- -

Influence of cracking on oxygen transport in UHPFRC using stainless steel sensors

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Influence of cracking on oxygen transport in UHPFRC using stainless steel sensors

Show full item record

Martínez-Ibernón, A.; Roig-Flores, M.; Lliso-Ferrando, JR.; Mezquida-Alcaraz, EJ.; Valcuende Payá, MO.; Serna Ros, P. (2020). Influence of cracking on oxygen transport in UHPFRC using stainless steel sensors. Applied Sciences. 10(1):1-17. https://doi.org/10.3390/app10010239

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165969

Files in this item

Item Metadata

Title: Influence of cracking on oxygen transport in UHPFRC using stainless steel sensors
Author: Martínez-Ibernón, Ana Roig-Flores, Marta Lliso-Ferrando, Josep Ramon Mezquida-Alcaraz, Eduardo J. Valcuende Payá, Manuel Octavio Serna Ros, Pedro
UPV Unit: Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó
Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques
Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Issued date:
Abstract:
[EN] Reinforced concrete elements frequently suffer small cracks that are not relevant from the mechanical point of view, but they can be an entrance point for aggressive agents, such as oxygen, which could initiate the ...[+]
Subjects: UHPFRC , Fibers , Multi-cracking , Air permeability , Oxygen , Stainless steel sensor , Voltammetry
Copyrigths: Reconocimiento (by)
Source:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app10010239
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/app10010239
Project ID:
info:eu-repo/grantAgreement/EC/H2020/760824/EU/Rethinking coastal defence and Green-Energy Service infrastructures through enHancEd-durAbiLIty high-performance fiber reinforced cement-based materials./
info:eu-repo/grantAgreement/UPV//FPI-2018
info:eu-repo/grantAgreement/MECD//FPU16%2F00723/ES/FPU16%2F00723/
Thanks:
The authors would like to express their gratitude to the Spanish Ministry of Science and Innovation for the pre-doctoral scholarship granted to Ana Martinez Ibernon (FPU 16/00723), to the Universitat Politecnica de Valencia ...[+]
Type: Artículo

References

Front Matter. (2013). fib Model Code for Concrete Structures 2010, I-XXXIII. doi:10.1002/9783433604090.fmatter

Yoo, D.-Y., & Banthia, N. (2016). Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cement and Concrete Composites, 73, 267-280. doi:10.1016/j.cemconcomp.2016.08.001

Wittmann, F., & Van Zijl, G. (Eds.). (2011). Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC). doi:10.1007/978-94-007-0338-4 [+]
Front Matter. (2013). fib Model Code for Concrete Structures 2010, I-XXXIII. doi:10.1002/9783433604090.fmatter

Yoo, D.-Y., & Banthia, N. (2016). Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cement and Concrete Composites, 73, 267-280. doi:10.1016/j.cemconcomp.2016.08.001

Wittmann, F., & Van Zijl, G. (Eds.). (2011). Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC). doi:10.1007/978-94-007-0338-4

Li, V. C. (2003). On Engineered Cementitious Composites (ECC). Journal of Advanced Concrete Technology, 1(3), 215-230. doi:10.3151/jact.1.215

Asgari, M. A., Mastali, M., Dalvand, A., & Abdollahnejad, Z. (2017). Development of deflection hardening cementitious composites using glass fibres for flexural repairing/strengthening concrete beams: experimental and numerical studies. European Journal of Environmental and Civil Engineering, 23(8), 916-944. doi:10.1080/19648189.2017.1327888

Ravindrarajah, R. S., & Swamy, R. N. (1989). Load effects on fracture of concrete. Materials and Structures, 22(1), 15-22. doi:10.1007/bf02472690

Bascoul, A. (1996). State of the art report—Part 2: Mechanical micro-cracking of concrete. Materials and Structures, 29(2), 67-78. doi:10.1007/bf02486196

Damgaard Jensen, A., & Chatterji, S. (1996). State of the art report on micro-cracking and lifetime of concrete—Part 1. Materials and Structures, 29(1), 3-8. doi:10.1007/bf02486001

Berrocal, C. G., Löfgren, I., Lundgren, K., Görander, N., & Halldén, C. (2016). Characterisation of bending cracks in R/FRC using image analysis. Cement and Concrete Research, 90, 104-116. doi:10.1016/j.cemconres.2016.09.016

Correia, M. J., Pereira, E. V., Salta, M. M., & Fonseca, I. T. E. (2006). Sensor for oxygen evaluation in concrete. Cement and Concrete Composites, 28(3), 226-232. doi:10.1016/j.cemconcomp.2006.01.006

Yoon, I.-S. (2018). Comprehensive Approach to Calculate Oxygen Diffusivity of Cementitious Materials Considering Carbonation. International Journal of Concrete Structures and Materials, 12(1). doi:10.1186/s40069-018-0242-y

Banthia, N., Zanotti, C., & Sappakittipakorn, M. (2014). Sustainable fiber reinforced concrete for repair applications. Construction and Building Materials, 67, 405-412. doi:10.1016/j.conbuildmat.2013.12.073

Berrocal, C. G., Löfgren, I., & Lundgren, K. (2018). The effect of fibres on steel bar corrosion and flexural behaviour of corroded RC beams. Engineering Structures, 163, 409-425. doi:10.1016/j.engstruct.2018.02.068

Sisomphon, K., Copuroglu, O., & Koenders, E. A. B. (2012). Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cement and Concrete Composites, 34(4), 566-574. doi:10.1016/j.cemconcomp.2012.01.005

Ferrara, L., Krelani, V., & Carsana, M. (2014). A «fracture testing» based approach to assess crack healing of concrete with and without crystalline admixtures. Construction and Building Materials, 68, 535-551. doi:10.1016/j.conbuildmat.2014.07.008

Roig-Flores, M., Pirritano, F., Serna, P., & Ferrara, L. (2016). Effect of crystalline admixtures on the self-healing capability of early-age concrete studied by means of permeability and crack closing tests. Construction and Building Materials, 114, 447-457. doi:10.1016/j.conbuildmat.2016.03.196

López, J. Á., Serna, P., Navarro-Gregori, J., & Camacho, E. (2014). An inverse analysis method based on deflection to curvature transformation to determine the tensile properties of UHPFRC. Materials and Structures, 48(11), 3703-3718. doi:10.1617/s11527-014-0434-0

Lopez, J. A., Serna, P., Camacho, E., Coll, H., & Navarro-Gregori, J. (2014). First Ultra-High-Performance Fibre-Reinforced Concrete Footbridge in Spain: Design and Construction. Structural Engineering International, 24(1), 101-104. doi:10.2749/101686614x13830788505793

Negrini, A., Roig-Flores, M., Mezquida-Alcaraz, E. J., Ferrara, L., & Serna, P. (2019). Effect of crack pattern on the self-healing capability in traditional, HPC and UHPFRC concretes measured by water and chloride permeability. MATEC Web of Conferences, 289, 01006. doi:10.1051/matecconf/201928901006

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record