Mostrar el registro sencillo del ítem
dc.contributor.author | González, Rubén | es_ES |
dc.contributor.author | Butkovic, Anamarija | es_ES |
dc.contributor.author | ELENA FITO, SANTIAGO FCO | es_ES |
dc.date.accessioned | 2021-05-05T03:33:02Z | |
dc.date.available | 2021-05-05T03:33:02Z | |
dc.date.issued | 2020 | es_ES |
dc.identifier.issn | 0065-3527 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165965 | |
dc.description.abstract | [EN] Phenotypic plasticity enables organisms to survive in the face of unpredictable environmental stress. Intimately related to the notion of phenotypic plasticity is the concept of the reaction norm that places phenotypic plasticity in the context of a genotype-specific response to environmental gradients. Whether reaction norms themselves evolve and which factors might affect their shape has been the object of intense debates among evolutionary biologists along the years. Since their discovery, viruses have been considered as pathogens. However, new viromic techniques and a shift in conceptual paradigms are showing that viruses are mostly non-pathogenic ubiquitous entities. Recent studies have shown how viral infections can even be beneficial for their hosts. This may happen especially in the context of stressed hosts, where the virus infection can induce beneficial changes in the host's physiological homeostasis, hence changing the shape of the reaction norm. Despite the fact that underlying physiological mechanisms and evolutionary dynamics are still not well understood, such beneficial interactions are being discovered in a growing number of plant-virus systems. Here, we aim to review these disperse studies and place them into the context of phenotypic plasticity and the evolution of reaction norms. This is an emerging field that is posing many questions that still need to be properly answered. The answers would clearly interest virologists, plant pathologists and evolutionary biologists and likely they will suggest possible future biotechnological applications, including the development of crops with higher survival rates and yield under adverse environmental situations. | es_ES |
dc.description.sponsorship | This work was funded by Spain's Agencia Estatal de Investigacion-FEDER grant BFU201565037-P and Generalitat Valenciana grant PROMETEU2019/012 to S.F.E. R.G. and A.B. were supported by Ministerio de Ciencia, Innovacion y Universidades-FEDER contract BES-2016-077078 and Generalitat Valenciana grant GRISOLIAP/2018/005, respectively. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Academic Press | es_ES |
dc.relation.ispartof | Advances in Virus Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.title | From foes to friends: Viral infections expand the limits of host phenotypic plasticity | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/bs.aivir.2020.01.003 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F005/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//BES-2016-077078/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F012/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | González, R.; Butkovic, A.; Elena Fito, SF. (2020). From foes to friends: Viral infections expand the limits of host phenotypic plasticity. Advances in Virus Research. (106):85-121. https://doi.org/10.1016/bs.aivir.2020.01.003 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/bs.aivir.2020.01.003 | es_ES |
dc.description.upvformatpinicio | 85 | es_ES |
dc.description.upvformatpfin | 121 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 106 | es_ES |
dc.identifier.pmid | 32327149 | es_ES |
dc.relation.pasarela | S\428639 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Aguilar, E., Cutrona, C., del Toro, F. J., Vallarino, J. G., Osorio, S., Pérez-Bueno, M. L., … Tenllado, F. (2017). Virulence determines beneficial trade-offs in the response of virus-infected plants to drought via induction of salicylic acid. Plant, Cell & Environment, 40(12), 2909-2930. doi:10.1111/pce.13028 | es_ES |
dc.description.references | Ahnert, S. E. (2017). Structural properties of genotype–phenotype maps. Journal of The Royal Society Interface, 14(132), 20170275. doi:10.1098/rsif.2017.0275 | es_ES |
dc.description.references | Alazem, M., & Lin, N. (2014). Roles of plant hormones in the regulation of host–virus interactions. Molecular Plant Pathology, 16(5), 529-540. doi:10.1111/mpp.12204 | es_ES |
dc.description.references | Andrews, C. J., & Paliwal, Y. C. (1983). The influence of preinfection cold hardening and disease development period on the interaction between barley yellow dwarf virus and cold stress tolerance in wheat. Canadian Journal of Botany, 61(7), 1935-1940. doi:10.1139/b83-207 | es_ES |
dc.description.references | Andrews, C. J., & Paliwal, Y. C. (1986). Effects of barley yellow dwarf virus infection and low temperature flooding on cold stress tolerance of winter cereals. Canadian Journal of Plant Pathology, 8(3), 311-316. doi:10.1080/07060668609501805 | es_ES |
dc.description.references | Aprile, A., Havlickova, L., Panna, R., Marè, C., Borrelli, G. M., Marone, D., … Cattivelli, L. (2013). Different stress responsive strategies to drought and heat in two durum wheat cultivars with contrasting water use efficiency. BMC Genomics, 14(1), 821. doi:10.1186/1471-2164-14-821 | es_ES |
dc.description.references | Arnholdt-Schmitt, B. (2004). Stress-Induced Cell Reprogramming. A Role for Global Genome Regulation? Plant Physiology, 136(1), 2579-2586. doi:10.1104/pp.104.042531 | es_ES |
dc.description.references | Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63(10), 3523-3543. doi:10.1093/jxb/ers100 | es_ES |
dc.description.references | Aucique-Pérez, C. E., de Menezes Silva, P. E., Moreira, W. R., DaMatta, F. M., & Rodrigues, F. Á. (2017). Photosynthesis impairments and excitation energy dissipation on wheat plants supplied with silicon and infected with Pyricularia oryzae. Plant Physiology and Biochemistry, 121, 196-205. doi:10.1016/j.plaphy.2017.10.023 | es_ES |
dc.description.references | Auld, J. R., Agrawal, A. A., & Relyea, R. A. (2009). Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proceedings of the Royal Society B: Biological Sciences, 277(1681), 503-511. doi:10.1098/rspb.2009.1355 | es_ES |
dc.description.references | Bass, D., Stentiford, G. D., Wang, H.-C., Koskella, B., & Tyler, C. R. (2019). The Pathobiome in Animal and Plant Diseases. Trends in Ecology & Evolution, 34(11), 996-1008. doi:10.1016/j.tree.2019.07.012 | es_ES |
dc.description.references | Basu, A., Chowdhury, S., Ray Chaudhuri, T., & Kundu, S. (2016). Differential behaviour of sheath blight pathogenRhizoctonia solaniin tolerant and susceptible rice varieties before and during infection. Plant Pathology, 65(8), 1333-1346. doi:10.1111/ppa.12502 | es_ES |
dc.description.references | Belliure, B., Janssen, A., Maris, P. C., Peters, D., & Sabelis, M. W. (2004). Herbivore arthropods benefit from vectoring plant viruses. Ecology Letters, 8(1), 70-79. doi:10.1111/j.1461-0248.2004.00699.x | es_ES |
dc.description.references | Belshaw, R., Gardner, A., Rambaut, A., & Pybus, O. G. (2008). Pacing a small cage: mutation and RNA viruses. Trends in Ecology & Evolution, 23(4), 188-193. doi:10.1016/j.tree.2007.11.010 | es_ES |
dc.description.references | Bergès, S. E., Vile, D., Vazquez-Rovere, C., Blanc, S., Yvon, M., Bédiée, A., … van Munster, M. (2018). Interactions Between Drought and Plant Genotype Change Epidemiological Traits of Cauliflower mosaic virus. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00703 | es_ES |
dc.description.references | Bhattacharya, D., & Medlin, and L. (1998). Algal Phylogeny and the Origin of Land Plants1. Plant Physiology, 116(1), 9-15. doi:10.1104/pp.116.1.9 | es_ES |
dc.description.references | Boyko, A., & Kovalchuk, I. (2011). Genetic and Epigenetic Effects of Plant–Pathogen Interactions: An Evolutionary Perspective. Molecular Plant, 4(6), 1014-1023. doi:10.1093/mp/ssr022 | es_ES |
dc.description.references | Bradshaw, A. D. (1965). Evolutionary Significance of Phenotypic Plasticity in Plants. Advances in Genetics, 115-155. doi:10.1016/s0065-2660(08)60048-6 | es_ES |
dc.description.references | Browder, L. E. (1985). Parasite: Host: Environment Specificity in the Cereal Rusts. Annual Review of Phytopathology, 23(1), 201-222. doi:10.1146/annurev.py.23.090185.001221 | es_ES |
dc.description.references | Callaway, R. M., Brooker, R. W., Choler, P., Kikvidze, Z., Lortie, C. J., Michalet, R., … Cook, B. J. (2002). Positive interactions among alpine plants increase with stress. Nature, 417(6891), 844-848. doi:10.1038/nature00812 | es_ES |
dc.description.references | Carr, J. P. (2017). Exploring how viruses enhance plants’ resilience to drought and the limits to this form of viral payback. Plant, Cell & Environment, 40(12), 2906-2908. doi:10.1111/pce.13068 | es_ES |
dc.description.references | Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response. Cell, 124(4), 803-814. doi:10.1016/j.cell.2006.02.008 | es_ES |
dc.description.references | Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 11(1), 163. doi:10.1186/1471-2229-11-163 | es_ES |
dc.description.references | Dáder, B., Then, C., Berthelot, E., Ducousso, M., Ng, J. C. K., & Drucker, M. (2017). Insect transmission of plant viruses: Multilayered interactions optimize viral propagation. Insect Science, 24(6), 929-946. doi:10.1111/1744-7917.12470 | es_ES |
dc.description.references | Dastogeer, K. M. G., Li, H., Sivasithamparam, K., Jones, M. G. K., & Wylie, S. J. (2018). Fungal endophytes and a virus confer drought tolerance to Nicotiana benthamiana plants through modulating osmolytes, antioxidant enzymes and expression of host drought responsive genes. Environmental and Experimental Botany, 149, 95-108. doi:10.1016/j.envexpbot.2018.02.009 | es_ES |
dc.description.references | Denancé, N., Sánchez-Vallet, A., Goffner, D., & Molina, A. (2013). Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00155 | es_ES |
dc.description.references | Dessau, M., Goldhill, D., McBride, R. C., Turner, P. E., & Modis, Y. (2012). Correction: Selective Pressure Causes an RNA Virus to Trade Reproductive Fitness for Increased Structural and Thermal Stability of a Viral Enzyme. PLoS Genetics, 8(12). doi:10.1371/annotation/aa9bff6f-92c4-4efb-9b7f-de96e405e9d3 | es_ES |
dc.description.references | DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution, 13(2), 77-81. doi:10.1016/s0169-5347(97)01274-3 | es_ES |
dc.description.references | Dickins, T. E., & Rahman, Q. (2012). The extended evolutionary synthesis and the role of soft inheritance in evolution. Proceedings of the Royal Society B: Biological Sciences, 279(1740), 2913-2921. doi:10.1098/rspb.2012.0273 | es_ES |
dc.description.references | Diener, T. O. (1963). Physiology of Virus-Infected Plants. Annual Review of Phytopathology, 1(1), 197-218. doi:10.1146/annurev.py.01.090163.001213 | es_ES |
dc.description.references | Diezma‐Navas, L., Pérez‐González, A., Artaza, H., Alonso, L., Caro, E., Llave, C., & Ruiz‐Ferrer, V. (2019). Crosstalk between epigenetic silencing and infection by tobacco rattle virus in Arabidopsis. Molecular Plant Pathology, 20(10), 1439-1452. doi:10.1111/mpp.12850 | es_ES |
dc.description.references | Dolan, P. T., Whitfield, Z. J., & Andino, R. (2018). Mechanisms and Concepts in RNA Virus Population Dynamics and Evolution. Annual Review of Virology, 5(1), 69-92. doi:10.1146/annurev-virology-101416-041718 | es_ES |
dc.description.references | Duffy, S., Shackelton, L. A., & Holmes, E. C. (2008). Rates of evolutionary change in viruses: patterns and determinants. Nature Reviews Genetics, 9(4), 267-276. doi:10.1038/nrg2323 | es_ES |
dc.description.references | Elena, S. F. (2012). RNA virus genetic robustness: possible causes and some consequences. Current Opinion in Virology, 2(5), 525-530. doi:10.1016/j.coviro.2012.06.008 | es_ES |
dc.description.references | Elena, S. F., & Sanjuán, R. (2005). Adaptive Value of High Mutation Rates of RNA Viruses: Separating Causes from Consequences. Journal of Virology, 79(18), 11555-11558. doi:10.1128/jvi.79.18.11555-11558.2005 | es_ES |
dc.description.references | Elena, S. F., Carrasco, P., Daròs, J., & Sanjuán, R. (2006). Mechanisms of genetic robustness in RNA viruses. EMBO reports, 7(2), 168-173. doi:10.1038/sj.embor.7400636 | es_ES |
dc.description.references | Engering, A., Hogerwerf, L., & Slingenbergh, J. (2013). Pathogen–host–environment interplay and disease emergence. Emerging Microbes & Infections, 2(1), 1-7. doi:10.1038/emi.2013.5 | es_ES |
dc.description.references | Fernández-Calvino, L., Osorio, S., Hernández, M. L., Hamada, I. B., del Toro, F. J., Donaire, L., … Llave, C. (2014). Virus-Induced Alterations in Primary Metabolism Modulate Susceptibility to Tobacco rattle virus in Arabidopsis . Plant Physiology, 166(4), 1821-1838. doi:10.1104/pp.114.250340 | es_ES |
dc.description.references | Finazzi, G., & Minagawa, J. (2014). High Light Acclimation in Green Microalgae. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, 445-469. doi:10.1007/978-94-017-9032-1_21 | es_ES |
dc.description.references | Fitzgerald, P. J., & Stoner, W. N. (1967). Barley Yellow Dwarf Studies in Wheat ( Triticum aestivum L.). I. Yield and Quality of Hard Red Winter Wheat Infected With Barley Yellow Dwarf Virus 1. Crop Science, 7(4), 337-341. doi:10.2135/cropsci1967.0011183x000700040018x | es_ES |
dc.description.references | Fraile, A., McLeish, M. J., Pagán, I., González-Jara, P., Piñero, D., & García-Arenal, F. (2017). Environmental heterogeneity and the evolution of plant-virus interactions: Viruses in wild pepper populations. Virus Research, 241, 68-76. doi:10.1016/j.virusres.2017.05.015 | es_ES |
dc.description.references | Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate Change Effects on Plant Disease: Genomes to Ecosystems. Annual Review of Phytopathology, 44(1), 489-509. doi:10.1146/annurev.phyto.44.070505.143420 | es_ES |
dc.description.references | Gibbs, A. (1980). A Plant Virus that Partially Protects Its Wild Legume Host against Herbivores. Intervirology, 13(1), 42-47. doi:10.1159/000149105 | es_ES |
dc.description.references | González, R., Butković, A., & Elena, S. F. (2019). Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus†. Virus Evolution, 5(2). doi:10.1093/ve/vez024 | es_ES |
dc.description.references | Gorovits, R., Sobol, I., Altaleb, M., Czosnek, H., & Anfoka, G. (2019). Taking advantage of a pathogen: understanding how a virus alleviates plant stress response. Phytopathology Research, 1(1). doi:10.1186/s42483-019-0028-4 | es_ES |
dc.description.references | Hagemann, M., Kern, R., Maurino, V. G., Hanson, D. T., Weber, A. P. M., Sage, R. F., & Bauwe, H. (2016). Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms. Journal of Experimental Botany, 67(10), 2963-2976. doi:10.1093/jxb/erw063 | es_ES |
dc.description.references | Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10. doi:10.1016/j.wace.2015.08.001 | es_ES |
dc.description.references | Hily, J., Poulicard, N., Mora, M., Pagán, I., & García‐Arenal, F. (2015). Environment and host genotype determine the outcome of a plant–virus interaction: from antagonism to mutualism. New Phytologist, 209(2), 812-822. doi:10.1111/nph.13631 | es_ES |
dc.description.references | Iranzo, J., Puigbò, P., Lobkovsky, A. E., Wolf, Y. I., & Koonin, E. V. (2016). Inevitability of Genetic Parasites. Genome Biology and Evolution, 8(9), 2856-2869. doi:10.1093/gbe/evw193 | es_ES |
dc.description.references | Jones, R. A. C. (2016). Future Scenarios for Plant Virus Pathogens as Climate Change Progresses. Advances in Virus Research, 87-147. doi:10.1016/bs.aivir.2016.02.004 | es_ES |
dc.description.references | Jones, R. A. C. (2012). Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 7(022). doi:10.1079/pavsnnr20127022 | es_ES |
dc.description.references | Kathiria, P., Sidler, C., Golubov, A., Kalischuk, M., Kawchuk, L. M., & Kovalchuk, I. (2010). Tobacco Mosaic Virus Infection Results in an Increase in Recombination Frequency and Resistance to Viral, Bacterial, and Fungal Pathogens in the Progeny of Infected Tobacco Plants . Plant Physiology, 153(4), 1859-1870. doi:10.1104/pp.110.157263 | es_ES |
dc.description.references | Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00462 | es_ES |
dc.description.references | Knies, J. L., Izem, R., Supler, K. L., Kingsolver, J. G., & Burch, C. L. (2006). The Genetic Basis of Thermal Reaction Norm Evolution in Lab and Natural Phage Populations. PLoS Biology, 4(7), e201. doi:10.1371/journal.pbio.0040201 | es_ES |
dc.description.references | Koonin, E. V. (2016). Viruses and mobile elements as drivers of evolutionary transitions. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1701), 20150442. doi:10.1098/rstb.2015.0442 | es_ES |
dc.description.references | Koonin, E. V., & Dolja, V. V. (2013). A virocentric perspective on the evolution of life. Current Opinion in Virology, 3(5), 546-557. doi:10.1016/j.coviro.2013.06.008 | es_ES |
dc.description.references | Lacroix, C., Seabloom, E. W., & Borer, E. T. (2014). Environmental nutrient supply alters prevalence and weakens competitive interactions among coinfecting viruses. New Phytologist, 204(2), 424-433. doi:10.1111/nph.12909 | es_ES |
dc.description.references | LAINE, A.-L. (2007). Pathogen fitness components and genotypes differ in their sensitivity to nutrient and temperature variation in a wild plant–pathogen association. Journal of Evolutionary Biology, 20(6), 2371-2378. doi:10.1111/j.1420-9101.2007.01406.x | es_ES |
dc.description.references | Lazzaro, B. P., & Little, T. J. (2008). Immunity in a variable world. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1513), 15-26. doi:10.1098/rstb.2008.0141 | es_ES |
dc.description.references | Lefeuvre, P., Martin, D. P., Elena, S. F., Shepherd, D. N., Roumagnac, P., & Varsani, A. (2019). Evolution and ecology of plant viruses. Nature Reviews Microbiology, 17(10), 632-644. doi:10.1038/s41579-019-0232-3 | es_ES |
dc.description.references | Li, P., Shu, Y., Fu, S., Liu, Y., Zhou, X., Liu, S., & Wang, X. (2017). Vector and nonvector insect feeding reduces subsequent plant susceptibility to virus transmission. New Phytologist, 215(2), 699-710. doi:10.1111/nph.14550 | es_ES |
dc.description.references | Listmann, L., LeRoch, M., Schlüter, L., Thomas, M. K., & Reusch, T. B. H. (2016). Swift thermal reaction norm evolution in a key marine phytoplankton species. Evolutionary Applications, 9(9), 1156-1164. doi:10.1111/eva.12362 | es_ES |
dc.description.references | Little, T. J., Shuker, D. M., Colegrave, N., Day, T., & Graham, A. L. (2010). The Coevolution of Virulence: Tolerance in Perspective. PLoS Pathogens, 6(9), e1001006. doi:10.1371/journal.ppat.1001006 | es_ES |
dc.description.references | Loreti, E., van Veen, H., & Perata, P. (2016). Plant responses to flooding stress. Current Opinion in Plant Biology, 33, 64-71. doi:10.1016/j.pbi.2016.06.005 | es_ES |
dc.description.references | MADLUNG, A. (2004). The Effect of Stress on Genome Regulation and Structure. Annals of Botany, 94(4), 481-495. doi:10.1093/aob/mch172 | es_ES |
dc.description.references | Mann, N. H. (2003). Phages of the marine cyanobacterial picophytoplankton: Table 1. FEMS Microbiology Reviews, 27(1), 17-34. doi:10.1016/s0168-6445(03)00016-0 | es_ES |
dc.description.references | Márquez, L. M., Redman, R. S., Rodriguez, R. J., & Roossinck, M. J. (2007). A Virus in a Fungus in a Plant: Three-Way Symbiosis Required for Thermal Tolerance. Science, 315(5811), 513-515. doi:10.1126/science.1136237 | es_ES |
dc.description.references | Mauck, K. E., De Moraes, C. M., & Mescher, M. C. (2010). Effects ofCucumber mosaic virusinfection on vector and non-vector herbivores of squash. Communicative & Integrative Biology, 3(6), 579-582. doi:10.4161/cib.3.6.13094 | es_ES |
dc.description.references | Mauck, K. E., Kenney, J., & Chesnais, Q. (2019). Progress and challenges in identifying molecular mechanisms underlying host and vector manipulation by plant viruses. Current Opinion in Insect Science, 33, 7-18. doi:10.1016/j.cois.2019.01.001 | es_ES |
dc.description.references | McBride, R. C., Ogbunugafor, C. B., & Turner, P. E. (2008). Robustness promotes evolvability of thermotolerance in an RNA virus. BMC Evolutionary Biology, 8(1), 231. doi:10.1186/1471-2148-8-231 | es_ES |
dc.description.references | Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15-19. doi:10.1016/j.tplants.2005.11.002 | es_ES |
dc.description.references | Munné-Bosch, S., & Alegre, L. (2004). Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31(3), 203. doi:10.1071/fp03236 | es_ES |
dc.description.references | Murren, C. J., Auld, J. R., Callahan, H., Ghalambor, C. K., Handelsman, C. A., Heskel, M. A., … Schlichting, C. D. (2015). Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity, 115(4), 293-301. doi:10.1038/hdy.2015.8 | es_ES |
dc.description.references | Pagán, I., Fraile, A., Fernandez-Fueyo, E., Montes, N., Alonso-Blanco, C., & García-Arenal, F. (2010). Arabidopsis thaliana as a model for the study of plant–virus co-evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1983-1995. doi:10.1098/rstb.2010.0062 | es_ES |
dc.description.references | Pandey, P., Ramegowda, V., & Senthil-Kumar, M. (2015). Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00723 | es_ES |
dc.description.references | Patel, D., & Franklin, K. A. (2009). Temperature-regulation of plant architecture. Plant Signaling & Behavior, 4(7), 577-579. doi:10.4161/psb.4.7.8849 | es_ES |
dc.description.references | Paudel, D. B., & Sanfaçon, H. (2018). Exploring the Diversity of Mechanisms Associated With Plant Tolerance to Virus Infection. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01575 | es_ES |
dc.description.references | Prasch, C. M., & Sonnewald, U. (2013). Simultaneous Application of Heat, Drought, and Virus to Arabidopsis Plants Reveals Significant Shifts in Signaling Networks. Plant Physiology, 162(4), 1849-1866. doi:10.1104/pp.113.221044 | es_ES |
dc.description.references | Prendeville, H. R., Ye, X., Jack Morris, T., & Pilson, D. (2012). Virus infections in wild plant populations are both frequent and often unapparent. American Journal of Botany, 99(6), 1033-1042. doi:10.3732/ajb.1100509 | es_ES |
dc.description.references | Prokopová, J., Špundová, M., Sedlářová, M., Husičková, A., Novotný, R., Doležal, K., … Lebeda, A. (2010). Photosynthetic responses of lettuce to downy mildew infection and cytokinin treatment. Plant Physiology and Biochemistry, 48(8), 716-723. doi:10.1016/j.plaphy.2010.04.003 | es_ES |
dc.description.references | Ramegowda, V., & Senthil-Kumar, M. (2015). The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. Journal of Plant Physiology, 176, 47-54. doi:10.1016/j.jplph.2014.11.008 | es_ES |
dc.description.references | Rejeb, I., Pastor, V., & Mauch-Mani, B. (2014). Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. Plants, 3(4), 458-475. doi:10.3390/plants3040458 | es_ES |
dc.description.references | Roossinck, M. J. (2010). Lifestyles of plant viruses. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1899-1905. doi:10.1098/rstb.2010.0057 | es_ES |
dc.description.references | Roossinck, M. J. (2011). The good viruses: viral mutualistic symbioses. Nature Reviews Microbiology, 9(2), 99-108. doi:10.1038/nrmicro2491 | es_ES |
dc.description.references | Roossinck, M. J. (2012). Plant Virus Metagenomics: Biodiversity and Ecology. Annual Review of Genetics, 46(1), 359-369. doi:10.1146/annurev-genet-110711-155600 | es_ES |
dc.description.references | Roossinck, M. J. (2015). Move Over, Bacteria! Viruses Make Their Mark as Mutualistic Microbial Symbionts. Journal of Virology, 89(13), 6532-6535. doi:10.1128/jvi.02974-14 | es_ES |
dc.description.references | Roossinck, M. J. (2015). Plants, viruses and the environment: Ecology and mutualism. Virology, 479-480, 271-277. doi:10.1016/j.virol.2015.03.041 | es_ES |
dc.description.references | Roossinck, M. J., & Bazán, E. R. (2017). Symbiosis: Viruses as Intimate Partners. Annual Review of Virology, 4(1), 123-139. doi:10.1146/annurev-virology-110615-042323 | es_ES |
dc.description.references | ROOSSINCK, M. J., SAHA, P., WILEY, G. B., QUAN, J., WHITE, J. D., LAI, H., … ROE, B. A. (2010). Ecogenomics: using massively parallel pyrosequencing to understand virus ecology. Molecular Ecology, 19, 81-88. doi:10.1111/j.1365-294x.2009.04470.x | es_ES |
dc.description.references | Safari, M., Ferrari, M. J., & Roossinck, M. J. (2019). Manipulation of Aphid Behavior by a Persistent Plant Virus. Journal of Virology, 93(9). doi:10.1128/jvi.01781-18 | es_ES |
dc.description.references | Sanjuán, R. (2012). From Molecular Genetics to Phylodynamics: Evolutionary Relevance of Mutation Rates Across Viruses. PLoS Pathogens, 8(5), e1002685. doi:10.1371/journal.ppat.1002685 | es_ES |
dc.description.references | Sanjuán, R., Nebot, M. R., Chirico, N., Mansky, L. M., & Belshaw, R. (2010). Viral Mutation Rates. Journal of Virology, 84(19), 9733-9748. doi:10.1128/jvi.00694-10 | es_ES |
dc.description.references | Seaton, G. G. R., Hurry, V. M., & Rohozinski, J. (1996). Novel amplification of non-photochemical chlorophyll fluorescence quenching following viral infection inChlorella. FEBS Letters, 389(3), 319-323. doi:10.1016/0014-5793(96)00615-1 | es_ES |
dc.description.references | Shabala, S., Babourina, O., Rengel, Z., & Nemchinov, L. G. (2010). Non-invasive microelectrode potassium flux measurements as a potential tool for early recognition of virus–host compatibility in plants. Planta, 232(4), 807-815. doi:10.1007/s00425-010-1213-y | es_ES |
dc.description.references | SHABALA, S., BAEKGAARD, L., SHABALA, L., FUGLSANG, A., BABOURINA, O., PALMGREN, M. G., … NEMCHINOV, L. G. (2010). Plasma membrane Ca2+ transporters mediate virus-induced acquired resistance to oxidative stress. Plant, Cell & Environment, 34(3), 406-417. doi:10.1111/j.1365-3040.2010.02251.x | es_ES |
dc.description.references | Shabala, S., Bækgaard, L., Shabala, L., Fuglsang, A. T., Cuin, T. A., Nemchinov, L. G., & Palmgren, M. G. (2011). Endomembrane Ca2+-ATPases play a significant role in virus-induced adaptation to oxidative stress. Plant Signaling & Behavior, 6(7), 1053-1056. doi:10.4161/psb.6.7.15634 | es_ES |
dc.description.references | Shukla, A., Pagán, I., & García-Arenal, F. (2018). Effective tolerance based on resource reallocation is a virus-specific defence inArabidopsis thaliana. Molecular Plant Pathology, 19(6), 1454-1465. doi:10.1111/mpp.12629 | es_ES |
dc.description.references | Sreenivasulu, N., Harshavardhan, V. T., Govind, G., Seiler, C., & Kohli, A. (2012). Contrapuntal role of ABA: Does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene, 506(2), 265-273. doi:10.1016/j.gene.2012.06.076 | es_ES |
dc.description.references | Suttle, C. A. (2007). Marine viruses — major players in the global ecosystem. Nature Reviews Microbiology, 5(10), 801-812. doi:10.1038/nrmicro1750 | es_ES |
dc.description.references | Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32-43. doi:10.1111/nph.12797 | es_ES |
dc.description.references | Takeda, S., & Paszkowski, J. (2005). DNA methylation and epigenetic inheritance during plant gametogenesis. Chromosoma, 115(1), 27-35. doi:10.1007/s00412-005-0031-7 | es_ES |
dc.description.references | Thapa, V., McGlinn, D. J., Melcher, U., Palmer, M. W., & Roossinck, M. J. (2015). Determinants of taxonomic composition of plant viruses at the Nature Conservancy’s Tallgrass Prairie Preserve, Oklahoma. Virus Evolution, 1(1). doi:10.1093/ve/vev007 | es_ES |
dc.description.references | Vale, P. F., Salvaudon, L., Kaltz, O., & Fellous, S. (2008). The role of the environment in the evolutionary ecology of host parasite interactions. Infection, Genetics and Evolution, 8(3), 302-305. doi:10.1016/j.meegid.2008.01.011 | es_ES |
dc.description.references | VALE, P. F., STJERNMAN, M., & LITTLE, T. J. (2008). Temperature-dependent costs of parasitism and maintenance of polymorphism under genotype-by-environment interactions. Journal of Evolutionary Biology, 21(5), 1418-1427. doi:10.1111/j.1420-9101.2008.01555.x | es_ES |
dc.description.references | Van Der Biezen, E. A., & Jones, J. D. G. (1998). Plant disease-resistance proteins and the gene-for-gene concept. Trends in Biochemical Sciences, 23(12), 454-456. doi:10.1016/s0968-0004(98)01311-5 | es_ES |
dc.description.references | Van Munster, M., Yvon, M., Vile, D., Dader, B., Fereres, A., & Blanc, S. (2017). Water deficit enhances the transmission of plant viruses by insect vectors. PLOS ONE, 12(5), e0174398. doi:10.1371/journal.pone.0174398 | es_ES |
dc.description.references | Wang, Y., & Frei, M. (2011). Stressed food – The impact of abiotic environmental stresses on crop quality. Agriculture, Ecosystems & Environment, 141(3-4), 271-286. doi:10.1016/j.agee.2011.03.017 | es_ES |
dc.description.references | Westwood, J. H., Mccann, L., Naish, M., Dixon, H., Murphy, A. M., Stancombe, M. A., … Carr, J. P. (2012). A viral RNA silencing suppressor interferes with abscisic acid-mediated signalling and induces drought tolerance inArabidopsis thaliana. Molecular Plant Pathology, 14(2), 158-170. doi:10.1111/j.1364-3703.2012.00840.x | es_ES |
dc.description.references | Wieczynski, D. J., Turner, P. E., & Vasseur, D. A. (2018). Temporally Autocorrelated Environmental Fluctuations Inhibit the Evolution of Stress Tolerance. The American Naturalist, 191(6), E195-E207. doi:10.1086/697200 | es_ES |
dc.description.references | Wolinska, J., & King, K. C. (2009). Environment can alter selection in host–parasite interactions. Trends in Parasitology, 25(5), 236-244. doi:10.1016/j.pt.2009.02.004 | es_ES |
dc.description.references | Wren, J. D., Roossinck, M. J., Nelson, R. S., Scheets, K., Palmer, M. W., & Melcher, U. (2006). Plant Virus Biodiversity and Ecology. PLoS Biology, 4(3), e80. doi:10.1371/journal.pbio.0040080 | es_ES |
dc.description.references | Xu, P., Chen, F., Mannas, J. P., Feldman, T., Sumner, L. W., & Roossinck, M. J. (2008). Virus infection improves drought tolerance. New Phytologist, 180(4), 911-921. doi:10.1111/j.1469-8137.2008.02627.x | es_ES |
dc.description.references | Yao, Y., & Kovalchuk, I. (2011). Abiotic stress leads to somatic and heritable changes in homologous recombination frequency, point mutation frequency and microsatellite stability in Arabidopsis plants. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 707(1-2), 61-66. doi:10.1016/j.mrfmmm.2010.12.013 | es_ES |
dc.description.references | Zhang, Y., Fischer, M., Colot, V., & Bossdorf, O. (2012). Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytologist, 197(1), 314-322. doi:10.1111/nph.12010 | es_ES |
dc.description.references | Zhu, J.-K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell, 167(2), 313-324. doi:10.1016/j.cell.2016.08.029 | es_ES |
dc.description.references | Aguilar, E., Allende, L., del Toro, F. J., Chung, B.-N., Canto, T., & Tenllado, F. (2015). Effects of Elevated CO2 and Temperature on Pathogenicity Determinants and Virulence of Potato virus X/Potyvirus-Associated Synergism. Molecular Plant-Microbe Interactions®, 28(12), 1364-1373. doi:10.1094/mpmi-08-15-0178-r | es_ES |