Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez-Ibernón, Ana | es_ES |
dc.contributor.author | Roig-Flores, Marta | es_ES |
dc.contributor.author | Lliso-Ferrando, Josep Ramon | es_ES |
dc.contributor.author | Mezquida-Alcaraz, Eduardo J. | es_ES |
dc.contributor.author | Valcuende Payá, Manuel Octavio | es_ES |
dc.contributor.author | Serna Ros, Pedro | es_ES |
dc.date.accessioned | 2021-05-05T03:33:18Z | |
dc.date.available | 2021-05-05T03:33:18Z | |
dc.date.issued | 2020-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165969 | |
dc.description.abstract | [EN] Reinforced concrete elements frequently suffer small cracks that are not relevant from the mechanical point of view, but they can be an entrance point for aggressive agents, such as oxygen, which could initiate the degradation processes. Fiber-Reinforced Concrete and especially Ultra High Performance Concrete increase the multi-cracking behavior, reducing the crack width and spacing. In this work, the oxygen availability of three types of concrete was compared at similar strain levels to evaluate the benefit of multi-cracking in the transport of oxygen. The types of concrete studied include traditional, High-Performance, and Ultra-High-Performance Fiber-Reinforced Concrete with and without nanofibers. To this purpose, reinforced concrete beams sized 150 x 100 x 750 mm(3) were prepared with embedded stainless steel sensors that were located at three heights, which have also been validated through this work. These beams were pre-cracked in bending up to fixed strain levels. The results indicate that the sensors used were able to detect oxygen availability due to the presence of cracks and the detected differences between the studied concretes. Ultra High Performance Concrete in the cracked state displayed lower oxygen availability than the uncracked High Performance Concrete, demonstrating its potential higher durability, even when working in cracked state, thanks to the increased multi-cracking response. | es_ES |
dc.description.sponsorship | The authors would like to express their gratitude to the Spanish Ministry of Science and Innovation for the pre-doctoral scholarship granted to Ana Martinez Ibernon (FPU 16/00723), to the Universitat Politecnica de Valencia for the pre-doctoral scholarship granted to Josep Ramon Lliso Ferrando (FPI-UPV-2018), and the European Union's Horizon 2020 ReSHEALience project (Grant Agreement No. 760824). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | UHPFRC | es_ES |
dc.subject | Fibers | es_ES |
dc.subject | Multi-cracking | es_ES |
dc.subject | Air permeability | es_ES |
dc.subject | Oxygen | es_ES |
dc.subject | Stainless steel sensor | es_ES |
dc.subject | Voltammetry | es_ES |
dc.subject.classification | CONSTRUCCIONES ARQUITECTONICAS | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Influence of cracking on oxygen transport in UHPFRC using stainless steel sensors | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app10010239 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/760824/EU/Rethinking coastal defence and Green-Energy Service infrastructures through enHancEd-durAbiLIty high-performance fiber reinforced cement-based materials./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//FPI-2018 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU16%2F00723/ES/FPU16%2F00723/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Martínez-Ibernón, A.; Roig-Flores, M.; Lliso-Ferrando, JR.; Mezquida-Alcaraz, EJ.; Valcuende Payá, MO.; Serna Ros, P. (2020). Influence of cracking on oxygen transport in UHPFRC using stainless steel sensors. Applied Sciences. 10(1):1-17. https://doi.org/10.3390/app10010239 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app10010239 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\412323 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Front Matter. (2013). fib Model Code for Concrete Structures 2010, I-XXXIII. doi:10.1002/9783433604090.fmatter | es_ES |
dc.description.references | Yoo, D.-Y., & Banthia, N. (2016). Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cement and Concrete Composites, 73, 267-280. doi:10.1016/j.cemconcomp.2016.08.001 | es_ES |
dc.description.references | Wittmann, F., & Van Zijl, G. (Eds.). (2011). Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC). doi:10.1007/978-94-007-0338-4 | es_ES |
dc.description.references | Li, V. C. (2003). On Engineered Cementitious Composites (ECC). Journal of Advanced Concrete Technology, 1(3), 215-230. doi:10.3151/jact.1.215 | es_ES |
dc.description.references | Asgari, M. A., Mastali, M., Dalvand, A., & Abdollahnejad, Z. (2017). Development of deflection hardening cementitious composites using glass fibres for flexural repairing/strengthening concrete beams: experimental and numerical studies. European Journal of Environmental and Civil Engineering, 23(8), 916-944. doi:10.1080/19648189.2017.1327888 | es_ES |
dc.description.references | Ravindrarajah, R. S., & Swamy, R. N. (1989). Load effects on fracture of concrete. Materials and Structures, 22(1), 15-22. doi:10.1007/bf02472690 | es_ES |
dc.description.references | Bascoul, A. (1996). State of the art report—Part 2: Mechanical micro-cracking of concrete. Materials and Structures, 29(2), 67-78. doi:10.1007/bf02486196 | es_ES |
dc.description.references | Damgaard Jensen, A., & Chatterji, S. (1996). State of the art report on micro-cracking and lifetime of concrete—Part 1. Materials and Structures, 29(1), 3-8. doi:10.1007/bf02486001 | es_ES |
dc.description.references | Berrocal, C. G., Löfgren, I., Lundgren, K., Görander, N., & Halldén, C. (2016). Characterisation of bending cracks in R/FRC using image analysis. Cement and Concrete Research, 90, 104-116. doi:10.1016/j.cemconres.2016.09.016 | es_ES |
dc.description.references | Correia, M. J., Pereira, E. V., Salta, M. M., & Fonseca, I. T. E. (2006). Sensor for oxygen evaluation in concrete. Cement and Concrete Composites, 28(3), 226-232. doi:10.1016/j.cemconcomp.2006.01.006 | es_ES |
dc.description.references | Yoon, I.-S. (2018). Comprehensive Approach to Calculate Oxygen Diffusivity of Cementitious Materials Considering Carbonation. International Journal of Concrete Structures and Materials, 12(1). doi:10.1186/s40069-018-0242-y | es_ES |
dc.description.references | Banthia, N., Zanotti, C., & Sappakittipakorn, M. (2014). Sustainable fiber reinforced concrete for repair applications. Construction and Building Materials, 67, 405-412. doi:10.1016/j.conbuildmat.2013.12.073 | es_ES |
dc.description.references | Berrocal, C. G., Löfgren, I., & Lundgren, K. (2018). The effect of fibres on steel bar corrosion and flexural behaviour of corroded RC beams. Engineering Structures, 163, 409-425. doi:10.1016/j.engstruct.2018.02.068 | es_ES |
dc.description.references | Sisomphon, K., Copuroglu, O., & Koenders, E. A. B. (2012). Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cement and Concrete Composites, 34(4), 566-574. doi:10.1016/j.cemconcomp.2012.01.005 | es_ES |
dc.description.references | Ferrara, L., Krelani, V., & Carsana, M. (2014). A «fracture testing» based approach to assess crack healing of concrete with and without crystalline admixtures. Construction and Building Materials, 68, 535-551. doi:10.1016/j.conbuildmat.2014.07.008 | es_ES |
dc.description.references | Roig-Flores, M., Pirritano, F., Serna, P., & Ferrara, L. (2016). Effect of crystalline admixtures on the self-healing capability of early-age concrete studied by means of permeability and crack closing tests. Construction and Building Materials, 114, 447-457. doi:10.1016/j.conbuildmat.2016.03.196 | es_ES |
dc.description.references | López, J. Á., Serna, P., Navarro-Gregori, J., & Camacho, E. (2014). An inverse analysis method based on deflection to curvature transformation to determine the tensile properties of UHPFRC. Materials and Structures, 48(11), 3703-3718. doi:10.1617/s11527-014-0434-0 | es_ES |
dc.description.references | Lopez, J. A., Serna, P., Camacho, E., Coll, H., & Navarro-Gregori, J. (2014). First Ultra-High-Performance Fibre-Reinforced Concrete Footbridge in Spain: Design and Construction. Structural Engineering International, 24(1), 101-104. doi:10.2749/101686614x13830788505793 | es_ES |
dc.description.references | Negrini, A., Roig-Flores, M., Mezquida-Alcaraz, E. J., Ferrara, L., & Serna, P. (2019). Effect of crack pattern on the self-healing capability in traditional, HPC and UHPFRC concretes measured by water and chloride permeability. MATEC Web of Conferences, 289, 01006. doi:10.1051/matecconf/201928901006 | es_ES |