- -

In vitro bioaccessibility of minerals from microalgae-enriched cookies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In vitro bioaccessibility of minerals from microalgae-enriched cookies

Mostrar el registro completo del ítem

Uribe-Wandurraga, ZN.; Igual Ramo, M.; García-Segovia, P.; Martínez-Monzó, J. (2020). In vitro bioaccessibility of minerals from microalgae-enriched cookies. Food & Function. 11(3):2186-2194. https://doi.org/10.1039/c9fo02603g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165964

Ficheros en el ítem

Metadatos del ítem

Título: In vitro bioaccessibility of minerals from microalgae-enriched cookies
Autor: Uribe-Wandurraga, Zaida Natalia Igual Ramo, Marta García-Segovia, Purificación Martínez-Monzó, Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] Microalgae have several biologically active constituents such as pigments, fatty acids, vitamins, and minerals, among others. Nowadays, there are numerous commercial applications for microalgae in food and animal feed. ...[+]
Palabras clave: Minerals , Spirulina , Chlorella , Bioaccesibility , Cookies
Derechos de uso: Reserva de todos los derechos
Fuente:
Food & Function. (issn: 2042-650X )
DOI: 10.1039/c9fo02603g
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c9fo02603g
Tipo: Artículo

References

M. C. Latham , in Nutrición humana en el mundo en desarrollo , FAO , New York, USA , 2002 , ch. 10

L. R. McDowell , in Minerals in Animal and Human Nutrition , Elsevier Science , Amsterdam , 2nd edn, 2003 , p. 660

Hambidge, M. (2000). Human Zinc Deficiency. The Journal of Nutrition, 130(5), 1344S-1349S. doi:10.1093/jn/130.5.1344s [+]
M. C. Latham , in Nutrición humana en el mundo en desarrollo , FAO , New York, USA , 2002 , ch. 10

L. R. McDowell , in Minerals in Animal and Human Nutrition , Elsevier Science , Amsterdam , 2nd edn, 2003 , p. 660

Hambidge, M. (2000). Human Zinc Deficiency. The Journal of Nutrition, 130(5), 1344S-1349S. doi:10.1093/jn/130.5.1344s

Salgueiro, M. J., Zubillaga, M. B., Lysionek, A. E., Caro, R. A., Weill, R., & Boccio, J. R. (2002). The role of zinc in the growth and development of children. Nutrition, 18(6), 510-519. doi:10.1016/s0899-9007(01)00812-7

Rayman, M. P. (2000). The importance of selenium to human health. The Lancet, 356(9225), 233-241. doi:10.1016/s0140-6736(00)02490-9

Darnton-Hill, I., Webb, P., Harvey, P. W., Hunt, J. M., Dalmiya, N., Chopra, M., … de Benoist, B. (2005). Micronutrient deficiencies and gender: social and economic costs. The American Journal of Clinical Nutrition, 81(5), 1198S-1205S. doi:10.1093/ajcn/81.5.1198

Lachat, C. K., Van Camp, J. H., Mamiro, P. S., Wayua, F. O., Opsomer, A. S., Roberfroid, D. A., & Kolsteren, P. W. (2006). Processing of complementary food does not increase hair zinc levels and growth of infants in Kilosa district, rural Tanzania. British Journal of Nutrition, 95(1), 174-180. doi:10.1079/bjn20051610

Volk, R.-B. (2008). A newly developed assay for the quantitative determination of antimicrobial (anticyanobacterial) activity of both hydrophilic and lipophilic test compounds without any restriction. Microbiological Research, 163(2), 161-167. doi:10.1016/j.micres.2006.03.015

Fradique, M., Batista, A. P., Nunes, M. C., Gouveia, L., Bandarra, N. M., & Raymundo, A. (2010). Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture, 90(10), 1656-1664. doi:10.1002/jsfa.3999

Batista, A. P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., … Raymundo, A. (2017). Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research, 26, 161-171. doi:10.1016/j.algal.2017.07.017

Uribe-Wandurraga, Z. N., Igual, M., García-Segovia, P., & Martínez-Monzó, J. (2019). Effect of microalgae addition on mineral content, colour and mechanical properties of breadsticks. Food & Function, 10(8), 4685-4692. doi:10.1039/c9fo00286c

Hotz, C., & Gibson, R. S. (2007). Traditional Food-Processing and Preparation Practices to Enhance the Bioavailability of Micronutrients in Plant-Based Diets. The Journal of Nutrition, 137(4), 1097-1100. doi:10.1093/jn/137.4.1097

Hemalatha, S., Platel, K., & Srinivasan, K. (2007). Influence of heat processing on the bioaccessibility of zinc and iron from cereals and pulses consumed in India. Journal of Trace Elements in Medicine and Biology, 21(1), 1-7. doi:10.1016/j.jtemb.2006.10.002

Rehman, Z., & Shah, W. H. (2005). Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food Chemistry, 91(2), 327-331. doi:10.1016/j.foodchem.2004.06.019

Promchan, J., & Shiowatana, J. (2005). A dynamic continuous-flow dialysis system with on-line electrothermal atomic-absorption spectrometric and pH measurements for in-vitro determination of iron bioavailability by simulated gastrointestinal digestion. Analytical and Bioanalytical Chemistry, 382(6), 1360-1367. doi:10.1007/s00216-005-3288-z

Parada, J., & Aguilera, J. M. (2007). Food Microstructure Affects the Bioavailability of Several Nutrients. Journal of Food Science, 72(2), R21-R32. doi:10.1111/j.1750-3841.2007.00274.x

Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j

W. Horwitz and G. W.Latimer , Official methods of analysis of AOAC International , 2005

Fernández-Ruiz, V., Sánchez-Mata, M. C., Cámara, M., Torija, M. E., Chaya, C., Galiana-Balaguer, L., … Nuez, F. (2004). Internal Quality Characterization of Fresh Tomato Fruits. HortScience, 39(2), 339-345. doi:10.21273/hortsci.39.2.339

Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal Research, 6, 52-63. doi:10.1016/j.algal.2014.09.002

Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology, 69, 157-171. doi:10.1016/j.tifs.2017.09.010

Rao, B. D., Kulkarni, D. B., & C., K. (2018). Study on evaluation of starch, dietary fiber and mineral composition of cookies developed from 12 sorghum cultivars. Food Chemistry, 238, 82-86. doi:10.1016/j.foodchem.2016.12.069

Ahmed, H. A. M., Ashraf, S. A., Awadelkareem, A. M., Alam, J., & Mustafa, A. I. (2019). Physico-Chemical, Textural and Sensory Characteristics of Wheat Flour Biscuits Supplemented with Different Levels of Whey Protein Concentrate. Current Research in Nutrition and Food Science Journal, 7(3), 761-771. doi:10.12944/crnfsj.7.3.15

Cuellar-Bermudez, S. P., Garcia-Perez, J. S., Rittmann, B. E., & Parra-Saldivar, R. (2015). Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. Journal of Cleaner Production, 98, 53-65. doi:10.1016/j.jclepro.2014.03.034

Official Journal of the European Union , Regulation (EC) No. 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods , 2006 , vol. 404 , pp. 9–25

Rayman, M. P. (2012). Selenium and human health. The Lancet, 379(9822), 1256-1268. doi:10.1016/s0140-6736(11)61452-9

Boisen, S., & Fernández, J. A. (1997). Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Animal Feed Science and Technology, 68(3-4), 277-286. doi:10.1016/s0377-8401(97)00058-8

Fernández-García, E., Carvajal-Lérida, I., & Pérez-Gálvez, A. (2009). In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research, 29(11), 751-760. doi:10.1016/j.nutres.2009.09.016

Khouzam, R. B., Pohl, P., & Lobinski, R. (2011). Bioaccessibility of essential elements from white cheese, bread, fruit and vegetables. Talanta, 86, 425-428. doi:10.1016/j.talanta.2011.08.049

Sahuquillo, A., Barberá, R., & Farré, R. (2003). Bioaccessibility of calcium, iron and zinc from three legume samples. Nahrung/Food, 47(6), 438-441. doi:10.1002/food.200390097

Christ-Ribeiro, A., Graça, C. S., Kupski, L., Badiale-Furlong, E., & de Souza-Soares, L. A. (2019). Cytotoxicity, antifungal and anti mycotoxins effects of phenolic compounds from fermented rice bran and Spirulina sp. Process Biochemistry, 80, 190-196. doi:10.1016/j.procbio.2019.02.007

Vignola, M. B., Bustos, M. C., & Pérez, G. T. (2018). In vitro dialyzability of essential minerals from white and whole grain pasta. Food Chemistry, 265, 128-134. doi:10.1016/j.foodchem.2018.05.012

Vitali, D., Vedrina Dragojević, I., & Šebečić, B. (2008). Bioaccessibility of Ca, Mg, Mn and Cu from whole grain tea-biscuits: Impact of proteins, phytic acid and polyphenols. Food Chemistry, 110(1), 62-68. doi:10.1016/j.foodchem.2008.01.056

Bhatia, P., Aureli, F., D’Amato, M., Prakash, R., Cameotra, S. S., Nagaraja, T. P., & Cubadda, F. (2013). Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues. Food Chemistry, 140(1-2), 225-230. doi:10.1016/j.foodchem.2013.02.054

Díaz-Castro, J., Ojeda, M. L., Alférez, M. J. M., López-Aliaga, I., Nestares, T., & Campos, M. S. (2011). Se bioavailability and glutathione peroxidase activity in iron deficient rats. Journal of Trace Elements in Medicine and Biology, 25(1), 42-46. doi:10.1016/j.jtemb.2010.12.005

House, W. A., & Welch, R. M. (1989). Bioavailability of and Interactions between Zinc and Selenium in Rats Fed Wheat Grain Intrinsically Labeled with 65Zn and 75Se. The Journal of Nutrition, 119(6), 916-921. doi:10.1093/jn/119.6.916

J. Moreda-Piñeido and A.Moreda-Piñeido , in Selenium: Chemistry, Analysis, Function and Effects , Royal Society of Chemistry , 2015 , ch. 10

Kulkarni, S. D., Acharya, R., Rajurkar, N. S., & Reddy, A. V. R. (2007). Evaluation of bioaccessibility of some essential elements from wheatgrass (Triticum aestivum L.) by in vitro digestion method. Food Chemistry, 103(2), 681-688. doi:10.1016/j.foodchem.2006.07.057

House, W. A. (1999). Trace element bioavailability as exemplified by iron and zinc. Field Crops Research, 60(1-2), 115-141. doi:10.1016/s0378-4290(98)00136-1

Hunt, J. R. (2003). Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. The American Journal of Clinical Nutrition, 78(3), 633S-639S. doi:10.1093/ajcn/78.3.633s

Kumari, M., Gupta, S., Lakshmi, A. J., & Prakash, J. (2004). Iron bioavailability in green leafy vegetables cooked in different utensils. Food Chemistry, 86(2), 217-222. doi:10.1016/j.foodchem.2003.08.017

Burgos, V. E., Binaghi, M. J., de Ferrer, P. A. R., & Armada, M. (2018). Effect of precooking on antinutritional factors and mineral bioaccessibility in kiwicha grains. Journal of Cereal Science, 80, 9-15. doi:10.1016/j.jcs.2017.12.014

Ramírez-Ojeda, A. M., Moreno-Rojas, R., & Cámara-Martos, F. (2018). Mineral and trace element content in legumes (lentils, chickpeas and beans): Bioaccesibility and probabilistic assessment of the dietary intake. Journal of Food Composition and Analysis, 73, 17-28. doi:10.1016/j.jfca.2018.07.007

Staessen, J., Fagard, R., Lijnen, P., & Amery, A. (1989). Body weight, sodium intake and blood pressure. Journal of Hypertension, 7(Supplement 1), S19-S23. doi:10.1097/00004872-198902001-00006

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem