- -

In vitro bioaccessibility of minerals from microalgae-enriched cookies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In vitro bioaccessibility of minerals from microalgae-enriched cookies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Uribe-Wandurraga, Zaida Natalia es_ES
dc.contributor.author Igual Ramo, Marta es_ES
dc.contributor.author García-Segovia, Purificación es_ES
dc.contributor.author Martínez-Monzó, Javier es_ES
dc.date.accessioned 2021-05-05T03:32:55Z
dc.date.available 2021-05-05T03:32:55Z
dc.date.issued 2020-03-01 es_ES
dc.identifier.issn 2042-650X es_ES
dc.identifier.uri http://hdl.handle.net/10251/165964
dc.description.abstract [EN] Microalgae have several biologically active constituents such as pigments, fatty acids, vitamins, and minerals, among others. Nowadays, there are numerous commercial applications for microalgae in food and animal feed. Minerals have many functions in the human body, from structural to metabolic function; as mineral absorption by the human body is important, its study is also key because of anti-nutritional factors responsible for lowering the bioaccessibility of these minerals. The aim of this work was to evaluate the mineral bioaccessibility in cookies, enriched with Arthrospira platensis (Spirulina) and Chlorella vulgaris, using in vitro static systems that simulate digestive processes. Using microalgae as an ingredient to enrich cookies with minerals was a good alternative because cookies presented a higher content of minerals compared to control samples. When the microalgae concentration in formulation increased (within studied range), higher P, Se, Na, and Mg amounts were observed in cookies. Cookies enriched with 1.5 or 2% Chlorella or Spirulina are foods classed as "high in selenium". Incorporating A. platensis and C. vulgaris in cookie formulations, therefore, allowed greater accessibility of P, K, Ca, Mg, Fe, Zn, and Se for absorption in the body, compared with control cookies. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Food & Function es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Minerals es_ES
dc.subject Spirulina es_ES
dc.subject Chlorella es_ES
dc.subject Bioaccesibility es_ES
dc.subject Cookies es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title In vitro bioaccessibility of minerals from microalgae-enriched cookies es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9fo02603g es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Uribe-Wandurraga, ZN.; Igual Ramo, M.; García-Segovia, P.; Martínez-Monzó, J. (2020). In vitro bioaccessibility of minerals from microalgae-enriched cookies. Food & Function. 11(3):2186-2194. https://doi.org/10.1039/c9fo02603g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9fo02603g es_ES
dc.description.upvformatpinicio 2186 es_ES
dc.description.upvformatpfin 2194 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 32091036 es_ES
dc.relation.pasarela S\399291 es_ES
dc.description.references M. C. Latham , in Nutrición humana en el mundo en desarrollo , FAO , New York, USA , 2002 , ch. 10 es_ES
dc.description.references L. R. McDowell , in Minerals in Animal and Human Nutrition , Elsevier Science , Amsterdam , 2nd edn, 2003 , p. 660 es_ES
dc.description.references Hambidge, M. (2000). Human Zinc Deficiency. The Journal of Nutrition, 130(5), 1344S-1349S. doi:10.1093/jn/130.5.1344s es_ES
dc.description.references Salgueiro, M. J., Zubillaga, M. B., Lysionek, A. E., Caro, R. A., Weill, R., & Boccio, J. R. (2002). The role of zinc in the growth and development of children. Nutrition, 18(6), 510-519. doi:10.1016/s0899-9007(01)00812-7 es_ES
dc.description.references Rayman, M. P. (2000). The importance of selenium to human health. The Lancet, 356(9225), 233-241. doi:10.1016/s0140-6736(00)02490-9 es_ES
dc.description.references Darnton-Hill, I., Webb, P., Harvey, P. W., Hunt, J. M., Dalmiya, N., Chopra, M., … de Benoist, B. (2005). Micronutrient deficiencies and gender: social and economic costs. The American Journal of Clinical Nutrition, 81(5), 1198S-1205S. doi:10.1093/ajcn/81.5.1198 es_ES
dc.description.references Lachat, C. K., Van Camp, J. H., Mamiro, P. S., Wayua, F. O., Opsomer, A. S., Roberfroid, D. A., & Kolsteren, P. W. (2006). Processing of complementary food does not increase hair zinc levels and growth of infants in Kilosa district, rural Tanzania. British Journal of Nutrition, 95(1), 174-180. doi:10.1079/bjn20051610 es_ES
dc.description.references Volk, R.-B. (2008). A newly developed assay for the quantitative determination of antimicrobial (anticyanobacterial) activity of both hydrophilic and lipophilic test compounds without any restriction. Microbiological Research, 163(2), 161-167. doi:10.1016/j.micres.2006.03.015 es_ES
dc.description.references Fradique, M., Batista, A. P., Nunes, M. C., Gouveia, L., Bandarra, N. M., & Raymundo, A. (2010). Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture, 90(10), 1656-1664. doi:10.1002/jsfa.3999 es_ES
dc.description.references Batista, A. P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., … Raymundo, A. (2017). Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research, 26, 161-171. doi:10.1016/j.algal.2017.07.017 es_ES
dc.description.references Uribe-Wandurraga, Z. N., Igual, M., García-Segovia, P., & Martínez-Monzó, J. (2019). Effect of microalgae addition on mineral content, colour and mechanical properties of breadsticks. Food & Function, 10(8), 4685-4692. doi:10.1039/c9fo00286c es_ES
dc.description.references Hotz, C., & Gibson, R. S. (2007). Traditional Food-Processing and Preparation Practices to Enhance the Bioavailability of Micronutrients in Plant-Based Diets. The Journal of Nutrition, 137(4), 1097-1100. doi:10.1093/jn/137.4.1097 es_ES
dc.description.references Hemalatha, S., Platel, K., & Srinivasan, K. (2007). Influence of heat processing on the bioaccessibility of zinc and iron from cereals and pulses consumed in India. Journal of Trace Elements in Medicine and Biology, 21(1), 1-7. doi:10.1016/j.jtemb.2006.10.002 es_ES
dc.description.references Rehman, Z., & Shah, W. H. (2005). Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food Chemistry, 91(2), 327-331. doi:10.1016/j.foodchem.2004.06.019 es_ES
dc.description.references Promchan, J., & Shiowatana, J. (2005). A dynamic continuous-flow dialysis system with on-line electrothermal atomic-absorption spectrometric and pH measurements for in-vitro determination of iron bioavailability by simulated gastrointestinal digestion. Analytical and Bioanalytical Chemistry, 382(6), 1360-1367. doi:10.1007/s00216-005-3288-z es_ES
dc.description.references Parada, J., & Aguilera, J. M. (2007). Food Microstructure Affects the Bioavailability of Several Nutrients. Journal of Food Science, 72(2), R21-R32. doi:10.1111/j.1750-3841.2007.00274.x es_ES
dc.description.references Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j es_ES
dc.description.references W. Horwitz and G. W.Latimer , Official methods of analysis of AOAC International , 2005 es_ES
dc.description.references Fernández-Ruiz, V., Sánchez-Mata, M. C., Cámara, M., Torija, M. E., Chaya, C., Galiana-Balaguer, L., … Nuez, F. (2004). Internal Quality Characterization of Fresh Tomato Fruits. HortScience, 39(2), 339-345. doi:10.21273/hortsci.39.2.339 es_ES
dc.description.references Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal Research, 6, 52-63. doi:10.1016/j.algal.2014.09.002 es_ES
dc.description.references Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology, 69, 157-171. doi:10.1016/j.tifs.2017.09.010 es_ES
dc.description.references Rao, B. D., Kulkarni, D. B., & C., K. (2018). Study on evaluation of starch, dietary fiber and mineral composition of cookies developed from 12 sorghum cultivars. Food Chemistry, 238, 82-86. doi:10.1016/j.foodchem.2016.12.069 es_ES
dc.description.references Ahmed, H. A. M., Ashraf, S. A., Awadelkareem, A. M., Alam, J., & Mustafa, A. I. (2019). Physico-Chemical, Textural and Sensory Characteristics of Wheat Flour Biscuits Supplemented with Different Levels of Whey Protein Concentrate. Current Research in Nutrition and Food Science Journal, 7(3), 761-771. doi:10.12944/crnfsj.7.3.15 es_ES
dc.description.references Cuellar-Bermudez, S. P., Garcia-Perez, J. S., Rittmann, B. E., & Parra-Saldivar, R. (2015). Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. Journal of Cleaner Production, 98, 53-65. doi:10.1016/j.jclepro.2014.03.034 es_ES
dc.description.references Official Journal of the European Union , Regulation (EC) No. 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods , 2006 , vol. 404 , pp. 9–25 es_ES
dc.description.references Rayman, M. P. (2012). Selenium and human health. The Lancet, 379(9822), 1256-1268. doi:10.1016/s0140-6736(11)61452-9 es_ES
dc.description.references Boisen, S., & Fernández, J. A. (1997). Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Animal Feed Science and Technology, 68(3-4), 277-286. doi:10.1016/s0377-8401(97)00058-8 es_ES
dc.description.references Fernández-García, E., Carvajal-Lérida, I., & Pérez-Gálvez, A. (2009). In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research, 29(11), 751-760. doi:10.1016/j.nutres.2009.09.016 es_ES
dc.description.references Khouzam, R. B., Pohl, P., & Lobinski, R. (2011). Bioaccessibility of essential elements from white cheese, bread, fruit and vegetables. Talanta, 86, 425-428. doi:10.1016/j.talanta.2011.08.049 es_ES
dc.description.references Sahuquillo, A., Barberá, R., & Farré, R. (2003). Bioaccessibility of calcium, iron and zinc from three legume samples. Nahrung/Food, 47(6), 438-441. doi:10.1002/food.200390097 es_ES
dc.description.references Christ-Ribeiro, A., Graça, C. S., Kupski, L., Badiale-Furlong, E., & de Souza-Soares, L. A. (2019). Cytotoxicity, antifungal and anti mycotoxins effects of phenolic compounds from fermented rice bran and Spirulina sp. Process Biochemistry, 80, 190-196. doi:10.1016/j.procbio.2019.02.007 es_ES
dc.description.references Vignola, M. B., Bustos, M. C., & Pérez, G. T. (2018). In vitro dialyzability of essential minerals from white and whole grain pasta. Food Chemistry, 265, 128-134. doi:10.1016/j.foodchem.2018.05.012 es_ES
dc.description.references Vitali, D., Vedrina Dragojević, I., & Šebečić, B. (2008). Bioaccessibility of Ca, Mg, Mn and Cu from whole grain tea-biscuits: Impact of proteins, phytic acid and polyphenols. Food Chemistry, 110(1), 62-68. doi:10.1016/j.foodchem.2008.01.056 es_ES
dc.description.references Bhatia, P., Aureli, F., D’Amato, M., Prakash, R., Cameotra, S. S., Nagaraja, T. P., & Cubadda, F. (2013). Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues. Food Chemistry, 140(1-2), 225-230. doi:10.1016/j.foodchem.2013.02.054 es_ES
dc.description.references Díaz-Castro, J., Ojeda, M. L., Alférez, M. J. M., López-Aliaga, I., Nestares, T., & Campos, M. S. (2011). Se bioavailability and glutathione peroxidase activity in iron deficient rats. Journal of Trace Elements in Medicine and Biology, 25(1), 42-46. doi:10.1016/j.jtemb.2010.12.005 es_ES
dc.description.references House, W. A., & Welch, R. M. (1989). Bioavailability of and Interactions between Zinc and Selenium in Rats Fed Wheat Grain Intrinsically Labeled with 65Zn and 75Se. The Journal of Nutrition, 119(6), 916-921. doi:10.1093/jn/119.6.916 es_ES
dc.description.references J. Moreda-Piñeido and A.Moreda-Piñeido , in Selenium: Chemistry, Analysis, Function and Effects , Royal Society of Chemistry , 2015 , ch. 10 es_ES
dc.description.references Kulkarni, S. D., Acharya, R., Rajurkar, N. S., & Reddy, A. V. R. (2007). Evaluation of bioaccessibility of some essential elements from wheatgrass (Triticum aestivum L.) by in vitro digestion method. Food Chemistry, 103(2), 681-688. doi:10.1016/j.foodchem.2006.07.057 es_ES
dc.description.references House, W. A. (1999). Trace element bioavailability as exemplified by iron and zinc. Field Crops Research, 60(1-2), 115-141. doi:10.1016/s0378-4290(98)00136-1 es_ES
dc.description.references Hunt, J. R. (2003). Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. The American Journal of Clinical Nutrition, 78(3), 633S-639S. doi:10.1093/ajcn/78.3.633s es_ES
dc.description.references Kumari, M., Gupta, S., Lakshmi, A. J., & Prakash, J. (2004). Iron bioavailability in green leafy vegetables cooked in different utensils. Food Chemistry, 86(2), 217-222. doi:10.1016/j.foodchem.2003.08.017 es_ES
dc.description.references Burgos, V. E., Binaghi, M. J., de Ferrer, P. A. R., & Armada, M. (2018). Effect of precooking on antinutritional factors and mineral bioaccessibility in kiwicha grains. Journal of Cereal Science, 80, 9-15. doi:10.1016/j.jcs.2017.12.014 es_ES
dc.description.references Ramírez-Ojeda, A. M., Moreno-Rojas, R., & Cámara-Martos, F. (2018). Mineral and trace element content in legumes (lentils, chickpeas and beans): Bioaccesibility and probabilistic assessment of the dietary intake. Journal of Food Composition and Analysis, 73, 17-28. doi:10.1016/j.jfca.2018.07.007 es_ES
dc.description.references Staessen, J., Fagard, R., Lijnen, P., & Amery, A. (1989). Body weight, sodium intake and blood pressure. Journal of Hypertension, 7(Supplement 1), S19-S23. doi:10.1097/00004872-198902001-00006 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem