- -

A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data

Show full item record

Crespo-Peremarch, P.; Fournier, RA.; Nguyen, V.; Van Lier, OR.; Ruiz Fernández, LÁ. (2020). A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data. Forest Ecology and Management. 473:1-15. https://doi.org/10.1016/j.foreco.2020.118268

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166015

Files in this item

Item Metadata

Title: A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data
Author: Crespo-Peremarch, Pablo Fournier, Richard A. Nguyen, Van-Tho van Lier, Olivier R. Ruiz Fernández, Luis Ángel
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria
Issued date:
Embargo end date: 2022-06-12
Abstract:
[EN] Laser scanning has the potential to accurately detect the vertical distribution of forest vegetative components. However, limitations are present and vary according to the system's platform (i.e., terrestrial or ...[+]
Subjects: Lidar , Understory vegetation , Occlusion , Boreal forest , Mediterranean forest , Gini index
Copyrigths: Embargado
Source:
Forest Ecology and Management. (issn: 0378-1127 )
DOI: 10.1016/j.foreco.2020.118268
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.foreco.2020.118268
Project ID:
NSERC/CRDPJ-462973-14
AGENCIA ESTATAL DE INVESTIGACION/CGL2016-80705-R
Thanks:
This research was mainly developed in the Centre d'Applications et de Recherche en TELedetection of Universite de Sherbrooke, Canada. The authors are thankful for the financial support provided by the Spanish Ministerio ...[+]
Type: Artículo

References

Almeida, D. R. A., Stark, S. C., Chazdon, R., Nelson, B. W., Cesar, R. G., Meli, P., … Brancalion, P. H. S. (2019). The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration. Forest Ecology and Management, 438, 34-43. doi:10.1016/j.foreco.2019.02.002

Anderson, K., Hancock, S., Disney, M., & Gaston, K. J. (2015). Is waveform worth it? A comparison of Li DAR approaches for vegetation and landscape characterization. Remote Sensing in Ecology and Conservation, 2(1), 5-15. doi:10.1002/rse2.8

Béland, M., Widlowski, J.-L., & Fournier, R. A. (2014). A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR. Environmental Modelling & Software, 51, 184-189. doi:10.1016/j.envsoft.2013.09.034 [+]
Almeida, D. R. A., Stark, S. C., Chazdon, R., Nelson, B. W., Cesar, R. G., Meli, P., … Brancalion, P. H. S. (2019). The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration. Forest Ecology and Management, 438, 34-43. doi:10.1016/j.foreco.2019.02.002

Anderson, K., Hancock, S., Disney, M., & Gaston, K. J. (2015). Is waveform worth it? A comparison of Li DAR approaches for vegetation and landscape characterization. Remote Sensing in Ecology and Conservation, 2(1), 5-15. doi:10.1002/rse2.8

Béland, M., Widlowski, J.-L., & Fournier, R. A. (2014). A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR. Environmental Modelling & Software, 51, 184-189. doi:10.1016/j.envsoft.2013.09.034

Bottalico, F., Chirici, G., Giannini, R., Mele, S., Mura, M., Puxeddu, M., … Travaglini, D. (2017). Modeling Mediterranean forest structure using airborne laser scanning data. International Journal of Applied Earth Observation and Geoinformation, 57, 145-153. doi:10.1016/j.jag.2016.12.013

Cao, L., Coops, N., Hermosilla, T., Dai, J., 2014a. Estimation of forest structural variables using small-footprint full-waveform LiDAR in a subtropical forest, China. 3rd Int. Work. Earth Obs. Remote Sens. Appl. EORSA 2014 - Proc. 443–447. https://doi.org/10.1109/EORSA.2014.6927930.

Cao, L., Coops, N., Hermosilla, T., Innes, J., Dai, J., & She, G. (2014). Using Small-Footprint Discrete and Full-Waveform Airborne LiDAR Metrics to Estimate Total Biomass and Biomass Components in Subtropical Forests. Remote Sensing, 6(8), 7110-7135. doi:10.3390/rs6087110

Cao, L., Coops, N. C., Innes, J. L., Dai, J., Ruan, H., & She, G. (2016). Tree species classification in subtropical forests using small-footprint full-waveform LiDAR data. International Journal of Applied Earth Observation and Geoinformation, 49, 39-51. doi:10.1016/j.jag.2016.01.007

Chasmer, L., Hopkinson, C., & Treitz, P. (2006). Investigating laser pulse penetration through a conifer canopy by integrating airborne and terrestrial lidar. Canadian Journal of Remote Sensing, 32(2), 116-125. doi:10.5589/m06-011

Chen, Y., Zhu, X., Yebra, M., Harris, S., & Tapper, N. (2016). Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR. Journal of Applied Remote Sensing, 10(4), 046025. doi:10.1117/1.jrs.10.046025

Crespo-Peremarch, P., Ruiz, L. A., & Balaguer-Beser, A. (2016). A comparative study of regression methods to predict forest structure and canopy fuel variables from LiDAR full-waveform data. Revista de Teledetección, (45), 27. doi:10.4995/raet.2016.4066

Crespo-Peremarch, P., Ruiz, L.Á., 2017. Análisis comparativo del potencial del ALS y TLS en la caracterización estructural de la masa forestal basado en voxelización. Actas XVII Congr. la Asoc. Española Teledetección. Nuevas plataformas y sensores teledetección 131–135.

Crespo-Peremarch, P., Ruiz, L. Á., Balaguer-Beser, Á., & Estornell, J. (2018). Analyzing the role of pulse density and voxelization parameters on full-waveform LiDAR-derived metrics. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 453-464. doi:10.1016/j.isprsjprs.2018.10.012

Crespo-Peremarch, P., Tompalski, P., Coops, N. C., & Ruiz, L. Á. (2018). Characterizing understory vegetation in Mediterranean forests using full-waveform airborne laser scanning data. Remote Sensing of Environment, 217, 400-413. doi:10.1016/j.rse.2018.08.033

Crespo-Peremarch, P., & Ruiz, L. A. (2020). A Full-Waveform Airborne Laser Scanning Metric Extraction Tool for Forest Structure Modelling. Do Scan Angle and Radiometric Correction Matter? Remote Sensing, 12(2), 292. doi:10.3390/rs12020292

Giannetti, F., Puletti, N., Quatrini, V., Travaglini, D., Bottalico, F., Corona, P., & Chirici, G. (2018). Integrating terrestrial and airborne laser scanning for the assessment of single-tree attributes in Mediterranean forest stands. European Journal of Remote Sensing, 51(1), 795-807. doi:10.1080/22797254.2018.1482733

Gini, C., 1912. Variabilità e mutabilità.

González-Ferreiro, E., Diéguez-Aranda, U., & Miranda, D. (2012). Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities. Forestry: An International Journal of Forest Research, 85(2), 281-292. doi:10.1093/forestry/cps002

Student. (1908). The Probable Error of a Mean. Biometrika, 6(1), 1. doi:10.2307/2331554

Greaves, H. E., Vierling, L. A., Eitel, J. U. H., Boelman, N. T., Magney, T. S., Prager, C. M., & Griffin, K. L. (2015). Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR. Remote Sensing of Environment, 164, 26-35. doi:10.1016/j.rse.2015.02.023

Hancock, S., Anderson, K., Disney, M., & Gaston, K. J. (2017). Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: Calibration and validation with voxelised terrestrial lidar. Remote Sensing of Environment, 188, 37-50. doi:10.1016/j.rse.2016.10.041

Heinzel, J., & Koch, B. (2011). Exploring full-waveform LiDAR parameters for tree species classification. International Journal of Applied Earth Observation and Geoinformation, 13(1), 152-160. doi:10.1016/j.jag.2010.09.010

Hermosilla, T., Ruiz, L. A., Kazakova, A. N., Coops, N. C., & Moskal, L. M. (2014). Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data. International Journal of Wildland Fire, 23(2), 224. doi:10.1071/wf13086

Hermosilla, T., Coops, N. C., Ruiz, L. A., & Moskal, L. M. (2014). Deriving pseudo-vertical waveforms from small-footprint full-waveform LiDAR data. Remote Sensing Letters, 5(4), 332-341. doi:10.1080/2150704x.2014.903350

Hilker, T., van Leeuwen, M., Coops, N. C., Wulder, M. A., Newnham, G. J., Jupp, D. L. B., & Culvenor, D. S. (2010). Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand. Trees, 24(5), 819-832. doi:10.1007/s00468-010-0452-7

Hill, R. A., & Broughton, R. K. (2009). Mapping the understorey of deciduous woodland from leaf-on and leaf-off airborne LiDAR data: A case study in lowland Britain. ISPRS Journal of Photogrammetry and Remote Sensing, 64(2), 223-233. doi:10.1016/j.isprsjprs.2008.12.004

Isenburg, M., 2017. LAStools.

Jung, S.-E., Kwak, D.-A., Park, T., Lee, W.-K., & Yoo, S. (2011). Estimating Crown Variables of Individual Trees Using Airborne and Terrestrial Laser Scanners. Remote Sensing, 3(11), 2346-2363. doi:10.3390/rs3112346

Kankare, V., Vastaranta, M., Holopainen, M., Räty, M., Yu, X., Hyyppä, J., … Viitala, R. (2013). Retrieval of Forest Aboveground Biomass and Stem Volume with Airborne Scanning LiDAR. Remote Sensing, 5(5), 2257-2274. doi:10.3390/rs5052257

Kükenbrink, D., Schneider, F. D., Leiterer, R., Schaepman, M. E., & Morsdorf, F. (2017). Quantification of hidden canopy volume of airborne laser scanning data using a voxel traversal algorithm. Remote Sensing of Environment, 194, 424-436. doi:10.1016/j.rse.2016.10.023

LaRue, E., Wagner, F., Fei, S., Atkins, J., Fahey, R., Gough, C., & Hardiman, B. (2020). Compatibility of Aerial and Terrestrial LiDAR for Quantifying Forest Structural Diversity. Remote Sensing, 12(9), 1407. doi:10.3390/rs12091407

Lefsky, M. A., Harding, D. J., Keller, M., Cohen, W. B., Carabajal, C. C., Del Bom Espirito-Santo, F., … de Oliveira, R. (2005). Estimates of forest canopy height and aboveground biomass using ICESat. Geophysical Research Letters, 32(22), n/a-n/a. doi:10.1029/2005gl023971

Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., … Vastaranta, M. (2016). Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 63-77. doi:10.1016/j.isprsjprs.2016.01.006

Lin, Y., & Herold, M. (2016). Tree species classification based on explicit tree structure feature parameters derived from static terrestrial laser scanning data. Agricultural and Forest Meteorology, 216, 105-114. doi:10.1016/j.agrformet.2015.10.008

Lindberg, E., Olofsson, K., Holmgren, J., & Olsson, H. (2012). Estimation of 3D vegetation structure from waveform and discrete return airborne laser scanning data. Remote Sensing of Environment, 118, 151-161. doi:10.1016/j.rse.2011.11.015

Liu, L., Pang, Y., Li, Z., Si, L., & Liao, S. (2017). Combining Airborne and Terrestrial Laser Scanning Technologies to Measure Forest Understorey Volume. Forests, 8(4), 111. doi:10.3390/f8040111

Luther, J. E., Fournier, R. A., van Lier, O. R., & Bujold, M. (2019). Extending ALS-Based Mapping of Forest Attributes with Medium Resolution Satellite and Environmental Data. Remote Sensing, 11(9), 1092. doi:10.3390/rs11091092

Maltamo, M., Næsset, E., Vauhkonen, J., 2014. Foresty Applications of Airborne Laser Scanning. Springer, Netherlands.

Olivier, M.-D., Robert, S., & Fournier, R. A. (2016). Response of sugar maple (Acer saccharum, Marsh.) tree crown structure to competition in pure versus mixed stands. Forest Ecology and Management, 374, 20-32. doi:10.1016/j.foreco.2016.04.047

Martinuzzi, S., Vierling, L. A., Gould, W. A., Falkowski, M. J., Evans, J. S., Hudak, A. T., & Vierling, K. T. (2009). Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability. Remote Sensing of Environment, 113(12), 2533-2546. doi:10.1016/j.rse.2009.07.002

McGaughey, R.J., 2014. FUSION/LDV: Software for LiDAR data analysis and visualization, Manual.

Morsdorf, F., Mårell, A., Koetz, B., Cassagne, N., Pimont, F., Rigolot, E., & Allgöwer, B. (2010). Discrimination of vegetation strata in a multi-layered Mediterranean forest ecosystem using height and intensity information derived from airborne laser scanning. Remote Sensing of Environment, 114(7), 1403-1415. doi:10.1016/j.rse.2010.01.023

Nie, S., Wang, C., Zeng, H., Xi, X., & Li, G. (2017). Above-ground biomass estimation using airborne discrete-return and full-waveform LiDAR data in a coniferous forest. Ecological Indicators, 78, 221-228. doi:10.1016/j.ecolind.2017.02.045

Olsoy, P. J., Glenn, N. F., Clark, P. E., & Derryberry, D. R. (2014). Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 88, 166-173. doi:10.1016/j.isprsjprs.2013.12.006

Piboule, A., Krebs, M., Esclatine, L., Hervé, J.-C., 2015. Computree: A collaborative platform for use of terrestrial lidar in dendrometry, in: International IUFRO Conference MeMoWood. Nancy, France.

Pimont, F., Allard, D., Soma, M., & Dupuy, J.-L. (2018). Estimators and confidence intervals for plant area density at voxel scale with T-LiDAR. Remote Sensing of Environment, 215, 343-370. doi:10.1016/j.rse.2018.06.024

QGIS, D.T., 2016. QGIS Geographic Information System.

Ravaglia, Fournier, Bac, Véga, Côté, Piboule, & Rémillard. (2019). Comparison of Three Algorithms to Estimate Tree Stem Diameter from Terrestrial Laser Scanner Data. Forests, 10(7), 599. doi:10.3390/f10070599

Ruiz, L., Hermosilla, T., Mauro, F., & Godino, M. (2014). Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates. Forests, 5(5), 936-951. doi:10.3390/f5050936

Ruiz, L. Á., Recio, J. A., Crespo-Peremarch, P., & Sapena, M. (2016). An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery. Geocarto International, 33(5), 443-457. doi:10.1080/10106049.2016.1265595

Srinivasan, S., Popescu, S., Eriksson, M., Sheridan, R., & Ku, N.-W. (2015). Terrestrial Laser Scanning as an Effective Tool to Retrieve Tree Level Height, Crown Width, and Stem Diameter. Remote Sensing, 7(2), 1877-1896. doi:10.3390/rs70201877

Team, R.C., 2013. R: A language and environment for statistical computing.

Torralba, J., Crespo-Peremarch, P., & Ruiz, L. A. (2018). Evaluación del uso de LiDAR discreto, full-waveform y TLS en la clasificación por composición de especies en bosques mediterráneos. Revista de Teledetección, (52), 27. doi:10.4995/raet.2018.11106

Treitz, P., Lim, K., Woods, M., Pitt, D., Nesbitt, D., & Etheridge, D. (2012). LiDAR Sampling Density for Forest Resource Inventories in Ontario, Canada. Remote Sensing, 4(4), 830-848. doi:10.3390/rs4040830

Valbuena, R., Packalén, P., Martı´n-Fernández, S., & Maltamo, M. (2012). Diversity and equitability ordering profiles applied to study forest structure. Forest Ecology and Management, 276, 185-195. doi:10.1016/j.foreco.2012.03.036

Valbuena, R., Packalen, P., Mehtätalo, L., García-Abril, A., & Maltamo, M. (2013). Characterizing forest structural types and shelterwood dynamics from Lorenz-based indicators predicted by airborne laser scanning. Canadian Journal of Forest Research, 43(11), 1063-1074. doi:10.1139/cjfr-2013-0147

Valbuena, R., Vauhkonen, J., Packalen, P., Pitkänen, J., & Maltamo, M. (2014). Comparison of airborne laser scanning methods for estimating forest structure indicators based on Lorenz curves. ISPRS Journal of Photogrammetry and Remote Sensing, 95, 23-33. doi:10.1016/j.isprsjprs.2014.06.002

Valbuena, R., Eerikäinen, K., Packalen, P., & Maltamo, M. (2016). Gini coefficient predictions from airborne lidar remote sensing display the effect of management intensity on forest structure. Ecological Indicators, 60, 574-585. doi:10.1016/j.ecolind.2015.08.001

Valbuena, R., Maltamo, M., Mehtätalo, L., & Packalen, P. (2017). Key structural features of Boreal forests may be detected directly using L-moments from airborne lidar data. Remote Sensing of Environment, 194, 437-446. doi:10.1016/j.rse.2016.10.024

van Rossum, G., 1995. Python tutorial, technical report CS-R9526. Amsterdam, The Netherlands.

Vaughn, N. R., Moskal, L. M., & Turnblom, E. C. (2012). Tree Species Detection Accuracies Using Discrete Point Lidar and Airborne Waveform Lidar. Remote Sensing, 4(2), 377-403. doi:10.3390/rs4020377

Vierling, L. A., Xu, Y., Eitel, J. U. H., & Oldow, J. S. (2013). Shrub characterization using terrestrial laser scanning and implications for airborne LiDAR assessment. Canadian Journal of Remote Sensing, 38(6), 709-722. doi:10.5589/m12-057

Watt, P. J., & Donoghue, D. N. M. (2005). Measuring forest structure with terrestrial laser scanning. International Journal of Remote Sensing, 26(7), 1437-1446. doi:10.1080/01431160512331337961

Wing, B. M., Ritchie, M. W., Boston, K., Cohen, W. B., Gitelman, A., & Olsen, M. J. (2012). Prediction of understory vegetation cover with airborne lidar in an interior ponderosa pine forest. Remote Sensing of Environment, 124, 730-741. doi:10.1016/j.rse.2012.06.024

Zeileis, A., Kleiber, C., Zeileis, M.A., 2009. Package “ineq.”.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record