- -

From foes to friends: Viral infections expand the limits of host phenotypic plasticity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

From foes to friends: Viral infections expand the limits of host phenotypic plasticity

Mostrar el registro completo del ítem

González, R.; Butkovic, A.; Elena Fito, SF. (2020). From foes to friends: Viral infections expand the limits of host phenotypic plasticity. Advances in Virus Research. (106):85-121. https://doi.org/10.1016/bs.aivir.2020.01.003

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165965

Ficheros en el ítem

Metadatos del ítem

Título: From foes to friends: Viral infections expand the limits of host phenotypic plasticity
Autor: González, Rubén Butkovic, Anamarija ELENA FITO, SANTIAGO FCO
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Phenotypic plasticity enables organisms to survive in the face of unpredictable environmental stress. Intimately related to the notion of phenotypic plasticity is the concept of the reaction norm that places phenotypic ...[+]
Derechos de uso: Cerrado
Fuente:
Advances in Virus Research. (issn: 0065-3527 )
DOI: 10.1016/bs.aivir.2020.01.003
Editorial:
Academic Press
Versión del editor: https://doi.org/10.1016/bs.aivir.2020.01.003
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/
info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F005/
info:eu-repo/grantAgreement/AEI//BES-2016-077078/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F012/
Agradecimientos:
This work was funded by Spain's Agencia Estatal de Investigacion-FEDER grant BFU201565037-P and Generalitat Valenciana grant PROMETEU2019/012 to S.F.E. R.G. and A.B. were supported by Ministerio de Ciencia, Innovacion y ...[+]
Tipo: Artículo

References

Aguilar, E., Cutrona, C., del Toro, F. J., Vallarino, J. G., Osorio, S., Pérez-Bueno, M. L., … Tenllado, F. (2017). Virulence determines beneficial trade-offs in the response of virus-infected plants to drought via induction of salicylic acid. Plant, Cell & Environment, 40(12), 2909-2930. doi:10.1111/pce.13028

Ahnert, S. E. (2017). Structural properties of genotype–phenotype maps. Journal of The Royal Society Interface, 14(132), 20170275. doi:10.1098/rsif.2017.0275

Alazem, M., & Lin, N. (2014). Roles of plant hormones in the regulation of host–virus interactions. Molecular Plant Pathology, 16(5), 529-540. doi:10.1111/mpp.12204 [+]
Aguilar, E., Cutrona, C., del Toro, F. J., Vallarino, J. G., Osorio, S., Pérez-Bueno, M. L., … Tenllado, F. (2017). Virulence determines beneficial trade-offs in the response of virus-infected plants to drought via induction of salicylic acid. Plant, Cell & Environment, 40(12), 2909-2930. doi:10.1111/pce.13028

Ahnert, S. E. (2017). Structural properties of genotype–phenotype maps. Journal of The Royal Society Interface, 14(132), 20170275. doi:10.1098/rsif.2017.0275

Alazem, M., & Lin, N. (2014). Roles of plant hormones in the regulation of host–virus interactions. Molecular Plant Pathology, 16(5), 529-540. doi:10.1111/mpp.12204

Andrews, C. J., & Paliwal, Y. C. (1983). The influence of preinfection cold hardening and disease development period on the interaction between barley yellow dwarf virus and cold stress tolerance in wheat. Canadian Journal of Botany, 61(7), 1935-1940. doi:10.1139/b83-207

Andrews, C. J., & Paliwal, Y. C. (1986). Effects of barley yellow dwarf virus infection and low temperature flooding on cold stress tolerance of winter cereals. Canadian Journal of Plant Pathology, 8(3), 311-316. doi:10.1080/07060668609501805

Aprile, A., Havlickova, L., Panna, R., Marè, C., Borrelli, G. M., Marone, D., … Cattivelli, L. (2013). Different stress responsive strategies to drought and heat in two durum wheat cultivars with contrasting water use efficiency. BMC Genomics, 14(1), 821. doi:10.1186/1471-2164-14-821

Arnholdt-Schmitt, B. (2004). Stress-Induced Cell Reprogramming. A Role for Global Genome Regulation? Plant Physiology, 136(1), 2579-2586. doi:10.1104/pp.104.042531

Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63(10), 3523-3543. doi:10.1093/jxb/ers100

Aucique-Pérez, C. E., de Menezes Silva, P. E., Moreira, W. R., DaMatta, F. M., & Rodrigues, F. Á. (2017). Photosynthesis impairments and excitation energy dissipation on wheat plants supplied with silicon and infected with Pyricularia oryzae. Plant Physiology and Biochemistry, 121, 196-205. doi:10.1016/j.plaphy.2017.10.023

Auld, J. R., Agrawal, A. A., & Relyea, R. A. (2009). Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proceedings of the Royal Society B: Biological Sciences, 277(1681), 503-511. doi:10.1098/rspb.2009.1355

Bass, D., Stentiford, G. D., Wang, H.-C., Koskella, B., & Tyler, C. R. (2019). The Pathobiome in Animal and Plant Diseases. Trends in Ecology & Evolution, 34(11), 996-1008. doi:10.1016/j.tree.2019.07.012

Basu, A., Chowdhury, S., Ray Chaudhuri, T., & Kundu, S. (2016). Differential behaviour of sheath blight pathogenRhizoctonia solaniin tolerant and susceptible rice varieties before and during infection. Plant Pathology, 65(8), 1333-1346. doi:10.1111/ppa.12502

Belliure, B., Janssen, A., Maris, P. C., Peters, D., & Sabelis, M. W. (2004). Herbivore arthropods benefit from vectoring plant viruses. Ecology Letters, 8(1), 70-79. doi:10.1111/j.1461-0248.2004.00699.x

Belshaw, R., Gardner, A., Rambaut, A., & Pybus, O. G. (2008). Pacing a small cage: mutation and RNA viruses. Trends in Ecology & Evolution, 23(4), 188-193. doi:10.1016/j.tree.2007.11.010

Bergès, S. E., Vile, D., Vazquez-Rovere, C., Blanc, S., Yvon, M., Bédiée, A., … van Munster, M. (2018). Interactions Between Drought and Plant Genotype Change Epidemiological Traits of Cauliflower mosaic virus. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00703

Bhattacharya, D., & Medlin, and L. (1998). Algal Phylogeny and the Origin of Land Plants1. Plant Physiology, 116(1), 9-15. doi:10.1104/pp.116.1.9

Boyko, A., & Kovalchuk, I. (2011). Genetic and Epigenetic Effects of Plant–Pathogen Interactions: An Evolutionary Perspective. Molecular Plant, 4(6), 1014-1023. doi:10.1093/mp/ssr022

Bradshaw, A. D. (1965). Evolutionary Significance of Phenotypic Plasticity in Plants. Advances in Genetics, 115-155. doi:10.1016/s0065-2660(08)60048-6

Browder, L. E. (1985). Parasite: Host: Environment Specificity in the Cereal Rusts. Annual Review of Phytopathology, 23(1), 201-222. doi:10.1146/annurev.py.23.090185.001221

Callaway, R. M., Brooker, R. W., Choler, P., Kikvidze, Z., Lortie, C. J., Michalet, R., … Cook, B. J. (2002). Positive interactions among alpine plants increase with stress. Nature, 417(6891), 844-848. doi:10.1038/nature00812

Carr, J. P. (2017). Exploring how viruses enhance plants’ resilience to drought and the limits to this form of viral payback. Plant, Cell & Environment, 40(12), 2906-2908. doi:10.1111/pce.13068

Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response. Cell, 124(4), 803-814. doi:10.1016/j.cell.2006.02.008

Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 11(1), 163. doi:10.1186/1471-2229-11-163

Dáder, B., Then, C., Berthelot, E., Ducousso, M., Ng, J. C. K., & Drucker, M. (2017). Insect transmission of plant viruses: Multilayered interactions optimize viral propagation. Insect Science, 24(6), 929-946. doi:10.1111/1744-7917.12470

Dastogeer, K. M. G., Li, H., Sivasithamparam, K., Jones, M. G. K., & Wylie, S. J. (2018). Fungal endophytes and a virus confer drought tolerance to Nicotiana benthamiana plants through modulating osmolytes, antioxidant enzymes and expression of host drought responsive genes. Environmental and Experimental Botany, 149, 95-108. doi:10.1016/j.envexpbot.2018.02.009

Denancé, N., Sánchez-Vallet, A., Goffner, D., & Molina, A. (2013). Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00155

Dessau, M., Goldhill, D., McBride, R. C., Turner, P. E., & Modis, Y. (2012). Correction: Selective Pressure Causes an RNA Virus to Trade Reproductive Fitness for Increased Structural and Thermal Stability of a Viral Enzyme. PLoS Genetics, 8(12). doi:10.1371/annotation/aa9bff6f-92c4-4efb-9b7f-de96e405e9d3

DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution, 13(2), 77-81. doi:10.1016/s0169-5347(97)01274-3

Dickins, T. E., & Rahman, Q. (2012). The extended evolutionary synthesis and the role of soft inheritance in evolution. Proceedings of the Royal Society B: Biological Sciences, 279(1740), 2913-2921. doi:10.1098/rspb.2012.0273

Diener, T. O. (1963). Physiology of Virus-Infected Plants. Annual Review of Phytopathology, 1(1), 197-218. doi:10.1146/annurev.py.01.090163.001213

Diezma‐Navas, L., Pérez‐González, A., Artaza, H., Alonso, L., Caro, E., Llave, C., & Ruiz‐Ferrer, V. (2019). Crosstalk between epigenetic silencing and infection by tobacco rattle virus in Arabidopsis. Molecular Plant Pathology, 20(10), 1439-1452. doi:10.1111/mpp.12850

Dolan, P. T., Whitfield, Z. J., & Andino, R. (2018). Mechanisms and Concepts in RNA Virus Population Dynamics and Evolution. Annual Review of Virology, 5(1), 69-92. doi:10.1146/annurev-virology-101416-041718

Duffy, S., Shackelton, L. A., & Holmes, E. C. (2008). Rates of evolutionary change in viruses: patterns and determinants. Nature Reviews Genetics, 9(4), 267-276. doi:10.1038/nrg2323

Elena, S. F. (2012). RNA virus genetic robustness: possible causes and some consequences. Current Opinion in Virology, 2(5), 525-530. doi:10.1016/j.coviro.2012.06.008

Elena, S. F., & Sanjuán, R. (2005). Adaptive Value of High Mutation Rates of RNA Viruses: Separating Causes from Consequences. Journal of Virology, 79(18), 11555-11558. doi:10.1128/jvi.79.18.11555-11558.2005

Elena, S. F., Carrasco, P., Daròs, J., & Sanjuán, R. (2006). Mechanisms of genetic robustness in RNA viruses. EMBO reports, 7(2), 168-173. doi:10.1038/sj.embor.7400636

Engering, A., Hogerwerf, L., & Slingenbergh, J. (2013). Pathogen–host–environment interplay and disease emergence. Emerging Microbes & Infections, 2(1), 1-7. doi:10.1038/emi.2013.5

Fernández-Calvino, L., Osorio, S., Hernández, M. L., Hamada, I. B., del Toro, F. J., Donaire, L., … Llave, C. (2014). Virus-Induced Alterations in Primary Metabolism Modulate Susceptibility to Tobacco rattle virus in Arabidopsis    . Plant Physiology, 166(4), 1821-1838. doi:10.1104/pp.114.250340

Finazzi, G., & Minagawa, J. (2014). High Light Acclimation in Green Microalgae. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, 445-469. doi:10.1007/978-94-017-9032-1_21

Fitzgerald, P. J., & Stoner, W. N. (1967). Barley Yellow Dwarf Studies in Wheat ( Triticum aestivum L.). I. Yield and Quality of Hard Red Winter Wheat Infected With Barley Yellow Dwarf Virus 1. Crop Science, 7(4), 337-341. doi:10.2135/cropsci1967.0011183x000700040018x

Fraile, A., McLeish, M. J., Pagán, I., González-Jara, P., Piñero, D., & García-Arenal, F. (2017). Environmental heterogeneity and the evolution of plant-virus interactions: Viruses in wild pepper populations. Virus Research, 241, 68-76. doi:10.1016/j.virusres.2017.05.015

Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate Change Effects on Plant Disease: Genomes to Ecosystems. Annual Review of Phytopathology, 44(1), 489-509. doi:10.1146/annurev.phyto.44.070505.143420

Gibbs, A. (1980). A Plant Virus that Partially Protects Its Wild Legume Host against Herbivores. Intervirology, 13(1), 42-47. doi:10.1159/000149105

González, R., Butković, A., & Elena, S. F. (2019). Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus†. Virus Evolution, 5(2). doi:10.1093/ve/vez024

Gorovits, R., Sobol, I., Altaleb, M., Czosnek, H., & Anfoka, G. (2019). Taking advantage of a pathogen: understanding how a virus alleviates plant stress response. Phytopathology Research, 1(1). doi:10.1186/s42483-019-0028-4

Hagemann, M., Kern, R., Maurino, V. G., Hanson, D. T., Weber, A. P. M., Sage, R. F., & Bauwe, H. (2016). Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms. Journal of Experimental Botany, 67(10), 2963-2976. doi:10.1093/jxb/erw063

Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10. doi:10.1016/j.wace.2015.08.001

Hily, J., Poulicard, N., Mora, M., Pagán, I., & García‐Arenal, F. (2015). Environment and host genotype determine the outcome of a plant–virus interaction: from antagonism to mutualism. New Phytologist, 209(2), 812-822. doi:10.1111/nph.13631

Iranzo, J., Puigbò, P., Lobkovsky, A. E., Wolf, Y. I., & Koonin, E. V. (2016). Inevitability of Genetic Parasites. Genome Biology and Evolution, 8(9), 2856-2869. doi:10.1093/gbe/evw193

Jones, R. A. C. (2016). Future Scenarios for Plant Virus Pathogens as Climate Change Progresses. Advances in Virus Research, 87-147. doi:10.1016/bs.aivir.2016.02.004

Jones, R. A. C. (2012). Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 7(022). doi:10.1079/pavsnnr20127022

Kathiria, P., Sidler, C., Golubov, A., Kalischuk, M., Kawchuk, L. M., & Kovalchuk, I. (2010). Tobacco Mosaic Virus Infection Results in an Increase in Recombination Frequency and Resistance to Viral, Bacterial, and Fungal Pathogens in the Progeny of Infected Tobacco Plants      . Plant Physiology, 153(4), 1859-1870. doi:10.1104/pp.110.157263

Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00462

Knies, J. L., Izem, R., Supler, K. L., Kingsolver, J. G., & Burch, C. L. (2006). The Genetic Basis of Thermal Reaction Norm Evolution in Lab and Natural Phage Populations. PLoS Biology, 4(7), e201. doi:10.1371/journal.pbio.0040201

Koonin, E. V. (2016). Viruses and mobile elements as drivers of evolutionary transitions. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1701), 20150442. doi:10.1098/rstb.2015.0442

Koonin, E. V., & Dolja, V. V. (2013). A virocentric perspective on the evolution of life. Current Opinion in Virology, 3(5), 546-557. doi:10.1016/j.coviro.2013.06.008

Lacroix, C., Seabloom, E. W., & Borer, E. T. (2014). Environmental nutrient supply alters prevalence and weakens competitive interactions among coinfecting viruses. New Phytologist, 204(2), 424-433. doi:10.1111/nph.12909

LAINE, A.-L. (2007). Pathogen fitness components and genotypes differ in their sensitivity to nutrient and temperature variation in a wild plant–pathogen association. Journal of Evolutionary Biology, 20(6), 2371-2378. doi:10.1111/j.1420-9101.2007.01406.x

Lazzaro, B. P., & Little, T. J. (2008). Immunity in a variable world. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1513), 15-26. doi:10.1098/rstb.2008.0141

Lefeuvre, P., Martin, D. P., Elena, S. F., Shepherd, D. N., Roumagnac, P., & Varsani, A. (2019). Evolution and ecology of plant viruses. Nature Reviews Microbiology, 17(10), 632-644. doi:10.1038/s41579-019-0232-3

Li, P., Shu, Y., Fu, S., Liu, Y., Zhou, X., Liu, S., & Wang, X. (2017). Vector and nonvector insect feeding reduces subsequent plant susceptibility to virus transmission. New Phytologist, 215(2), 699-710. doi:10.1111/nph.14550

Listmann, L., LeRoch, M., Schlüter, L., Thomas, M. K., & Reusch, T. B. H. (2016). Swift thermal reaction norm evolution in a key marine phytoplankton species. Evolutionary Applications, 9(9), 1156-1164. doi:10.1111/eva.12362

Little, T. J., Shuker, D. M., Colegrave, N., Day, T., & Graham, A. L. (2010). The Coevolution of Virulence: Tolerance in Perspective. PLoS Pathogens, 6(9), e1001006. doi:10.1371/journal.ppat.1001006

Loreti, E., van Veen, H., & Perata, P. (2016). Plant responses to flooding stress. Current Opinion in Plant Biology, 33, 64-71. doi:10.1016/j.pbi.2016.06.005

MADLUNG, A. (2004). The Effect of Stress on Genome Regulation and Structure. Annals of Botany, 94(4), 481-495. doi:10.1093/aob/mch172

Mann, N. H. (2003). Phages of the marine cyanobacterial picophytoplankton: Table 1. FEMS Microbiology Reviews, 27(1), 17-34. doi:10.1016/s0168-6445(03)00016-0

Márquez, L. M., Redman, R. S., Rodriguez, R. J., & Roossinck, M. J. (2007). A Virus in a Fungus in a Plant: Three-Way Symbiosis Required for Thermal Tolerance. Science, 315(5811), 513-515. doi:10.1126/science.1136237

Mauck, K. E., De Moraes, C. M., & Mescher, M. C. (2010). Effects ofCucumber mosaic virusinfection on vector and non-vector herbivores of squash. Communicative & Integrative Biology, 3(6), 579-582. doi:10.4161/cib.3.6.13094

Mauck, K. E., Kenney, J., & Chesnais, Q. (2019). Progress and challenges in identifying molecular mechanisms underlying host and vector manipulation by plant viruses. Current Opinion in Insect Science, 33, 7-18. doi:10.1016/j.cois.2019.01.001

McBride, R. C., Ogbunugafor, C. B., & Turner, P. E. (2008). Robustness promotes evolvability of thermotolerance in an RNA virus. BMC Evolutionary Biology, 8(1), 231. doi:10.1186/1471-2148-8-231

Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15-19. doi:10.1016/j.tplants.2005.11.002

Munné-Bosch, S., & Alegre, L. (2004). Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31(3), 203. doi:10.1071/fp03236

Murren, C. J., Auld, J. R., Callahan, H., Ghalambor, C. K., Handelsman, C. A., Heskel, M. A., … Schlichting, C. D. (2015). Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity, 115(4), 293-301. doi:10.1038/hdy.2015.8

Pagán, I., Fraile, A., Fernandez-Fueyo, E., Montes, N., Alonso-Blanco, C., & García-Arenal, F. (2010). Arabidopsis thaliana as a model for the study of plant–virus co-evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1983-1995. doi:10.1098/rstb.2010.0062

Pandey, P., Ramegowda, V., & Senthil-Kumar, M. (2015). Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00723

Patel, D., & Franklin, K. A. (2009). Temperature-regulation of plant architecture. Plant Signaling & Behavior, 4(7), 577-579. doi:10.4161/psb.4.7.8849

Paudel, D. B., & Sanfaçon, H. (2018). Exploring the Diversity of Mechanisms Associated With Plant Tolerance to Virus Infection. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01575

Prasch, C. M., & Sonnewald, U. (2013). Simultaneous Application of Heat, Drought, and Virus to Arabidopsis Plants Reveals Significant Shifts in Signaling Networks. Plant Physiology, 162(4), 1849-1866. doi:10.1104/pp.113.221044

Prendeville, H. R., Ye, X., Jack Morris, T., & Pilson, D. (2012). Virus infections in wild plant populations are both frequent and often unapparent. American Journal of Botany, 99(6), 1033-1042. doi:10.3732/ajb.1100509

Prokopová, J., Špundová, M., Sedlářová, M., Husičková, A., Novotný, R., Doležal, K., … Lebeda, A. (2010). Photosynthetic responses of lettuce to downy mildew infection and cytokinin treatment. Plant Physiology and Biochemistry, 48(8), 716-723. doi:10.1016/j.plaphy.2010.04.003

Ramegowda, V., & Senthil-Kumar, M. (2015). The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. Journal of Plant Physiology, 176, 47-54. doi:10.1016/j.jplph.2014.11.008

Rejeb, I., Pastor, V., & Mauch-Mani, B. (2014). Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. Plants, 3(4), 458-475. doi:10.3390/plants3040458

Roossinck, M. J. (2010). Lifestyles of plant viruses. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1899-1905. doi:10.1098/rstb.2010.0057

Roossinck, M. J. (2011). The good viruses: viral mutualistic symbioses. Nature Reviews Microbiology, 9(2), 99-108. doi:10.1038/nrmicro2491

Roossinck, M. J. (2012). Plant Virus Metagenomics: Biodiversity and Ecology. Annual Review of Genetics, 46(1), 359-369. doi:10.1146/annurev-genet-110711-155600

Roossinck, M. J. (2015). Move Over, Bacteria! Viruses Make Their Mark as Mutualistic Microbial Symbionts. Journal of Virology, 89(13), 6532-6535. doi:10.1128/jvi.02974-14

Roossinck, M. J. (2015). Plants, viruses and the environment: Ecology and mutualism. Virology, 479-480, 271-277. doi:10.1016/j.virol.2015.03.041

Roossinck, M. J., & Bazán, E. R. (2017). Symbiosis: Viruses as Intimate Partners. Annual Review of Virology, 4(1), 123-139. doi:10.1146/annurev-virology-110615-042323

ROOSSINCK, M. J., SAHA, P., WILEY, G. B., QUAN, J., WHITE, J. D., LAI, H., … ROE, B. A. (2010). Ecogenomics: using massively parallel pyrosequencing to understand virus ecology. Molecular Ecology, 19, 81-88. doi:10.1111/j.1365-294x.2009.04470.x

Safari, M., Ferrari, M. J., & Roossinck, M. J. (2019). Manipulation of Aphid Behavior by a Persistent Plant Virus. Journal of Virology, 93(9). doi:10.1128/jvi.01781-18

Sanjuán, R. (2012). From Molecular Genetics to Phylodynamics: Evolutionary Relevance of Mutation Rates Across Viruses. PLoS Pathogens, 8(5), e1002685. doi:10.1371/journal.ppat.1002685

Sanjuán, R., Nebot, M. R., Chirico, N., Mansky, L. M., & Belshaw, R. (2010). Viral Mutation Rates. Journal of Virology, 84(19), 9733-9748. doi:10.1128/jvi.00694-10

Seaton, G. G. R., Hurry, V. M., & Rohozinski, J. (1996). Novel amplification of non-photochemical chlorophyll fluorescence quenching following viral infection inChlorella. FEBS Letters, 389(3), 319-323. doi:10.1016/0014-5793(96)00615-1

Shabala, S., Babourina, O., Rengel, Z., & Nemchinov, L. G. (2010). Non-invasive microelectrode potassium flux measurements as a potential tool for early recognition of virus–host compatibility in plants. Planta, 232(4), 807-815. doi:10.1007/s00425-010-1213-y

SHABALA, S., BAEKGAARD, L., SHABALA, L., FUGLSANG, A., BABOURINA, O., PALMGREN, M. G., … NEMCHINOV, L. G. (2010). Plasma membrane Ca2+ transporters mediate virus-induced acquired resistance to oxidative stress. Plant, Cell & Environment, 34(3), 406-417. doi:10.1111/j.1365-3040.2010.02251.x

Shabala, S., Bækgaard, L., Shabala, L., Fuglsang, A. T., Cuin, T. A., Nemchinov, L. G., & Palmgren, M. G. (2011). Endomembrane Ca2+-ATPases play a significant role in virus-induced adaptation to oxidative stress. Plant Signaling & Behavior, 6(7), 1053-1056. doi:10.4161/psb.6.7.15634

Shukla, A., Pagán, I., & García-Arenal, F. (2018). Effective tolerance based on resource reallocation is a virus-specific defence inArabidopsis thaliana. Molecular Plant Pathology, 19(6), 1454-1465. doi:10.1111/mpp.12629

Sreenivasulu, N., Harshavardhan, V. T., Govind, G., Seiler, C., & Kohli, A. (2012). Contrapuntal role of ABA: Does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene, 506(2), 265-273. doi:10.1016/j.gene.2012.06.076

Suttle, C. A. (2007). Marine viruses — major players in the global ecosystem. Nature Reviews Microbiology, 5(10), 801-812. doi:10.1038/nrmicro1750

Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32-43. doi:10.1111/nph.12797

Takeda, S., & Paszkowski, J. (2005). DNA methylation and epigenetic inheritance during plant gametogenesis. Chromosoma, 115(1), 27-35. doi:10.1007/s00412-005-0031-7

Thapa, V., McGlinn, D. J., Melcher, U., Palmer, M. W., & Roossinck, M. J. (2015). Determinants of taxonomic composition of plant viruses at the Nature Conservancy’s Tallgrass Prairie Preserve, Oklahoma. Virus Evolution, 1(1). doi:10.1093/ve/vev007

Vale, P. F., Salvaudon, L., Kaltz, O., & Fellous, S. (2008). The role of the environment in the evolutionary ecology of host parasite interactions. Infection, Genetics and Evolution, 8(3), 302-305. doi:10.1016/j.meegid.2008.01.011

VALE, P. F., STJERNMAN, M., & LITTLE, T. J. (2008). Temperature-dependent costs of parasitism and maintenance of polymorphism under genotype-by-environment interactions. Journal of Evolutionary Biology, 21(5), 1418-1427. doi:10.1111/j.1420-9101.2008.01555.x

Van Der Biezen, E. A., & Jones, J. D. G. (1998). Plant disease-resistance proteins and the gene-for-gene concept. Trends in Biochemical Sciences, 23(12), 454-456. doi:10.1016/s0968-0004(98)01311-5

Van Munster, M., Yvon, M., Vile, D., Dader, B., Fereres, A., & Blanc, S. (2017). Water deficit enhances the transmission of plant viruses by insect vectors. PLOS ONE, 12(5), e0174398. doi:10.1371/journal.pone.0174398

Wang, Y., & Frei, M. (2011). Stressed food – The impact of abiotic environmental stresses on crop quality. Agriculture, Ecosystems & Environment, 141(3-4), 271-286. doi:10.1016/j.agee.2011.03.017

Westwood, J. H., Mccann, L., Naish, M., Dixon, H., Murphy, A. M., Stancombe, M. A., … Carr, J. P. (2012). A viral RNA silencing suppressor interferes with abscisic acid-mediated signalling and induces drought tolerance inArabidopsis thaliana. Molecular Plant Pathology, 14(2), 158-170. doi:10.1111/j.1364-3703.2012.00840.x

Wieczynski, D. J., Turner, P. E., & Vasseur, D. A. (2018). Temporally Autocorrelated Environmental Fluctuations Inhibit the Evolution of Stress Tolerance. The American Naturalist, 191(6), E195-E207. doi:10.1086/697200

Wolinska, J., & King, K. C. (2009). Environment can alter selection in host–parasite interactions. Trends in Parasitology, 25(5), 236-244. doi:10.1016/j.pt.2009.02.004

Wren, J. D., Roossinck, M. J., Nelson, R. S., Scheets, K., Palmer, M. W., & Melcher, U. (2006). Plant Virus Biodiversity and Ecology. PLoS Biology, 4(3), e80. doi:10.1371/journal.pbio.0040080

Xu, P., Chen, F., Mannas, J. P., Feldman, T., Sumner, L. W., & Roossinck, M. J. (2008). Virus infection improves drought tolerance. New Phytologist, 180(4), 911-921. doi:10.1111/j.1469-8137.2008.02627.x

Yao, Y., & Kovalchuk, I. (2011). Abiotic stress leads to somatic and heritable changes in homologous recombination frequency, point mutation frequency and microsatellite stability in Arabidopsis plants. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 707(1-2), 61-66. doi:10.1016/j.mrfmmm.2010.12.013

Zhang, Y., Fischer, M., Colot, V., & Bossdorf, O. (2012). Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytologist, 197(1), 314-322. doi:10.1111/nph.12010

Zhu, J.-K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell, 167(2), 313-324. doi:10.1016/j.cell.2016.08.029

Aguilar, E., Allende, L., del Toro, F. J., Chung, B.-N., Canto, T., & Tenllado, F. (2015). Effects of Elevated CO2 and Temperature on Pathogenicity Determinants and Virulence of Potato virus X/Potyvirus-Associated Synergism. Molecular Plant-Microbe Interactions®, 28(12), 1364-1373. doi:10.1094/mpmi-08-15-0178-r

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem