Filter-Based ${{{\rm H}}_\infty }$ Control Strategy. IEEE Transactions on Power Electronics, 32(4), 2622-2630. doi:10.1109/tpel.2016.2572142 | es_ES |
dc.description.references | Jiang, W., Ding, X., Ni, Y., Wang, J., Wang, L., & Ma, W. (2018). An Improved Deadbeat Control for a Three-Phase Three-Line Active Power Filter With Current-Tracking Error Compensation. IEEE Transactions on Power Electronics, 33(3), 2061-2072. doi:10.1109/tpel.2017.2693325 | es_ES |
dc.description.references | Buso, S., Caldognetto, T., & Brandao, D. (2015). Dead-Beat Current Controller for Voltage Source Converters with Improved Large Signal Response. IEEE Transactions on Industry Applications, 1-1. doi:10.1109/tia.2015.2488644 | es_ES |
dc.description.references | Tarisciotti, L., Formentini, A., Gaeta, A., Degano, M., Zanchetta, P., Rabbeni, R., & Pucci, M. (2017). Model Predictive Control for Shunt Active Filters With Fixed Switching Frequency. IEEE Transactions on Industry Applications, 53(1), 296-304. doi:10.1109/tia.2016.2606364 | es_ES |
dc.description.references | Kumar, M., & Gupta, R. (2017). Sampled-Time-Domain Analysis of a Digitally Implemented Current Controlled Inverter. IEEE Transactions on Industrial Electronics, 64(1), 217-227. doi:10.1109/tie.2016.2609840 | es_ES |
dc.description.references | Ho, C. N.-M., Cheung, V. S. P., & Chung, H. S.-H. (2009). Constant-Frequency Hysteresis Current Control of Grid-Connected VSI Without Bandwidth Control. IEEE Transactions on Power Electronics, 24(11), 2484-2495. doi:10.1109/tpel.2009.2031804 | es_ES |
dc.description.references | Wu, F., Feng, F., Luo, L., Duan, J., & Sun, L. (2015). Sampling period online adjusting-based hysteresis current control without band with constant switching frequency. IEEE Transactions on Industrial Electronics, 62(1), 270-277. doi:10.1109/tie.2014.2326992 | es_ES |
dc.description.references | Holmes, D. G., Davoodnezhad, R., & McGrath, B. P. (2013). An Improved Three-Phase Variable-Band Hysteresis Current Regulator. IEEE Transactions on Power Electronics, 28(1), 441-450. doi:10.1109/tpel.2012.2199133 | es_ES |
dc.description.references | Komurcugil, H., Bayhan, S., & Abu-Rub, H. (2017). Variable- and Fixed-Switching-Frequency-Based HCC Methods for Grid-Connected VSI With Active Damping and Zero Steady-State Error. IEEE Transactions on Industrial Electronics, 64(9), 7009-7018. doi:10.1109/tie.2017.2686331 | es_ES |
dc.description.references | Chang, C.-H., Wu, F.-Y., & Chen, Y.-M. (2012). Modularized Bidirectional Grid-Connected Inverter With Constant-Frequency Asynchronous Sigma–Delta Modulation. IEEE Transactions on Industrial Electronics, 59(11), 4088-4100. doi:10.1109/tie.2011.2176693 | es_ES |
dc.description.references | Mertens, A. (1994). Performance analysis of three-phase inverters controlled by synchronous delta-modulation systems. IEEE Transactions on Industry Applications, 30(4), 1016-1027. doi:10.1109/28.297919 | es_ES |
dc.description.references | Morales, J., de Vicuna, L. G., Guzman, R., Castilla, M., & Miret, J. (2018). Modeling and Sliding Mode Control for Three-Phase Active Power Filters Using the Vector Operation Technique. IEEE Transactions on Industrial Electronics, 65(9), 6828-6838. doi:10.1109/tie.2018.2795528 | es_ES |
dc.description.references | Guzman, R., de Vicuna, L. G., Morales, J., Castilla, M., & Miret, J. (2016). Model-Based Control for a Three-Phase Shunt Active Power Filter. IEEE Transactions on Industrial Electronics, 63(7), 3998-4007. doi:10.1109/tie.2016.2540580 | es_ES |
dc.description.references | Pichan, M., & Rastegar, H. (2017). Sliding-Mode Control of Four-Leg Inverter With Fixed Switching Frequency for Uninterruptible Power Supply Applications. IEEE Transactions on Industrial Electronics, 64(8), 6805-6814. doi:10.1109/tie.2017.2686346 | es_ES |
dc.description.references | E. S., S., E. K., P., Chatterjee, K., & Bandyopadhyay, S. (2014). An Active Harmonic Filter Based on One-Cycle Control. IEEE Transactions on Industrial Electronics, 61(8), 3799-3809. doi:10.1109/tie.2013.2286558 | es_ES |
dc.description.references | Wang, L., Han, X., Ren, C., Yang, Y., & Wang, P. (2018). A Modified One-Cycle-Control-Based Active Power Filter for Harmonic Compensation. IEEE Transactions on Industrial Electronics, 65(1), 738-748. doi:10.1109/tie.2017.2682021 | es_ES |
dc.description.references | Jin, T., & Smedley, K. M. (2006). Operation of One-Cycle Controlled Three-Phase Active Power Filter With Unbalanced Source and Load. IEEE Transactions on Power Electronics, 21(5), 1403-1412. doi:10.1109/tpel.2006.880264 | es_ES |
dc.description.references | Hirve, S., Chatterjee, K., Fernandes, B. G., Imayavaramban, M., & Dwari, S. (2007). PLL-Less Active Power Filter Based on One-Cycle Control for Compensating Unbalanced Loads in Three-Phase Four-Wire System. IEEE Transactions on Power Delivery, 22(4), 2457-2465. doi:10.1109/tpwrd.2007.893450 | es_ES |
dc.description.references | Qiao, C., Smedley, K. M., & Maddaleno, F. (2004). A Single-Phase Active Power Filter With One-Cycle Control Under Unipolar Operation. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(8), 1623-1630. doi:10.1109/tcsi.2004.832801 | es_ES |
dc.description.references | Qiao, C., Jin, T., & MaSmedley, K. (2004). One-Cycle Control of Three-Phase Active Power Filter With Vector Operation. IEEE Transactions on Industrial Electronics, 51(2), 455-463. doi:10.1109/tie.2004.825223 | es_ES |