- -

From foes to friends: Viral infections expand the limits of host phenotypic plasticity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

From foes to friends: Viral infections expand the limits of host phenotypic plasticity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González, Rubén es_ES
dc.contributor.author Butkovic, Anamarija es_ES
dc.contributor.author ELENA FITO, SANTIAGO FCO es_ES
dc.date.accessioned 2021-05-05T03:33:02Z
dc.date.available 2021-05-05T03:33:02Z
dc.date.issued 2020 es_ES
dc.identifier.issn 0065-3527 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165965
dc.description.abstract [EN] Phenotypic plasticity enables organisms to survive in the face of unpredictable environmental stress. Intimately related to the notion of phenotypic plasticity is the concept of the reaction norm that places phenotypic plasticity in the context of a genotype-specific response to environmental gradients. Whether reaction norms themselves evolve and which factors might affect their shape has been the object of intense debates among evolutionary biologists along the years. Since their discovery, viruses have been considered as pathogens. However, new viromic techniques and a shift in conceptual paradigms are showing that viruses are mostly non-pathogenic ubiquitous entities. Recent studies have shown how viral infections can even be beneficial for their hosts. This may happen especially in the context of stressed hosts, where the virus infection can induce beneficial changes in the host's physiological homeostasis, hence changing the shape of the reaction norm. Despite the fact that underlying physiological mechanisms and evolutionary dynamics are still not well understood, such beneficial interactions are being discovered in a growing number of plant-virus systems. Here, we aim to review these disperse studies and place them into the context of phenotypic plasticity and the evolution of reaction norms. This is an emerging field that is posing many questions that still need to be properly answered. The answers would clearly interest virologists, plant pathologists and evolutionary biologists and likely they will suggest possible future biotechnological applications, including the development of crops with higher survival rates and yield under adverse environmental situations. es_ES
dc.description.sponsorship This work was funded by Spain's Agencia Estatal de Investigacion-FEDER grant BFU201565037-P and Generalitat Valenciana grant PROMETEU2019/012 to S.F.E. R.G. and A.B. were supported by Ministerio de Ciencia, Innovacion y Universidades-FEDER contract BES-2016-077078 and Generalitat Valenciana grant GRISOLIAP/2018/005, respectively. es_ES
dc.language Inglés es_ES
dc.publisher Academic Press es_ES
dc.relation.ispartof Advances in Virus Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title From foes to friends: Viral infections expand the limits of host phenotypic plasticity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/bs.aivir.2020.01.003 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F005/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2016-077078/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F012/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation González, R.; Butkovic, A.; Elena Fito, SF. (2020). From foes to friends: Viral infections expand the limits of host phenotypic plasticity. Advances in Virus Research. (106):85-121. https://doi.org/10.1016/bs.aivir.2020.01.003 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/bs.aivir.2020.01.003 es_ES
dc.description.upvformatpinicio 85 es_ES
dc.description.upvformatpfin 121 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 106 es_ES
dc.identifier.pmid 32327149 es_ES
dc.relation.pasarela S\428639 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Aguilar, E., Cutrona, C., del Toro, F. J., Vallarino, J. G., Osorio, S., Pérez-Bueno, M. L., … Tenllado, F. (2017). Virulence determines beneficial trade-offs in the response of virus-infected plants to drought via induction of salicylic acid. Plant, Cell & Environment, 40(12), 2909-2930. doi:10.1111/pce.13028 es_ES
dc.description.references Ahnert, S. E. (2017). Structural properties of genotype–phenotype maps. Journal of The Royal Society Interface, 14(132), 20170275. doi:10.1098/rsif.2017.0275 es_ES
dc.description.references Alazem, M., & Lin, N. (2014). Roles of plant hormones in the regulation of host–virus interactions. Molecular Plant Pathology, 16(5), 529-540. doi:10.1111/mpp.12204 es_ES
dc.description.references Andrews, C. J., & Paliwal, Y. C. (1983). The influence of preinfection cold hardening and disease development period on the interaction between barley yellow dwarf virus and cold stress tolerance in wheat. Canadian Journal of Botany, 61(7), 1935-1940. doi:10.1139/b83-207 es_ES
dc.description.references Andrews, C. J., & Paliwal, Y. C. (1986). Effects of barley yellow dwarf virus infection and low temperature flooding on cold stress tolerance of winter cereals. Canadian Journal of Plant Pathology, 8(3), 311-316. doi:10.1080/07060668609501805 es_ES
dc.description.references Aprile, A., Havlickova, L., Panna, R., Marè, C., Borrelli, G. M., Marone, D., … Cattivelli, L. (2013). Different stress responsive strategies to drought and heat in two durum wheat cultivars with contrasting water use efficiency. BMC Genomics, 14(1), 821. doi:10.1186/1471-2164-14-821 es_ES
dc.description.references Arnholdt-Schmitt, B. (2004). Stress-Induced Cell Reprogramming. A Role for Global Genome Regulation? Plant Physiology, 136(1), 2579-2586. doi:10.1104/pp.104.042531 es_ES
dc.description.references Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63(10), 3523-3543. doi:10.1093/jxb/ers100 es_ES
dc.description.references Aucique-Pérez, C. E., de Menezes Silva, P. E., Moreira, W. R., DaMatta, F. M., & Rodrigues, F. Á. (2017). Photosynthesis impairments and excitation energy dissipation on wheat plants supplied with silicon and infected with Pyricularia oryzae. Plant Physiology and Biochemistry, 121, 196-205. doi:10.1016/j.plaphy.2017.10.023 es_ES
dc.description.references Auld, J. R., Agrawal, A. A., & Relyea, R. A. (2009). Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proceedings of the Royal Society B: Biological Sciences, 277(1681), 503-511. doi:10.1098/rspb.2009.1355 es_ES
dc.description.references Bass, D., Stentiford, G. D., Wang, H.-C., Koskella, B., & Tyler, C. R. (2019). The Pathobiome in Animal and Plant Diseases. Trends in Ecology & Evolution, 34(11), 996-1008. doi:10.1016/j.tree.2019.07.012 es_ES
dc.description.references Basu, A., Chowdhury, S., Ray Chaudhuri, T., & Kundu, S. (2016). Differential behaviour of sheath blight pathogenRhizoctonia solaniin tolerant and susceptible rice varieties before and during infection. Plant Pathology, 65(8), 1333-1346. doi:10.1111/ppa.12502 es_ES
dc.description.references Belliure, B., Janssen, A., Maris, P. C., Peters, D., & Sabelis, M. W. (2004). Herbivore arthropods benefit from vectoring plant viruses. Ecology Letters, 8(1), 70-79. doi:10.1111/j.1461-0248.2004.00699.x es_ES
dc.description.references Belshaw, R., Gardner, A., Rambaut, A., & Pybus, O. G. (2008). Pacing a small cage: mutation and RNA viruses. Trends in Ecology & Evolution, 23(4), 188-193. doi:10.1016/j.tree.2007.11.010 es_ES
dc.description.references Bergès, S. E., Vile, D., Vazquez-Rovere, C., Blanc, S., Yvon, M., Bédiée, A., … van Munster, M. (2018). Interactions Between Drought and Plant Genotype Change Epidemiological Traits of Cauliflower mosaic virus. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00703 es_ES
dc.description.references Bhattacharya, D., & Medlin, and L. (1998). Algal Phylogeny and the Origin of Land Plants1. Plant Physiology, 116(1), 9-15. doi:10.1104/pp.116.1.9 es_ES
dc.description.references Boyko, A., & Kovalchuk, I. (2011). Genetic and Epigenetic Effects of Plant–Pathogen Interactions: An Evolutionary Perspective. Molecular Plant, 4(6), 1014-1023. doi:10.1093/mp/ssr022 es_ES
dc.description.references Bradshaw, A. D. (1965). Evolutionary Significance of Phenotypic Plasticity in Plants. Advances in Genetics, 115-155. doi:10.1016/s0065-2660(08)60048-6 es_ES
dc.description.references Browder, L. E. (1985). Parasite: Host: Environment Specificity in the Cereal Rusts. Annual Review of Phytopathology, 23(1), 201-222. doi:10.1146/annurev.py.23.090185.001221 es_ES
dc.description.references Callaway, R. M., Brooker, R. W., Choler, P., Kikvidze, Z., Lortie, C. J., Michalet, R., … Cook, B. J. (2002). Positive interactions among alpine plants increase with stress. Nature, 417(6891), 844-848. doi:10.1038/nature00812 es_ES
dc.description.references Carr, J. P. (2017). Exploring how viruses enhance plants’ resilience to drought and the limits to this form of viral payback. Plant, Cell & Environment, 40(12), 2906-2908. doi:10.1111/pce.13068 es_ES
dc.description.references Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response. Cell, 124(4), 803-814. doi:10.1016/j.cell.2006.02.008 es_ES
dc.description.references Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 11(1), 163. doi:10.1186/1471-2229-11-163 es_ES
dc.description.references Dáder, B., Then, C., Berthelot, E., Ducousso, M., Ng, J. C. K., & Drucker, M. (2017). Insect transmission of plant viruses: Multilayered interactions optimize viral propagation. Insect Science, 24(6), 929-946. doi:10.1111/1744-7917.12470 es_ES
dc.description.references Dastogeer, K. M. G., Li, H., Sivasithamparam, K., Jones, M. G. K., & Wylie, S. J. (2018). Fungal endophytes and a virus confer drought tolerance to Nicotiana benthamiana plants through modulating osmolytes, antioxidant enzymes and expression of host drought responsive genes. Environmental and Experimental Botany, 149, 95-108. doi:10.1016/j.envexpbot.2018.02.009 es_ES
dc.description.references Denancé, N., Sánchez-Vallet, A., Goffner, D., & Molina, A. (2013). Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00155 es_ES
dc.description.references Dessau, M., Goldhill, D., McBride, R. C., Turner, P. E., & Modis, Y. (2012). Correction: Selective Pressure Causes an RNA Virus to Trade Reproductive Fitness for Increased Structural and Thermal Stability of a Viral Enzyme. PLoS Genetics, 8(12). doi:10.1371/annotation/aa9bff6f-92c4-4efb-9b7f-de96e405e9d3 es_ES
dc.description.references DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution, 13(2), 77-81. doi:10.1016/s0169-5347(97)01274-3 es_ES
dc.description.references Dickins, T. E., & Rahman, Q. (2012). The extended evolutionary synthesis and the role of soft inheritance in evolution. Proceedings of the Royal Society B: Biological Sciences, 279(1740), 2913-2921. doi:10.1098/rspb.2012.0273 es_ES
dc.description.references Diener, T. O. (1963). Physiology of Virus-Infected Plants. Annual Review of Phytopathology, 1(1), 197-218. doi:10.1146/annurev.py.01.090163.001213 es_ES
dc.description.references Diezma‐Navas, L., Pérez‐González, A., Artaza, H., Alonso, L., Caro, E., Llave, C., & Ruiz‐Ferrer, V. (2019). Crosstalk between epigenetic silencing and infection by tobacco rattle virus in Arabidopsis. Molecular Plant Pathology, 20(10), 1439-1452. doi:10.1111/mpp.12850 es_ES
dc.description.references Dolan, P. T., Whitfield, Z. J., & Andino, R. (2018). Mechanisms and Concepts in RNA Virus Population Dynamics and Evolution. Annual Review of Virology, 5(1), 69-92. doi:10.1146/annurev-virology-101416-041718 es_ES
dc.description.references Duffy, S., Shackelton, L. A., & Holmes, E. C. (2008). Rates of evolutionary change in viruses: patterns and determinants. Nature Reviews Genetics, 9(4), 267-276. doi:10.1038/nrg2323 es_ES
dc.description.references Elena, S. F. (2012). RNA virus genetic robustness: possible causes and some consequences. Current Opinion in Virology, 2(5), 525-530. doi:10.1016/j.coviro.2012.06.008 es_ES
dc.description.references Elena, S. F., & Sanjuán, R. (2005). Adaptive Value of High Mutation Rates of RNA Viruses: Separating Causes from Consequences. Journal of Virology, 79(18), 11555-11558. doi:10.1128/jvi.79.18.11555-11558.2005 es_ES
dc.description.references Elena, S. F., Carrasco, P., Daròs, J., & Sanjuán, R. (2006). Mechanisms of genetic robustness in RNA viruses. EMBO reports, 7(2), 168-173. doi:10.1038/sj.embor.7400636 es_ES
dc.description.references Engering, A., Hogerwerf, L., & Slingenbergh, J. (2013). Pathogen–host–environment interplay and disease emergence. Emerging Microbes & Infections, 2(1), 1-7. doi:10.1038/emi.2013.5 es_ES
dc.description.references Fernández-Calvino, L., Osorio, S., Hernández, M. L., Hamada, I. B., del Toro, F. J., Donaire, L., … Llave, C. (2014). Virus-Induced Alterations in Primary Metabolism Modulate Susceptibility to Tobacco rattle virus in Arabidopsis    . Plant Physiology, 166(4), 1821-1838. doi:10.1104/pp.114.250340 es_ES
dc.description.references Finazzi, G., & Minagawa, J. (2014). High Light Acclimation in Green Microalgae. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, 445-469. doi:10.1007/978-94-017-9032-1_21 es_ES
dc.description.references Fitzgerald, P. J., & Stoner, W. N. (1967). Barley Yellow Dwarf Studies in Wheat ( Triticum aestivum L.). I. Yield and Quality of Hard Red Winter Wheat Infected With Barley Yellow Dwarf Virus 1. Crop Science, 7(4), 337-341. doi:10.2135/cropsci1967.0011183x000700040018x es_ES
dc.description.references Fraile, A., McLeish, M. J., Pagán, I., González-Jara, P., Piñero, D., & García-Arenal, F. (2017). Environmental heterogeneity and the evolution of plant-virus interactions: Viruses in wild pepper populations. Virus Research, 241, 68-76. doi:10.1016/j.virusres.2017.05.015 es_ES
dc.description.references Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate Change Effects on Plant Disease: Genomes to Ecosystems. Annual Review of Phytopathology, 44(1), 489-509. doi:10.1146/annurev.phyto.44.070505.143420 es_ES
dc.description.references Gibbs, A. (1980). A Plant Virus that Partially Protects Its Wild Legume Host against Herbivores. Intervirology, 13(1), 42-47. doi:10.1159/000149105 es_ES
dc.description.references González, R., Butković, A., & Elena, S. F. (2019). Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus†. Virus Evolution, 5(2). doi:10.1093/ve/vez024 es_ES
dc.description.references Gorovits, R., Sobol, I., Altaleb, M., Czosnek, H., & Anfoka, G. (2019). Taking advantage of a pathogen: understanding how a virus alleviates plant stress response. Phytopathology Research, 1(1). doi:10.1186/s42483-019-0028-4 es_ES
dc.description.references Hagemann, M., Kern, R., Maurino, V. G., Hanson, D. T., Weber, A. P. M., Sage, R. F., & Bauwe, H. (2016). Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms. Journal of Experimental Botany, 67(10), 2963-2976. doi:10.1093/jxb/erw063 es_ES
dc.description.references Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10. doi:10.1016/j.wace.2015.08.001 es_ES
dc.description.references Hily, J., Poulicard, N., Mora, M., Pagán, I., & García‐Arenal, F. (2015). Environment and host genotype determine the outcome of a plant–virus interaction: from antagonism to mutualism. New Phytologist, 209(2), 812-822. doi:10.1111/nph.13631 es_ES
dc.description.references Iranzo, J., Puigbò, P., Lobkovsky, A. E., Wolf, Y. I., & Koonin, E. V. (2016). Inevitability of Genetic Parasites. Genome Biology and Evolution, 8(9), 2856-2869. doi:10.1093/gbe/evw193 es_ES
dc.description.references Jones, R. A. C. (2016). Future Scenarios for Plant Virus Pathogens as Climate Change Progresses. Advances in Virus Research, 87-147. doi:10.1016/bs.aivir.2016.02.004 es_ES
dc.description.references Jones, R. A. C. (2012). Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 7(022). doi:10.1079/pavsnnr20127022 es_ES
dc.description.references Kathiria, P., Sidler, C., Golubov, A., Kalischuk, M., Kawchuk, L. M., & Kovalchuk, I. (2010). Tobacco Mosaic Virus Infection Results in an Increase in Recombination Frequency and Resistance to Viral, Bacterial, and Fungal Pathogens in the Progeny of Infected Tobacco Plants      . Plant Physiology, 153(4), 1859-1870. doi:10.1104/pp.110.157263 es_ES
dc.description.references Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00462 es_ES
dc.description.references Knies, J. L., Izem, R., Supler, K. L., Kingsolver, J. G., & Burch, C. L. (2006). The Genetic Basis of Thermal Reaction Norm Evolution in Lab and Natural Phage Populations. PLoS Biology, 4(7), e201. doi:10.1371/journal.pbio.0040201 es_ES
dc.description.references Koonin, E. V. (2016). Viruses and mobile elements as drivers of evolutionary transitions. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1701), 20150442. doi:10.1098/rstb.2015.0442 es_ES
dc.description.references Koonin, E. V., & Dolja, V. V. (2013). A virocentric perspective on the evolution of life. Current Opinion in Virology, 3(5), 546-557. doi:10.1016/j.coviro.2013.06.008 es_ES
dc.description.references Lacroix, C., Seabloom, E. W., & Borer, E. T. (2014). Environmental nutrient supply alters prevalence and weakens competitive interactions among coinfecting viruses. New Phytologist, 204(2), 424-433. doi:10.1111/nph.12909 es_ES
dc.description.references LAINE, A.-L. (2007). Pathogen fitness components and genotypes differ in their sensitivity to nutrient and temperature variation in a wild plant–pathogen association. Journal of Evolutionary Biology, 20(6), 2371-2378. doi:10.1111/j.1420-9101.2007.01406.x es_ES
dc.description.references Lazzaro, B. P., & Little, T. J. (2008). Immunity in a variable world. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1513), 15-26. doi:10.1098/rstb.2008.0141 es_ES
dc.description.references Lefeuvre, P., Martin, D. P., Elena, S. F., Shepherd, D. N., Roumagnac, P., & Varsani, A. (2019). Evolution and ecology of plant viruses. Nature Reviews Microbiology, 17(10), 632-644. doi:10.1038/s41579-019-0232-3 es_ES
dc.description.references Li, P., Shu, Y., Fu, S., Liu, Y., Zhou, X., Liu, S., & Wang, X. (2017). Vector and nonvector insect feeding reduces subsequent plant susceptibility to virus transmission. New Phytologist, 215(2), 699-710. doi:10.1111/nph.14550 es_ES
dc.description.references Listmann, L., LeRoch, M., Schlüter, L., Thomas, M. K., & Reusch, T. B. H. (2016). Swift thermal reaction norm evolution in a key marine phytoplankton species. Evolutionary Applications, 9(9), 1156-1164. doi:10.1111/eva.12362 es_ES
dc.description.references Little, T. J., Shuker, D. M., Colegrave, N., Day, T., & Graham, A. L. (2010). The Coevolution of Virulence: Tolerance in Perspective. PLoS Pathogens, 6(9), e1001006. doi:10.1371/journal.ppat.1001006 es_ES
dc.description.references Loreti, E., van Veen, H., & Perata, P. (2016). Plant responses to flooding stress. Current Opinion in Plant Biology, 33, 64-71. doi:10.1016/j.pbi.2016.06.005 es_ES
dc.description.references MADLUNG, A. (2004). The Effect of Stress on Genome Regulation and Structure. Annals of Botany, 94(4), 481-495. doi:10.1093/aob/mch172 es_ES
dc.description.references Mann, N. H. (2003). Phages of the marine cyanobacterial picophytoplankton: Table 1. FEMS Microbiology Reviews, 27(1), 17-34. doi:10.1016/s0168-6445(03)00016-0 es_ES
dc.description.references Márquez, L. M., Redman, R. S., Rodriguez, R. J., & Roossinck, M. J. (2007). A Virus in a Fungus in a Plant: Three-Way Symbiosis Required for Thermal Tolerance. Science, 315(5811), 513-515. doi:10.1126/science.1136237 es_ES
dc.description.references Mauck, K. E., De Moraes, C. M., & Mescher, M. C. (2010). Effects ofCucumber mosaic virusinfection on vector and non-vector herbivores of squash. Communicative & Integrative Biology, 3(6), 579-582. doi:10.4161/cib.3.6.13094 es_ES
dc.description.references Mauck, K. E., Kenney, J., & Chesnais, Q. (2019). Progress and challenges in identifying molecular mechanisms underlying host and vector manipulation by plant viruses. Current Opinion in Insect Science, 33, 7-18. doi:10.1016/j.cois.2019.01.001 es_ES
dc.description.references McBride, R. C., Ogbunugafor, C. B., & Turner, P. E. (2008). Robustness promotes evolvability of thermotolerance in an RNA virus. BMC Evolutionary Biology, 8(1), 231. doi:10.1186/1471-2148-8-231 es_ES
dc.description.references Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15-19. doi:10.1016/j.tplants.2005.11.002 es_ES
dc.description.references Munné-Bosch, S., & Alegre, L. (2004). Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31(3), 203. doi:10.1071/fp03236 es_ES
dc.description.references Murren, C. J., Auld, J. R., Callahan, H., Ghalambor, C. K., Handelsman, C. A., Heskel, M. A., … Schlichting, C. D. (2015). Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity, 115(4), 293-301. doi:10.1038/hdy.2015.8 es_ES
dc.description.references Pagán, I., Fraile, A., Fernandez-Fueyo, E., Montes, N., Alonso-Blanco, C., & García-Arenal, F. (2010). Arabidopsis thaliana as a model for the study of plant–virus co-evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1983-1995. doi:10.1098/rstb.2010.0062 es_ES
dc.description.references Pandey, P., Ramegowda, V., & Senthil-Kumar, M. (2015). Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00723 es_ES
dc.description.references Patel, D., & Franklin, K. A. (2009). Temperature-regulation of plant architecture. Plant Signaling & Behavior, 4(7), 577-579. doi:10.4161/psb.4.7.8849 es_ES
dc.description.references Paudel, D. B., & Sanfaçon, H. (2018). Exploring the Diversity of Mechanisms Associated With Plant Tolerance to Virus Infection. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01575 es_ES
dc.description.references Prasch, C. M., & Sonnewald, U. (2013). Simultaneous Application of Heat, Drought, and Virus to Arabidopsis Plants Reveals Significant Shifts in Signaling Networks. Plant Physiology, 162(4), 1849-1866. doi:10.1104/pp.113.221044 es_ES
dc.description.references Prendeville, H. R., Ye, X., Jack Morris, T., & Pilson, D. (2012). Virus infections in wild plant populations are both frequent and often unapparent. American Journal of Botany, 99(6), 1033-1042. doi:10.3732/ajb.1100509 es_ES
dc.description.references Prokopová, J., Špundová, M., Sedlářová, M., Husičková, A., Novotný, R., Doležal, K., … Lebeda, A. (2010). Photosynthetic responses of lettuce to downy mildew infection and cytokinin treatment. Plant Physiology and Biochemistry, 48(8), 716-723. doi:10.1016/j.plaphy.2010.04.003 es_ES
dc.description.references Ramegowda, V., & Senthil-Kumar, M. (2015). The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. Journal of Plant Physiology, 176, 47-54. doi:10.1016/j.jplph.2014.11.008 es_ES
dc.description.references Rejeb, I., Pastor, V., & Mauch-Mani, B. (2014). Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. Plants, 3(4), 458-475. doi:10.3390/plants3040458 es_ES
dc.description.references Roossinck, M. J. (2010). Lifestyles of plant viruses. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1899-1905. doi:10.1098/rstb.2010.0057 es_ES
dc.description.references Roossinck, M. J. (2011). The good viruses: viral mutualistic symbioses. Nature Reviews Microbiology, 9(2), 99-108. doi:10.1038/nrmicro2491 es_ES
dc.description.references Roossinck, M. J. (2012). Plant Virus Metagenomics: Biodiversity and Ecology. Annual Review of Genetics, 46(1), 359-369. doi:10.1146/annurev-genet-110711-155600 es_ES
dc.description.references Roossinck, M. J. (2015). Move Over, Bacteria! Viruses Make Their Mark as Mutualistic Microbial Symbionts. Journal of Virology, 89(13), 6532-6535. doi:10.1128/jvi.02974-14 es_ES
dc.description.references Roossinck, M. J. (2015). Plants, viruses and the environment: Ecology and mutualism. Virology, 479-480, 271-277. doi:10.1016/j.virol.2015.03.041 es_ES
dc.description.references Roossinck, M. J., & Bazán, E. R. (2017). Symbiosis: Viruses as Intimate Partners. Annual Review of Virology, 4(1), 123-139. doi:10.1146/annurev-virology-110615-042323 es_ES
dc.description.references ROOSSINCK, M. J., SAHA, P., WILEY, G. B., QUAN, J., WHITE, J. D., LAI, H., … ROE, B. A. (2010). Ecogenomics: using massively parallel pyrosequencing to understand virus ecology. Molecular Ecology, 19, 81-88. doi:10.1111/j.1365-294x.2009.04470.x es_ES
dc.description.references Safari, M., Ferrari, M. J., & Roossinck, M. J. (2019). Manipulation of Aphid Behavior by a Persistent Plant Virus. Journal of Virology, 93(9). doi:10.1128/jvi.01781-18 es_ES
dc.description.references Sanjuán, R. (2012). From Molecular Genetics to Phylodynamics: Evolutionary Relevance of Mutation Rates Across Viruses. PLoS Pathogens, 8(5), e1002685. doi:10.1371/journal.ppat.1002685 es_ES
dc.description.references Sanjuán, R., Nebot, M. R., Chirico, N., Mansky, L. M., & Belshaw, R. (2010). Viral Mutation Rates. Journal of Virology, 84(19), 9733-9748. doi:10.1128/jvi.00694-10 es_ES
dc.description.references Seaton, G. G. R., Hurry, V. M., & Rohozinski, J. (1996). Novel amplification of non-photochemical chlorophyll fluorescence quenching following viral infection inChlorella. FEBS Letters, 389(3), 319-323. doi:10.1016/0014-5793(96)00615-1 es_ES
dc.description.references Shabala, S., Babourina, O., Rengel, Z., & Nemchinov, L. G. (2010). Non-invasive microelectrode potassium flux measurements as a potential tool for early recognition of virus–host compatibility in plants. Planta, 232(4), 807-815. doi:10.1007/s00425-010-1213-y es_ES
dc.description.references SHABALA, S., BAEKGAARD, L., SHABALA, L., FUGLSANG, A., BABOURINA, O., PALMGREN, M. G., … NEMCHINOV, L. G. (2010). Plasma membrane Ca2+ transporters mediate virus-induced acquired resistance to oxidative stress. Plant, Cell & Environment, 34(3), 406-417. doi:10.1111/j.1365-3040.2010.02251.x es_ES
dc.description.references Shabala, S., Bækgaard, L., Shabala, L., Fuglsang, A. T., Cuin, T. A., Nemchinov, L. G., & Palmgren, M. G. (2011). Endomembrane Ca2+-ATPases play a significant role in virus-induced adaptation to oxidative stress. Plant Signaling & Behavior, 6(7), 1053-1056. doi:10.4161/psb.6.7.15634 es_ES
dc.description.references Shukla, A., Pagán, I., & García-Arenal, F. (2018). Effective tolerance based on resource reallocation is a virus-specific defence inArabidopsis thaliana. Molecular Plant Pathology, 19(6), 1454-1465. doi:10.1111/mpp.12629 es_ES
dc.description.references Sreenivasulu, N., Harshavardhan, V. T., Govind, G., Seiler, C., & Kohli, A. (2012). Contrapuntal role of ABA: Does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene, 506(2), 265-273. doi:10.1016/j.gene.2012.06.076 es_ES
dc.description.references Suttle, C. A. (2007). Marine viruses — major players in the global ecosystem. Nature Reviews Microbiology, 5(10), 801-812. doi:10.1038/nrmicro1750 es_ES
dc.description.references Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32-43. doi:10.1111/nph.12797 es_ES
dc.description.references Takeda, S., & Paszkowski, J. (2005). DNA methylation and epigenetic inheritance during plant gametogenesis. Chromosoma, 115(1), 27-35. doi:10.1007/s00412-005-0031-7 es_ES
dc.description.references Thapa, V., McGlinn, D. J., Melcher, U., Palmer, M. W., & Roossinck, M. J. (2015). Determinants of taxonomic composition of plant viruses at the Nature Conservancy’s Tallgrass Prairie Preserve, Oklahoma. Virus Evolution, 1(1). doi:10.1093/ve/vev007 es_ES
dc.description.references Vale, P. F., Salvaudon, L., Kaltz, O., & Fellous, S. (2008). The role of the environment in the evolutionary ecology of host parasite interactions. Infection, Genetics and Evolution, 8(3), 302-305. doi:10.1016/j.meegid.2008.01.011 es_ES
dc.description.references VALE, P. F., STJERNMAN, M., & LITTLE, T. J. (2008). Temperature-dependent costs of parasitism and maintenance of polymorphism under genotype-by-environment interactions. Journal of Evolutionary Biology, 21(5), 1418-1427. doi:10.1111/j.1420-9101.2008.01555.x es_ES
dc.description.references Van Der Biezen, E. A., & Jones, J. D. G. (1998). Plant disease-resistance proteins and the gene-for-gene concept. Trends in Biochemical Sciences, 23(12), 454-456. doi:10.1016/s0968-0004(98)01311-5 es_ES
dc.description.references Van Munster, M., Yvon, M., Vile, D., Dader, B., Fereres, A., & Blanc, S. (2017). Water deficit enhances the transmission of plant viruses by insect vectors. PLOS ONE, 12(5), e0174398. doi:10.1371/journal.pone.0174398 es_ES
dc.description.references Wang, Y., & Frei, M. (2011). Stressed food – The impact of abiotic environmental stresses on crop quality. Agriculture, Ecosystems & Environment, 141(3-4), 271-286. doi:10.1016/j.agee.2011.03.017 es_ES
dc.description.references Westwood, J. H., Mccann, L., Naish, M., Dixon, H., Murphy, A. M., Stancombe, M. A., … Carr, J. P. (2012). A viral RNA silencing suppressor interferes with abscisic acid-mediated signalling and induces drought tolerance inArabidopsis thaliana. Molecular Plant Pathology, 14(2), 158-170. doi:10.1111/j.1364-3703.2012.00840.x es_ES
dc.description.references Wieczynski, D. J., Turner, P. E., & Vasseur, D. A. (2018). Temporally Autocorrelated Environmental Fluctuations Inhibit the Evolution of Stress Tolerance. The American Naturalist, 191(6), E195-E207. doi:10.1086/697200 es_ES
dc.description.references Wolinska, J., & King, K. C. (2009). Environment can alter selection in host–parasite interactions. Trends in Parasitology, 25(5), 236-244. doi:10.1016/j.pt.2009.02.004 es_ES
dc.description.references Wren, J. D., Roossinck, M. J., Nelson, R. S., Scheets, K., Palmer, M. W., & Melcher, U. (2006). Plant Virus Biodiversity and Ecology. PLoS Biology, 4(3), e80. doi:10.1371/journal.pbio.0040080 es_ES
dc.description.references Xu, P., Chen, F., Mannas, J. P., Feldman, T., Sumner, L. W., & Roossinck, M. J. (2008). Virus infection improves drought tolerance. New Phytologist, 180(4), 911-921. doi:10.1111/j.1469-8137.2008.02627.x es_ES
dc.description.references Yao, Y., & Kovalchuk, I. (2011). Abiotic stress leads to somatic and heritable changes in homologous recombination frequency, point mutation frequency and microsatellite stability in Arabidopsis plants. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 707(1-2), 61-66. doi:10.1016/j.mrfmmm.2010.12.013 es_ES
dc.description.references Zhang, Y., Fischer, M., Colot, V., & Bossdorf, O. (2012). Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytologist, 197(1), 314-322. doi:10.1111/nph.12010 es_ES
dc.description.references Zhu, J.-K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell, 167(2), 313-324. doi:10.1016/j.cell.2016.08.029 es_ES
dc.description.references Aguilar, E., Allende, L., del Toro, F. J., Chung, B.-N., Canto, T., & Tenllado, F. (2015). Effects of Elevated CO2 and Temperature on Pathogenicity Determinants and Virulence of Potato virus X/Potyvirus-Associated Synergism. Molecular Plant-Microbe Interactions®, 28(12), 1364-1373. doi:10.1094/mpmi-08-15-0178-r es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem