- -

Development of a dynamic energy-partitioning model for enteric methane emissions and milk production in goats using energy balance data from indirect calorimetry studies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of a dynamic energy-partitioning model for enteric methane emissions and milk production in goats using energy balance data from indirect calorimetry studies

Mostrar el registro completo del ítem

Fernández Martínez, CJ.; Hernando, I.; Moreno-Latorre, E.; Loor, J. (2020). Development of a dynamic energy-partitioning model for enteric methane emissions and milk production in goats using energy balance data from indirect calorimetry studies. Animal. 14:s382-s395. https://doi.org/10.1017/S1751731120001470

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165970

Ficheros en el ítem

Metadatos del ítem

Título: Development of a dynamic energy-partitioning model for enteric methane emissions and milk production in goats using energy balance data from indirect calorimetry studies
Autor: Fernández Martínez, Carlos Javier Hernando, I. Moreno-Latorre, E. Loor, J.J.
Entidad UPV: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Fecha difusión:
Resumen:
[EN] The main objective of this study was to develop a dynamic energy balance model for dairy goats to describe and quantify energy partitioning between energy used for work (milk) and that lost to the environment. Increasing ...[+]
Palabras clave: Energy transfer , Environment , Mixed diets , Lactation , Goats
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Animal. (issn: 1751-7311 )
DOI: 10.1017/S1751731120001470
Editorial:
Cambridge University Press
Versión del editor: https://doi.org/10.1017/S1751731120001470
Título del congreso: 9th International Workshop on Modelling Nutrient Digestion and Utilization in Farm Animals
Lugar del congreso: Itamambuca, Brazil
Fecha congreso: Septiembre 14-17,2019
Código del Proyecto:
info:eu-repo/grantAgreement/EC//LIFE16 CCM%2FES%2F000088/EU/Climate Change Mitigation trough an innovative goat feed based on agricultural waste recycling/Life LowCarbon Feed/
Agradecimientos:
This study was supported by LOW CARBON FEED Project reference LIFE2016/CCM/ES/000088.
Tipo: Artículo Comunicación en congreso

References

Agricultural and Food Research Council (AFRC) 1997. The nutrition of goats. Nutrition Abstract and Reviews (Series B) 67, 776–861.

Aguilera, J. F., Prieto, C., & FonollÁ, J. (1990). Protein and energy metabolism of lactating Granadina goats. British Journal of Nutrition, 63(2), 165-175. doi:10.1079/bjn19900104

Bannink, A., France, J., Lopez, S., Gerrits, W. J. J., Kebreab, E., Tamminga, S., & Dijkstra, J. (2008). Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Animal Feed Science and Technology, 143(1-4), 3-26. doi:10.1016/j.anifeedsci.2007.05.002 [+]
Agricultural and Food Research Council (AFRC) 1997. The nutrition of goats. Nutrition Abstract and Reviews (Series B) 67, 776–861.

Aguilera, J. F., Prieto, C., & FonollÁ, J. (1990). Protein and energy metabolism of lactating Granadina goats. British Journal of Nutrition, 63(2), 165-175. doi:10.1079/bjn19900104

Bannink, A., France, J., Lopez, S., Gerrits, W. J. J., Kebreab, E., Tamminga, S., & Dijkstra, J. (2008). Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Animal Feed Science and Technology, 143(1-4), 3-26. doi:10.1016/j.anifeedsci.2007.05.002

Bava, L., Rapetti, L., Crovetto, G. M., Tamburini, A., Sandrucci, A., Galassi, G., & Succi, G. (2001). Effects of a Nonforage Diet on Milk Production, Energy, and Nitrogen Metabolism in Dairy Goats throughout Lactation. Journal of Dairy Science, 84(11), 2450-2459. doi:10.3168/jds.s0022-0302(01)74695-4

Beauchemin K, McAllister T and McGinn S 2009. Dietary mitigation of enteric CH4 from cattle. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 4, 035.

Blaxter, K. L., & Clapperton, J. L. (1965). Prediction of the amount of methane produced by ruminants. British Journal of Nutrition, 19(1), 511-522. doi:10.1079/bjn19650046

Brouwer E 1965. Report of sub-committee on constants and factors. In Proceeding of the 3th EAAP Symposium on Energy Metabolism (ed. KL Blaxter ), pp. 441–443. Academic Press, London, UK.

Criscioni, P., Marti, J. V., Pérez-Baena, I., Palomares, J. L., Larsen, T., & Fernández, C. (2016). Replacement of alfalfa hay ( Medicago sativa ) with maralfalfa hay ( Pennisetum sp.) in diets of lactating dairy goats. Animal Feed Science and Technology, 219, 1-12. doi:10.1016/j.anifeedsci.2016.05.020

Ellis, J. L., Kebreab, E., Odongo, N. E., McBride, B. W., Okine, E. K., & France, J. (2007). Prediction of Methane Production from Dairy and Beef Cattle. Journal of Dairy Science, 90(7), 3456-3466. doi:10.3168/jds.2006-675

Statistical data base Food and Agriculture Organization (FAOSTAT) 2018. FAO Statistical data base Food and Agriculture Organization of the United Nations, Rome, Italy. Retrieved on 25 June 2018 from http://faostat.fao.org/

FERNÁNDEZ, C., LÓPEZ, M. C., & LACHICA, M. (2015). Low-cost mobile open-circuit hood system for measuring gas exchange in small ruminants: from manual to automatic recording. The Journal of Agricultural Science, 153(7), 1302-1309. doi:10.1017/s0021859615000416

Fernández, C., Martí, J. V., Pérez-Baena, I., Palomares, J. L., Ibáñez, C., & Segarra, J. V. (2018). Effect of lemon leaves on energy and C–N balances, methane emission, and milk performance in Murciano-Granadina dairy goats. Journal of Animal Science, 96(4), 1508-1518. doi:10.1093/jas/sky028

Fernández, C. (2018). Dynamic model development of enteric methane emission from goats based on energy balance measured in indirect open circuit respiration calorimeter. Global Ecology and Conservation, 15, e00439. doi:10.1016/j.gecco.2018.e00439

Fernández, C., Pérez-Baena, I., Marti, J. V., Palomares, J. L., Jorro-Ripoll, J., & Segarra, J. V. (2019). Use of orange leaves as a replacement for alfalfa in energy and nitrogen partitioning, methane emissions and milk performance of murciano-granadina goats. Animal Feed Science and Technology, 247, 103-111. doi:10.1016/j.anifeedsci.2018.11.008

Fernández, C., Gomis-Tena, J., Hernández, A., & Saiz, J. (2019). An Open-Circuit Indirect Calorimetry Head Hood System for Measuring Methane Emission and Energy Metabolism in Small Ruminants. Animals, 9(6), 380. doi:10.3390/ani9060380

Grainger, C., & Beauchemin, K. A. (2011). Can enteric methane emissions from ruminants be lowered without lowering their production? Animal Feed Science and Technology, 166-167, 308-320. doi:10.1016/j.anifeedsci.2011.04.021

Howarth, R. (2015). Methane emissions and climatic warming risk from hydraulic fracturing and shale gas development: implications for policy. Energy and Emission Control Technologies, 45. doi:10.2147/eect.s61539

Hristov, A. N., Kebreab, E., Niu, M., Oh, J., Bannink, A., Bayat, A. R., … Yu, Z. (2018). Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. Journal of Dairy Science, 101(7), 6655-6674. doi:10.3168/jds.2017-13536

Ibáñez, C., López, M. C., Criscioni, P., & Fernández, C. (2015). Effect of replacing dietary corn with beet pulp on energy partitioning, substrate oxidation and methane production in lactating dairy goats. Animal Production Science, 55(1), 56. doi:10.1071/an13119

Institute Nationale Recherche Agronomique (INRA) 2017. Feeding system for ruminants. Wageningen Academic Publishers, Wageningen, the Netherlands.

Jørgensen, S. E. (2015). New method to calculate the work energy of information and organisms. Ecological Modelling, 295, 18-20. doi:10.1016/j.ecolmodel.2014.09.001

Kebreab, E., Johnson, K. A., Archibeque, S. L., Pape, D., & Wirth, T. (2008). Model for estimating enteric methane emissions from United States dairy and feedlot cattle1. Journal of Animal Science, 86(10), 2738-2748. doi:10.2527/jas.2008-0960

Knapp, J. R., Laur, G. L., Vadas, P. A., Weiss, W. P., & Tricarico, J. M. (2014). Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97(6), 3231-3261. doi:10.3168/jds.2013-7234

Lin, L. I.-K. (1989). A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics, 45(1), 255. doi:10.2307/2532051

López, M. C., Estellés, F., Moya, V. J., & Fernández, C. (2014). Use of dry citrus pulp or soybean hulls as a replacement for corn grain in energy and nitrogen partitioning, methane emissions, and milk performance in lactating Murciano-Granadina goats. Journal of Dairy Science, 97(12), 7821-7832. doi:10.3168/jds.2014-8424

López, M. C., & Fernández, C. (2013). Energy partitioning and substrate oxidation by Murciano-Granadina goats during mid lactation fed soy hulls and corn gluten feed blend as a replacement for corn grain. Journal of Dairy Science, 96(7), 4542-4552. doi:10.3168/jds.2012-6473

Martí JV, Pérez-Baena I and Fernández C 2012. Replacement of barley grain with lemon pulp on energy partitioning in lactating goats. Unpublished.

Merino, P., Ramirez-Fanlo, E., Arriaga, H., del Hierro, O., Artetxe, A., & Viguria, M. (2011). Regional inventory of methane and nitrous oxide emission from ruminant livestock in the Basque Country. Animal Feed Science and Technology, 166-167, 628-640. doi:10.1016/j.anifeedsci.2011.04.081

Mills, J. A. N., Kebreab, E., Yates, C. M., Crompton, L. A., Cammell, S. B., Dhanoa, M. S., … France, J. (2003). Alternative approaches to predicting methane emissions from dairy cows1. Journal of Animal Science, 81(12), 3141-3150. doi:10.2527/2003.81123141x

Moorby, J. M., Fleming, H. R., Theobald, V. J., & Fraser, M. D. (2015). Can live weight be used as a proxy for enteric methane emissions from pasture-fed sheep? Scientific Reports, 5(1). doi:10.1038/srep17915

Niu, M., Kebreab, E., Hristov, A. N., Oh, J., Arndt, C., Bannink, A., … Yu, Z. (2018). Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Global Change Biology, 24(8), 3368-3389. doi:10.1111/gcb.14094

Patra, A. K., & Lalhriatpuii, M. (2016). Development of statistical models for prediction of enteric methane emission from goats using nutrient composition and intake variables. Agriculture, Ecosystems & Environment, 215, 89-99. doi:10.1016/j.agee.2015.09.018

Pérez-Baena I, Martí JV and Fernández C 2012. Effect of replace barley grain with beet pulp in lactating goats diet; energy balance and milk performance. Unpublished.

R Core Team 2016. R: A language and environment for statistical computing. Version 1.1.447. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/

Ramin, M., & Huhtanen, P. (2013). Development of equations for predicting methane emissions from ruminants. Journal of Dairy Science, 96(4), 2476-2493. doi:10.3168/jds.2012-6095

Tovar-Luna, I., Puchala, R., Sahlu, T., Freetly, H. C., & Goetsch, A. L. (2010). Effects of stage of lactation and dietary concentrate level on energy utilization by Alpine dairy goats. Journal of Dairy Science, 93(10), 4818-4828. doi:10.3168/jds.2010-3315

United Nations Framework Convention on Climate Change 2015. UN Climate Change Newsroom. Historic Paris agreement on climate change. 195 nations set path to keep temperature rise well below 2 degrees Celsius. Retrieved on 1 July 2018 from http://newsroom.unfccc.int/unfccc-newsroom/finale-cop21/

Yan, T., Porter, M. G., & Mayne, C. S. (2009). Prediction of methane emission from beef cattle using data measured in indirect open-circuit respiration calorimeters. Animal, 3(10), 1455-1462. doi:10.1017/s175173110900473x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem