- -

Influence of cracking on oxygen transport in UHPFRC using stainless steel sensors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of cracking on oxygen transport in UHPFRC using stainless steel sensors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Ibernón, Ana es_ES
dc.contributor.author Roig-Flores, Marta es_ES
dc.contributor.author Lliso-Ferrando, Josep Ramon es_ES
dc.contributor.author Mezquida-Alcaraz, Eduardo J. es_ES
dc.contributor.author Valcuende Payá, Manuel Octavio es_ES
dc.contributor.author Serna Ros, Pedro es_ES
dc.date.accessioned 2021-05-05T03:33:18Z
dc.date.available 2021-05-05T03:33:18Z
dc.date.issued 2020-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165969
dc.description.abstract [EN] Reinforced concrete elements frequently suffer small cracks that are not relevant from the mechanical point of view, but they can be an entrance point for aggressive agents, such as oxygen, which could initiate the degradation processes. Fiber-Reinforced Concrete and especially Ultra High Performance Concrete increase the multi-cracking behavior, reducing the crack width and spacing. In this work, the oxygen availability of three types of concrete was compared at similar strain levels to evaluate the benefit of multi-cracking in the transport of oxygen. The types of concrete studied include traditional, High-Performance, and Ultra-High-Performance Fiber-Reinforced Concrete with and without nanofibers. To this purpose, reinforced concrete beams sized 150 x 100 x 750 mm(3) were prepared with embedded stainless steel sensors that were located at three heights, which have also been validated through this work. These beams were pre-cracked in bending up to fixed strain levels. The results indicate that the sensors used were able to detect oxygen availability due to the presence of cracks and the detected differences between the studied concretes. Ultra High Performance Concrete in the cracked state displayed lower oxygen availability than the uncracked High Performance Concrete, demonstrating its potential higher durability, even when working in cracked state, thanks to the increased multi-cracking response. es_ES
dc.description.sponsorship The authors would like to express their gratitude to the Spanish Ministry of Science and Innovation for the pre-doctoral scholarship granted to Ana Martinez Ibernon (FPU 16/00723), to the Universitat Politecnica de Valencia for the pre-doctoral scholarship granted to Josep Ramon Lliso Ferrando (FPI-UPV-2018), and the European Union's Horizon 2020 ReSHEALience project (Grant Agreement No. 760824). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject UHPFRC es_ES
dc.subject Fibers es_ES
dc.subject Multi-cracking es_ES
dc.subject Air permeability es_ES
dc.subject Oxygen es_ES
dc.subject Stainless steel sensor es_ES
dc.subject Voltammetry es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Influence of cracking on oxygen transport in UHPFRC using stainless steel sensors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10010239 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/760824/EU/Rethinking coastal defence and Green-Energy Service infrastructures through enHancEd-durAbiLIty high-performance fiber reinforced cement-based materials./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-2018 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU16%2F00723/ES/FPU16%2F00723/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Martínez-Ibernón, A.; Roig-Flores, M.; Lliso-Ferrando, JR.; Mezquida-Alcaraz, EJ.; Valcuende Payá, MO.; Serna Ros, P. (2020). Influence of cracking on oxygen transport in UHPFRC using stainless steel sensors. Applied Sciences. 10(1):1-17. https://doi.org/10.3390/app10010239 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10010239 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\412323 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Front Matter. (2013). fib Model Code for Concrete Structures 2010, I-XXXIII. doi:10.1002/9783433604090.fmatter es_ES
dc.description.references Yoo, D.-Y., & Banthia, N. (2016). Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cement and Concrete Composites, 73, 267-280. doi:10.1016/j.cemconcomp.2016.08.001 es_ES
dc.description.references Wittmann, F., & Van Zijl, G. (Eds.). (2011). Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC). doi:10.1007/978-94-007-0338-4 es_ES
dc.description.references Li, V. C. (2003). On Engineered Cementitious Composites (ECC). Journal of Advanced Concrete Technology, 1(3), 215-230. doi:10.3151/jact.1.215 es_ES
dc.description.references Asgari, M. A., Mastali, M., Dalvand, A., & Abdollahnejad, Z. (2017). Development of deflection hardening cementitious composites using glass fibres for flexural repairing/strengthening concrete beams: experimental and numerical studies. European Journal of Environmental and Civil Engineering, 23(8), 916-944. doi:10.1080/19648189.2017.1327888 es_ES
dc.description.references Ravindrarajah, R. S., & Swamy, R. N. (1989). Load effects on fracture of concrete. Materials and Structures, 22(1), 15-22. doi:10.1007/bf02472690 es_ES
dc.description.references Bascoul, A. (1996). State of the art report—Part 2: Mechanical micro-cracking of concrete. Materials and Structures, 29(2), 67-78. doi:10.1007/bf02486196 es_ES
dc.description.references Damgaard Jensen, A., & Chatterji, S. (1996). State of the art report on micro-cracking and lifetime of concrete—Part 1. Materials and Structures, 29(1), 3-8. doi:10.1007/bf02486001 es_ES
dc.description.references Berrocal, C. G., Löfgren, I., Lundgren, K., Görander, N., & Halldén, C. (2016). Characterisation of bending cracks in R/FRC using image analysis. Cement and Concrete Research, 90, 104-116. doi:10.1016/j.cemconres.2016.09.016 es_ES
dc.description.references Correia, M. J., Pereira, E. V., Salta, M. M., & Fonseca, I. T. E. (2006). Sensor for oxygen evaluation in concrete. Cement and Concrete Composites, 28(3), 226-232. doi:10.1016/j.cemconcomp.2006.01.006 es_ES
dc.description.references Yoon, I.-S. (2018). Comprehensive Approach to Calculate Oxygen Diffusivity of Cementitious Materials Considering Carbonation. International Journal of Concrete Structures and Materials, 12(1). doi:10.1186/s40069-018-0242-y es_ES
dc.description.references Banthia, N., Zanotti, C., & Sappakittipakorn, M. (2014). Sustainable fiber reinforced concrete for repair applications. Construction and Building Materials, 67, 405-412. doi:10.1016/j.conbuildmat.2013.12.073 es_ES
dc.description.references Berrocal, C. G., Löfgren, I., & Lundgren, K. (2018). The effect of fibres on steel bar corrosion and flexural behaviour of corroded RC beams. Engineering Structures, 163, 409-425. doi:10.1016/j.engstruct.2018.02.068 es_ES
dc.description.references Sisomphon, K., Copuroglu, O., & Koenders, E. A. B. (2012). Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cement and Concrete Composites, 34(4), 566-574. doi:10.1016/j.cemconcomp.2012.01.005 es_ES
dc.description.references Ferrara, L., Krelani, V., & Carsana, M. (2014). A «fracture testing» based approach to assess crack healing of concrete with and without crystalline admixtures. Construction and Building Materials, 68, 535-551. doi:10.1016/j.conbuildmat.2014.07.008 es_ES
dc.description.references Roig-Flores, M., Pirritano, F., Serna, P., & Ferrara, L. (2016). Effect of crystalline admixtures on the self-healing capability of early-age concrete studied by means of permeability and crack closing tests. Construction and Building Materials, 114, 447-457. doi:10.1016/j.conbuildmat.2016.03.196 es_ES
dc.description.references López, J. Á., Serna, P., Navarro-Gregori, J., & Camacho, E. (2014). An inverse analysis method based on deflection to curvature transformation to determine the tensile properties of UHPFRC. Materials and Structures, 48(11), 3703-3718. doi:10.1617/s11527-014-0434-0 es_ES
dc.description.references Lopez, J. A., Serna, P., Camacho, E., Coll, H., & Navarro-Gregori, J. (2014). First Ultra-High-Performance Fibre-Reinforced Concrete Footbridge in Spain: Design and Construction. Structural Engineering International, 24(1), 101-104. doi:10.2749/101686614x13830788505793 es_ES
dc.description.references Negrini, A., Roig-Flores, M., Mezquida-Alcaraz, E. J., Ferrara, L., & Serna, P. (2019). Effect of crack pattern on the self-healing capability in traditional, HPC and UHPFRC concretes measured by water and chloride permeability. MATEC Web of Conferences, 289, 01006. doi:10.1051/matecconf/201928901006 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem