- -

Development of a dynamic energy-partitioning model for enteric methane emissions and milk production in goats using energy balance data from indirect calorimetry studies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of a dynamic energy-partitioning model for enteric methane emissions and milk production in goats using energy balance data from indirect calorimetry studies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fernández Martínez, Carlos Javier es_ES
dc.contributor.author Hernando, I. es_ES
dc.contributor.author Moreno-Latorre, E. es_ES
dc.contributor.author Loor, J.J. es_ES
dc.date.accessioned 2021-05-05T03:33:21Z
dc.date.available 2021-05-05T03:33:21Z
dc.date.issued 2020-08 es_ES
dc.identifier.issn 1751-7311 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165970
dc.description.abstract [EN] The main objective of this study was to develop a dynamic energy balance model for dairy goats to describe and quantify energy partitioning between energy used for work (milk) and that lost to the environment. Increasing worldwide concerns regarding livestock contribution to global warming underscore the importance of improving energy efficiency utilization in dairy goats by reducing energy losses in feces, urine and methane (CH4). A dynamic model of CH(4)emissions from experimental energy balance data in goats is proposed and parameterized (n= 48 individual animal observations). The model includes DM intake, NDF and lipid content of the diet as explanatory variables for CH(4)emissions. An additional data set (n= 122 individual animals) from eight energy balance experiments was used to evaluate the model. The model adequately (root MS prediction error,RMSPE) represented energy in milk (E-milk;RMSPE = 5.6%), heat production (HP;RMSPE = 4.3%) and CH(4)emissions (E-CH4; RMSPE = 11.9%). Residual analysis indicated that most of the prediction errors were due to unexplained variations with small mean and slope bias. Some mean bias was detected for HP (1.12%) and E-CH4(1.27%) but was around zero for E-milk (0.14%). The slope bias was zero for HP (0.01%) and close to zero for E-milk (0.10%) and E-CH4(0.22%). Random bias was >98% for E-CH4, HP and E-milk, indicating non-systematic errors and that mechanisms in the model are properly represented. As predicted energy increased, the model tended to underpredict E-CH(4)and E-milk. The model is a first step toward a mechanistic description of nutrient use by goats and is useful as a research tool for investigating energy partitioning during lactation. The model described in this study could be used as a tool for making enteric CH(4)emission inventories for goats. es_ES
dc.description.sponsorship This study was supported by LOW CARBON FEED Project reference LIFE2016/CCM/ES/000088. es_ES
dc.language Inglés es_ES
dc.publisher Cambridge University Press es_ES
dc.relation.ispartof Animal es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Energy transfer es_ES
dc.subject Environment es_ES
dc.subject Mixed diets es_ES
dc.subject Lactation es_ES
dc.subject Goats es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Development of a dynamic energy-partitioning model for enteric methane emissions and milk production in goats using energy balance data from indirect calorimetry studies es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1017/S1751731120001470 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//LIFE16 CCM%2FES%2F000088/EU/Climate Change Mitigation trough an innovative goat feed based on agricultural waste recycling/Life LowCarbon Feed/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Fernández Martínez, CJ.; Hernando, I.; Moreno-Latorre, E.; Loor, J. (2020). Development of a dynamic energy-partitioning model for enteric methane emissions and milk production in goats using energy balance data from indirect calorimetry studies. Animal. 14:s382-s395. https://doi.org/10.1017/S1751731120001470 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 9th International Workshop on Modelling Nutrient Digestion and Utilization in Farm Animals es_ES
dc.relation.conferencedate Septiembre 14-17,2019 es_ES
dc.relation.conferenceplace Itamambuca, Brazil es_ES
dc.relation.publisherversion https://doi.org/10.1017/S1751731120001470 es_ES
dc.description.upvformatpinicio s382 es_ES
dc.description.upvformatpfin s395 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.identifier.pmid 32576331 es_ES
dc.relation.pasarela S\430221 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Agricultural and Food Research Council (AFRC) 1997. The nutrition of goats. Nutrition Abstract and Reviews (Series B) 67, 776–861. es_ES
dc.description.references Aguilera, J. F., Prieto, C., & FonollÁ, J. (1990). Protein and energy metabolism of lactating Granadina goats. British Journal of Nutrition, 63(2), 165-175. doi:10.1079/bjn19900104 es_ES
dc.description.references Bannink, A., France, J., Lopez, S., Gerrits, W. J. J., Kebreab, E., Tamminga, S., & Dijkstra, J. (2008). Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Animal Feed Science and Technology, 143(1-4), 3-26. doi:10.1016/j.anifeedsci.2007.05.002 es_ES
dc.description.references Bava, L., Rapetti, L., Crovetto, G. M., Tamburini, A., Sandrucci, A., Galassi, G., & Succi, G. (2001). Effects of a Nonforage Diet on Milk Production, Energy, and Nitrogen Metabolism in Dairy Goats throughout Lactation. Journal of Dairy Science, 84(11), 2450-2459. doi:10.3168/jds.s0022-0302(01)74695-4 es_ES
dc.description.references Beauchemin K, McAllister T and McGinn S 2009. Dietary mitigation of enteric CH4 from cattle. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 4, 035. es_ES
dc.description.references Blaxter, K. L., & Clapperton, J. L. (1965). Prediction of the amount of methane produced by ruminants. British Journal of Nutrition, 19(1), 511-522. doi:10.1079/bjn19650046 es_ES
dc.description.references Brouwer E 1965. Report of sub-committee on constants and factors. In Proceeding of the 3th EAAP Symposium on Energy Metabolism (ed. KL Blaxter ), pp. 441–443. Academic Press, London, UK. es_ES
dc.description.references Criscioni, P., Marti, J. V., Pérez-Baena, I., Palomares, J. L., Larsen, T., & Fernández, C. (2016). Replacement of alfalfa hay ( Medicago sativa ) with maralfalfa hay ( Pennisetum sp.) in diets of lactating dairy goats. Animal Feed Science and Technology, 219, 1-12. doi:10.1016/j.anifeedsci.2016.05.020 es_ES
dc.description.references Ellis, J. L., Kebreab, E., Odongo, N. E., McBride, B. W., Okine, E. K., & France, J. (2007). Prediction of Methane Production from Dairy and Beef Cattle. Journal of Dairy Science, 90(7), 3456-3466. doi:10.3168/jds.2006-675 es_ES
dc.description.references Statistical data base Food and Agriculture Organization (FAOSTAT) 2018. FAO Statistical data base Food and Agriculture Organization of the United Nations, Rome, Italy. Retrieved on 25 June 2018 from http://faostat.fao.org/ es_ES
dc.description.references FERNÁNDEZ, C., LÓPEZ, M. C., & LACHICA, M. (2015). Low-cost mobile open-circuit hood system for measuring gas exchange in small ruminants: from manual to automatic recording. The Journal of Agricultural Science, 153(7), 1302-1309. doi:10.1017/s0021859615000416 es_ES
dc.description.references Fernández, C., Martí, J. V., Pérez-Baena, I., Palomares, J. L., Ibáñez, C., & Segarra, J. V. (2018). Effect of lemon leaves on energy and C–N balances, methane emission, and milk performance in Murciano-Granadina dairy goats. Journal of Animal Science, 96(4), 1508-1518. doi:10.1093/jas/sky028 es_ES
dc.description.references Fernández, C. (2018). Dynamic model development of enteric methane emission from goats based on energy balance measured in indirect open circuit respiration calorimeter. Global Ecology and Conservation, 15, e00439. doi:10.1016/j.gecco.2018.e00439 es_ES
dc.description.references Fernández, C., Pérez-Baena, I., Marti, J. V., Palomares, J. L., Jorro-Ripoll, J., & Segarra, J. V. (2019). Use of orange leaves as a replacement for alfalfa in energy and nitrogen partitioning, methane emissions and milk performance of murciano-granadina goats. Animal Feed Science and Technology, 247, 103-111. doi:10.1016/j.anifeedsci.2018.11.008 es_ES
dc.description.references Fernández, C., Gomis-Tena, J., Hernández, A., & Saiz, J. (2019). An Open-Circuit Indirect Calorimetry Head Hood System for Measuring Methane Emission and Energy Metabolism in Small Ruminants. Animals, 9(6), 380. doi:10.3390/ani9060380 es_ES
dc.description.references Grainger, C., & Beauchemin, K. A. (2011). Can enteric methane emissions from ruminants be lowered without lowering their production? Animal Feed Science and Technology, 166-167, 308-320. doi:10.1016/j.anifeedsci.2011.04.021 es_ES
dc.description.references Howarth, R. (2015). Methane emissions and climatic warming risk from hydraulic fracturing and shale gas development: implications for policy. Energy and Emission Control Technologies, 45. doi:10.2147/eect.s61539 es_ES
dc.description.references Hristov, A. N., Kebreab, E., Niu, M., Oh, J., Bannink, A., Bayat, A. R., … Yu, Z. (2018). Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. Journal of Dairy Science, 101(7), 6655-6674. doi:10.3168/jds.2017-13536 es_ES
dc.description.references Ibáñez, C., López, M. C., Criscioni, P., & Fernández, C. (2015). Effect of replacing dietary corn with beet pulp on energy partitioning, substrate oxidation and methane production in lactating dairy goats. Animal Production Science, 55(1), 56. doi:10.1071/an13119 es_ES
dc.description.references Institute Nationale Recherche Agronomique (INRA) 2017. Feeding system for ruminants. Wageningen Academic Publishers, Wageningen, the Netherlands. es_ES
dc.description.references Jørgensen, S. E. (2015). New method to calculate the work energy of information and organisms. Ecological Modelling, 295, 18-20. doi:10.1016/j.ecolmodel.2014.09.001 es_ES
dc.description.references Kebreab, E., Johnson, K. A., Archibeque, S. L., Pape, D., & Wirth, T. (2008). Model for estimating enteric methane emissions from United States dairy and feedlot cattle1. Journal of Animal Science, 86(10), 2738-2748. doi:10.2527/jas.2008-0960 es_ES
dc.description.references Knapp, J. R., Laur, G. L., Vadas, P. A., Weiss, W. P., & Tricarico, J. M. (2014). Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97(6), 3231-3261. doi:10.3168/jds.2013-7234 es_ES
dc.description.references Lin, L. I.-K. (1989). A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics, 45(1), 255. doi:10.2307/2532051 es_ES
dc.description.references López, M. C., Estellés, F., Moya, V. J., & Fernández, C. (2014). Use of dry citrus pulp or soybean hulls as a replacement for corn grain in energy and nitrogen partitioning, methane emissions, and milk performance in lactating Murciano-Granadina goats. Journal of Dairy Science, 97(12), 7821-7832. doi:10.3168/jds.2014-8424 es_ES
dc.description.references López, M. C., & Fernández, C. (2013). Energy partitioning and substrate oxidation by Murciano-Granadina goats during mid lactation fed soy hulls and corn gluten feed blend as a replacement for corn grain. Journal of Dairy Science, 96(7), 4542-4552. doi:10.3168/jds.2012-6473 es_ES
dc.description.references Martí JV, Pérez-Baena I and Fernández C 2012. Replacement of barley grain with lemon pulp on energy partitioning in lactating goats. Unpublished. es_ES
dc.description.references Merino, P., Ramirez-Fanlo, E., Arriaga, H., del Hierro, O., Artetxe, A., & Viguria, M. (2011). Regional inventory of methane and nitrous oxide emission from ruminant livestock in the Basque Country. Animal Feed Science and Technology, 166-167, 628-640. doi:10.1016/j.anifeedsci.2011.04.081 es_ES
dc.description.references Mills, J. A. N., Kebreab, E., Yates, C. M., Crompton, L. A., Cammell, S. B., Dhanoa, M. S., … France, J. (2003). Alternative approaches to predicting methane emissions from dairy cows1. Journal of Animal Science, 81(12), 3141-3150. doi:10.2527/2003.81123141x es_ES
dc.description.references Moorby, J. M., Fleming, H. R., Theobald, V. J., & Fraser, M. D. (2015). Can live weight be used as a proxy for enteric methane emissions from pasture-fed sheep? Scientific Reports, 5(1). doi:10.1038/srep17915 es_ES
dc.description.references Niu, M., Kebreab, E., Hristov, A. N., Oh, J., Arndt, C., Bannink, A., … Yu, Z. (2018). Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Global Change Biology, 24(8), 3368-3389. doi:10.1111/gcb.14094 es_ES
dc.description.references Patra, A. K., & Lalhriatpuii, M. (2016). Development of statistical models for prediction of enteric methane emission from goats using nutrient composition and intake variables. Agriculture, Ecosystems & Environment, 215, 89-99. doi:10.1016/j.agee.2015.09.018 es_ES
dc.description.references Pérez-Baena I, Martí JV and Fernández C 2012. Effect of replace barley grain with beet pulp in lactating goats diet; energy balance and milk performance. Unpublished. es_ES
dc.description.references R Core Team 2016. R: A language and environment for statistical computing. Version 1.1.447. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/ es_ES
dc.description.references Ramin, M., & Huhtanen, P. (2013). Development of equations for predicting methane emissions from ruminants. Journal of Dairy Science, 96(4), 2476-2493. doi:10.3168/jds.2012-6095 es_ES
dc.description.references Tovar-Luna, I., Puchala, R., Sahlu, T., Freetly, H. C., & Goetsch, A. L. (2010). Effects of stage of lactation and dietary concentrate level on energy utilization by Alpine dairy goats. Journal of Dairy Science, 93(10), 4818-4828. doi:10.3168/jds.2010-3315 es_ES
dc.description.references United Nations Framework Convention on Climate Change 2015. UN Climate Change Newsroom. Historic Paris agreement on climate change. 195 nations set path to keep temperature rise well below 2 degrees Celsius. Retrieved on 1 July 2018 from http://newsroom.unfccc.int/unfccc-newsroom/finale-cop21/ es_ES
dc.description.references Yan, T., Porter, M. G., & Mayne, C. S. (2009). Prediction of methane emission from beef cattle using data measured in indirect open-circuit respiration calorimeters. Animal, 3(10), 1455-1462. doi:10.1017/s175173110900473x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem