Mostrar el registro sencillo del ítem
dc.contributor.author | Uribe-Wandurraga, Zaida Natalia | es_ES |
dc.contributor.author | Igual Ramo, Marta | es_ES |
dc.contributor.author | García-Segovia, Purificación | es_ES |
dc.contributor.author | Martínez-Monzó, Javier | es_ES |
dc.date.accessioned | 2021-05-05T03:32:55Z | |
dc.date.available | 2021-05-05T03:32:55Z | |
dc.date.issued | 2020-03-01 | es_ES |
dc.identifier.issn | 2042-650X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165964 | |
dc.description.abstract | [EN] Microalgae have several biologically active constituents such as pigments, fatty acids, vitamins, and minerals, among others. Nowadays, there are numerous commercial applications for microalgae in food and animal feed. Minerals have many functions in the human body, from structural to metabolic function; as mineral absorption by the human body is important, its study is also key because of anti-nutritional factors responsible for lowering the bioaccessibility of these minerals. The aim of this work was to evaluate the mineral bioaccessibility in cookies, enriched with Arthrospira platensis (Spirulina) and Chlorella vulgaris, using in vitro static systems that simulate digestive processes. Using microalgae as an ingredient to enrich cookies with minerals was a good alternative because cookies presented a higher content of minerals compared to control samples. When the microalgae concentration in formulation increased (within studied range), higher P, Se, Na, and Mg amounts were observed in cookies. Cookies enriched with 1.5 or 2% Chlorella or Spirulina are foods classed as "high in selenium". Incorporating A. platensis and C. vulgaris in cookie formulations, therefore, allowed greater accessibility of P, K, Ca, Mg, Fe, Zn, and Se for absorption in the body, compared with control cookies. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Food & Function | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Minerals | es_ES |
dc.subject | Spirulina | es_ES |
dc.subject | Chlorella | es_ES |
dc.subject | Bioaccesibility | es_ES |
dc.subject | Cookies | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | In vitro bioaccessibility of minerals from microalgae-enriched cookies | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c9fo02603g | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Uribe-Wandurraga, ZN.; Igual Ramo, M.; García-Segovia, P.; Martínez-Monzó, J. (2020). In vitro bioaccessibility of minerals from microalgae-enriched cookies. Food & Function. 11(3):2186-2194. https://doi.org/10.1039/c9fo02603g | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c9fo02603g | es_ES |
dc.description.upvformatpinicio | 2186 | es_ES |
dc.description.upvformatpfin | 2194 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.pmid | 32091036 | es_ES |
dc.relation.pasarela | S\399291 | es_ES |
dc.description.references | M. C. Latham , in Nutrición humana en el mundo en desarrollo , FAO , New York, USA , 2002 , ch. 10 | es_ES |
dc.description.references | L. R. McDowell , in Minerals in Animal and Human Nutrition , Elsevier Science , Amsterdam , 2nd edn, 2003 , p. 660 | es_ES |
dc.description.references | Hambidge, M. (2000). Human Zinc Deficiency. The Journal of Nutrition, 130(5), 1344S-1349S. doi:10.1093/jn/130.5.1344s | es_ES |
dc.description.references | Salgueiro, M. J., Zubillaga, M. B., Lysionek, A. E., Caro, R. A., Weill, R., & Boccio, J. R. (2002). The role of zinc in the growth and development of children. Nutrition, 18(6), 510-519. doi:10.1016/s0899-9007(01)00812-7 | es_ES |
dc.description.references | Rayman, M. P. (2000). The importance of selenium to human health. The Lancet, 356(9225), 233-241. doi:10.1016/s0140-6736(00)02490-9 | es_ES |
dc.description.references | Darnton-Hill, I., Webb, P., Harvey, P. W., Hunt, J. M., Dalmiya, N., Chopra, M., … de Benoist, B. (2005). Micronutrient deficiencies and gender: social and economic costs. The American Journal of Clinical Nutrition, 81(5), 1198S-1205S. doi:10.1093/ajcn/81.5.1198 | es_ES |
dc.description.references | Lachat, C. K., Van Camp, J. H., Mamiro, P. S., Wayua, F. O., Opsomer, A. S., Roberfroid, D. A., & Kolsteren, P. W. (2006). Processing of complementary food does not increase hair zinc levels and growth of infants in Kilosa district, rural Tanzania. British Journal of Nutrition, 95(1), 174-180. doi:10.1079/bjn20051610 | es_ES |
dc.description.references | Volk, R.-B. (2008). A newly developed assay for the quantitative determination of antimicrobial (anticyanobacterial) activity of both hydrophilic and lipophilic test compounds without any restriction. Microbiological Research, 163(2), 161-167. doi:10.1016/j.micres.2006.03.015 | es_ES |
dc.description.references | Fradique, M., Batista, A. P., Nunes, M. C., Gouveia, L., Bandarra, N. M., & Raymundo, A. (2010). Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture, 90(10), 1656-1664. doi:10.1002/jsfa.3999 | es_ES |
dc.description.references | Batista, A. P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., … Raymundo, A. (2017). Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research, 26, 161-171. doi:10.1016/j.algal.2017.07.017 | es_ES |
dc.description.references | Uribe-Wandurraga, Z. N., Igual, M., García-Segovia, P., & Martínez-Monzó, J. (2019). Effect of microalgae addition on mineral content, colour and mechanical properties of breadsticks. Food & Function, 10(8), 4685-4692. doi:10.1039/c9fo00286c | es_ES |
dc.description.references | Hotz, C., & Gibson, R. S. (2007). Traditional Food-Processing and Preparation Practices to Enhance the Bioavailability of Micronutrients in Plant-Based Diets. The Journal of Nutrition, 137(4), 1097-1100. doi:10.1093/jn/137.4.1097 | es_ES |
dc.description.references | Hemalatha, S., Platel, K., & Srinivasan, K. (2007). Influence of heat processing on the bioaccessibility of zinc and iron from cereals and pulses consumed in India. Journal of Trace Elements in Medicine and Biology, 21(1), 1-7. doi:10.1016/j.jtemb.2006.10.002 | es_ES |
dc.description.references | Rehman, Z., & Shah, W. H. (2005). Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food Chemistry, 91(2), 327-331. doi:10.1016/j.foodchem.2004.06.019 | es_ES |
dc.description.references | Promchan, J., & Shiowatana, J. (2005). A dynamic continuous-flow dialysis system with on-line electrothermal atomic-absorption spectrometric and pH measurements for in-vitro determination of iron bioavailability by simulated gastrointestinal digestion. Analytical and Bioanalytical Chemistry, 382(6), 1360-1367. doi:10.1007/s00216-005-3288-z | es_ES |
dc.description.references | Parada, J., & Aguilera, J. M. (2007). Food Microstructure Affects the Bioavailability of Several Nutrients. Journal of Food Science, 72(2), R21-R32. doi:10.1111/j.1750-3841.2007.00274.x | es_ES |
dc.description.references | Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j | es_ES |
dc.description.references | W. Horwitz and G. W.Latimer , Official methods of analysis of AOAC International , 2005 | es_ES |
dc.description.references | Fernández-Ruiz, V., Sánchez-Mata, M. C., Cámara, M., Torija, M. E., Chaya, C., Galiana-Balaguer, L., … Nuez, F. (2004). Internal Quality Characterization of Fresh Tomato Fruits. HortScience, 39(2), 339-345. doi:10.21273/hortsci.39.2.339 | es_ES |
dc.description.references | Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal Research, 6, 52-63. doi:10.1016/j.algal.2014.09.002 | es_ES |
dc.description.references | Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology, 69, 157-171. doi:10.1016/j.tifs.2017.09.010 | es_ES |
dc.description.references | Rao, B. D., Kulkarni, D. B., & C., K. (2018). Study on evaluation of starch, dietary fiber and mineral composition of cookies developed from 12 sorghum cultivars. Food Chemistry, 238, 82-86. doi:10.1016/j.foodchem.2016.12.069 | es_ES |
dc.description.references | Ahmed, H. A. M., Ashraf, S. A., Awadelkareem, A. M., Alam, J., & Mustafa, A. I. (2019). Physico-Chemical, Textural and Sensory Characteristics of Wheat Flour Biscuits Supplemented with Different Levels of Whey Protein Concentrate. Current Research in Nutrition and Food Science Journal, 7(3), 761-771. doi:10.12944/crnfsj.7.3.15 | es_ES |
dc.description.references | Cuellar-Bermudez, S. P., Garcia-Perez, J. S., Rittmann, B. E., & Parra-Saldivar, R. (2015). Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. Journal of Cleaner Production, 98, 53-65. doi:10.1016/j.jclepro.2014.03.034 | es_ES |
dc.description.references | Official Journal of the European Union , Regulation (EC) No. 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods , 2006 , vol. 404 , pp. 9–25 | es_ES |
dc.description.references | Rayman, M. P. (2012). Selenium and human health. The Lancet, 379(9822), 1256-1268. doi:10.1016/s0140-6736(11)61452-9 | es_ES |
dc.description.references | Boisen, S., & Fernández, J. A. (1997). Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Animal Feed Science and Technology, 68(3-4), 277-286. doi:10.1016/s0377-8401(97)00058-8 | es_ES |
dc.description.references | Fernández-García, E., Carvajal-Lérida, I., & Pérez-Gálvez, A. (2009). In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research, 29(11), 751-760. doi:10.1016/j.nutres.2009.09.016 | es_ES |
dc.description.references | Khouzam, R. B., Pohl, P., & Lobinski, R. (2011). Bioaccessibility of essential elements from white cheese, bread, fruit and vegetables. Talanta, 86, 425-428. doi:10.1016/j.talanta.2011.08.049 | es_ES |
dc.description.references | Sahuquillo, A., Barberá, R., & Farré, R. (2003). Bioaccessibility of calcium, iron and zinc from three legume samples. Nahrung/Food, 47(6), 438-441. doi:10.1002/food.200390097 | es_ES |
dc.description.references | Christ-Ribeiro, A., Graça, C. S., Kupski, L., Badiale-Furlong, E., & de Souza-Soares, L. A. (2019). Cytotoxicity, antifungal and anti mycotoxins effects of phenolic compounds from fermented rice bran and Spirulina sp. Process Biochemistry, 80, 190-196. doi:10.1016/j.procbio.2019.02.007 | es_ES |
dc.description.references | Vignola, M. B., Bustos, M. C., & Pérez, G. T. (2018). In vitro dialyzability of essential minerals from white and whole grain pasta. Food Chemistry, 265, 128-134. doi:10.1016/j.foodchem.2018.05.012 | es_ES |
dc.description.references | Vitali, D., Vedrina Dragojević, I., & Šebečić, B. (2008). Bioaccessibility of Ca, Mg, Mn and Cu from whole grain tea-biscuits: Impact of proteins, phytic acid and polyphenols. Food Chemistry, 110(1), 62-68. doi:10.1016/j.foodchem.2008.01.056 | es_ES |
dc.description.references | Bhatia, P., Aureli, F., D’Amato, M., Prakash, R., Cameotra, S. S., Nagaraja, T. P., & Cubadda, F. (2013). Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues. Food Chemistry, 140(1-2), 225-230. doi:10.1016/j.foodchem.2013.02.054 | es_ES |
dc.description.references | Díaz-Castro, J., Ojeda, M. L., Alférez, M. J. M., López-Aliaga, I., Nestares, T., & Campos, M. S. (2011). Se bioavailability and glutathione peroxidase activity in iron deficient rats. Journal of Trace Elements in Medicine and Biology, 25(1), 42-46. doi:10.1016/j.jtemb.2010.12.005 | es_ES |
dc.description.references | House, W. A., & Welch, R. M. (1989). Bioavailability of and Interactions between Zinc and Selenium in Rats Fed Wheat Grain Intrinsically Labeled with 65Zn and 75Se. The Journal of Nutrition, 119(6), 916-921. doi:10.1093/jn/119.6.916 | es_ES |
dc.description.references | J. Moreda-Piñeido and A.Moreda-Piñeido , in Selenium: Chemistry, Analysis, Function and Effects , Royal Society of Chemistry , 2015 , ch. 10 | es_ES |
dc.description.references | Kulkarni, S. D., Acharya, R., Rajurkar, N. S., & Reddy, A. V. R. (2007). Evaluation of bioaccessibility of some essential elements from wheatgrass (Triticum aestivum L.) by in vitro digestion method. Food Chemistry, 103(2), 681-688. doi:10.1016/j.foodchem.2006.07.057 | es_ES |
dc.description.references | House, W. A. (1999). Trace element bioavailability as exemplified by iron and zinc. Field Crops Research, 60(1-2), 115-141. doi:10.1016/s0378-4290(98)00136-1 | es_ES |
dc.description.references | Hunt, J. R. (2003). Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. The American Journal of Clinical Nutrition, 78(3), 633S-639S. doi:10.1093/ajcn/78.3.633s | es_ES |
dc.description.references | Kumari, M., Gupta, S., Lakshmi, A. J., & Prakash, J. (2004). Iron bioavailability in green leafy vegetables cooked in different utensils. Food Chemistry, 86(2), 217-222. doi:10.1016/j.foodchem.2003.08.017 | es_ES |
dc.description.references | Burgos, V. E., Binaghi, M. J., de Ferrer, P. A. R., & Armada, M. (2018). Effect of precooking on antinutritional factors and mineral bioaccessibility in kiwicha grains. Journal of Cereal Science, 80, 9-15. doi:10.1016/j.jcs.2017.12.014 | es_ES |
dc.description.references | Ramírez-Ojeda, A. M., Moreno-Rojas, R., & Cámara-Martos, F. (2018). Mineral and trace element content in legumes (lentils, chickpeas and beans): Bioaccesibility and probabilistic assessment of the dietary intake. Journal of Food Composition and Analysis, 73, 17-28. doi:10.1016/j.jfca.2018.07.007 | es_ES |
dc.description.references | Staessen, J., Fagard, R., Lijnen, P., & Amery, A. (1989). Body weight, sodium intake and blood pressure. Journal of Hypertension, 7(Supplement 1), S19-S23. doi:10.1097/00004872-198902001-00006 | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |