- -

A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data

Show simple item record

Files in this item

dc.contributor.author Crespo-Peremarch, Pablo es_ES
dc.contributor.author Fournier, Richard A. es_ES
dc.contributor.author Nguyen, Van-Tho es_ES
dc.contributor.author van Lier, Olivier R. es_ES
dc.contributor.author Ruiz Fernández, Luis Ángel es_ES
dc.date.accessioned 2021-05-06T03:31:15Z
dc.date.available 2021-05-06T03:31:15Z
dc.date.issued 2020-10-01 es_ES
dc.identifier.issn 0378-1127 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166015
dc.description.abstract [EN] Laser scanning has the potential to accurately detect the vertical distribution of forest vegetative components. However, limitations are present and vary according to the system's platform (i.e., terrestrial or airborne) and recording method (i.e., discrete return or full-waveform). Terrestrial configurations detect close objects (i.e., lower vegetation strata) in more detail while airborne configurations detect a more detailed upper strata, with weak backscattered signals from lower strata. Moreover, discrete lidar systems record single or multiple hits from a given pulse at intercepted features in contrast to full-waveform systems, which register the pulse's complete backscattered signal providing complete vertical profiles. In this study, we examine for a boreal and a Mediterranean forest with contrasted conifer canopy densities: (i) the characterization of the vertical distribution and signal occlusion from three laser scanning configurations: full-waveform airborne (ALS(FW)), discrete airborne (ALS(D)), and discrete terrestrial (TLS); (ii) the comparison in the detection of understory vegetation by ALS(FW) and ALS(D) using TLS as reference; and (iii) the use of a methodological procedure based on the Gini index concept to group understory vegetation in density classes from both ALS(FW) and ALS(D) configurations. Our results demonstrate, firstly, that signal occlusion can be quantified by the rate of pulse reduction independently for data from all three laser scanning configurations. The ALS(D) configuration was the most affected by signal occlusion, leading to weak signal returns at the lower strata (z < 4 m) where the rate of pulse reduction was highest as a result of dense canopy covers. Secondly, we demonstrated the capabilities for both airborne laser scanning configurations to detect understory vegetation, albeit significantly more accurately with ALS(FW). Lastly, we demonstrated the use of the Gini index as an indicator to determine understory vegetation density classes, particularly for ALS(FW) data in dense canopy cover. We proceed to explain the limitations in detecting the vertical distribution from different configurations, and indicate that understory vegetation density classes may be successfully assigned with ALS(FW) in contrasted conifer canopy densities. es_ES
dc.description.sponsorship This research was mainly developed in the Centre d'Applications et de Recherche en TELedetection of Universite de Sherbrooke, Canada. The authors are thankful for the financial support provided by the Spanish Ministerio de Economia y Competitividad and FEDER, in the framework of the project CGL2016-80705-R, and also the Canadian research project Assessment of Wood Attributes using Remote Sensing (AWARE) (NSERC CRDPJ-462973-14, grantee N.C. Coops, UBC). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation NSERC/CRDPJ-462973-14 es_ES
dc.relation AGENCIA ESTATAL DE INVESTIGACION/CGL2016-80705-R es_ES
dc.relation.ispartof Forest Ecology and Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Lidar es_ES
dc.subject Understory vegetation es_ES
dc.subject Occlusion es_ES
dc.subject Boreal forest es_ES
dc.subject Mediterranean forest es_ES
dc.subject Gini index es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.foreco.2020.118268 es_ES
dc.rights.accessRights Embargado es_ES
dc.date.embargoEndDate 2022-06-12 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Crespo-Peremarch, P.; Fournier, RA.; Nguyen, V.; Van Lier, OR.; Ruiz Fernández, LÁ. (2020). A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data. Forest Ecology and Management. 473:1-15. https://doi.org/10.1016/j.foreco.2020.118268 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.foreco.2020.118268 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 473 es_ES
dc.relation.pasarela S\413939 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Natural Sciences and Engineering Research Council of Canada es_ES
dc.description.references Almeida, D. R. A., Stark, S. C., Chazdon, R., Nelson, B. W., Cesar, R. G., Meli, P., … Brancalion, P. H. S. (2019). The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration. Forest Ecology and Management, 438, 34-43. doi:10.1016/j.foreco.2019.02.002 es_ES
dc.description.references Anderson, K., Hancock, S., Disney, M., & Gaston, K. J. (2015). Is waveform worth it? A comparison of Li DAR approaches for vegetation and landscape characterization. Remote Sensing in Ecology and Conservation, 2(1), 5-15. doi:10.1002/rse2.8 es_ES
dc.description.references Béland, M., Widlowski, J.-L., & Fournier, R. A. (2014). A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR. Environmental Modelling & Software, 51, 184-189. doi:10.1016/j.envsoft.2013.09.034 es_ES
dc.description.references Bottalico, F., Chirici, G., Giannini, R., Mele, S., Mura, M., Puxeddu, M., … Travaglini, D. (2017). Modeling Mediterranean forest structure using airborne laser scanning data. International Journal of Applied Earth Observation and Geoinformation, 57, 145-153. doi:10.1016/j.jag.2016.12.013 es_ES
dc.description.references Cao, L., Coops, N., Hermosilla, T., Dai, J., 2014a. Estimation of forest structural variables using small-footprint full-waveform LiDAR in a subtropical forest, China. 3rd Int. Work. Earth Obs. Remote Sens. Appl. EORSA 2014 - Proc. 443–447. https://doi.org/10.1109/EORSA.2014.6927930. es_ES
dc.description.references Cao, L., Coops, N., Hermosilla, T., Innes, J., Dai, J., & She, G. (2014). Using Small-Footprint Discrete and Full-Waveform Airborne LiDAR Metrics to Estimate Total Biomass and Biomass Components in Subtropical Forests. Remote Sensing, 6(8), 7110-7135. doi:10.3390/rs6087110 es_ES
dc.description.references Cao, L., Coops, N. C., Innes, J. L., Dai, J., Ruan, H., & She, G. (2016). Tree species classification in subtropical forests using small-footprint full-waveform LiDAR data. International Journal of Applied Earth Observation and Geoinformation, 49, 39-51. doi:10.1016/j.jag.2016.01.007 es_ES
dc.description.references Chasmer, L., Hopkinson, C., & Treitz, P. (2006). Investigating laser pulse penetration through a conifer canopy by integrating airborne and terrestrial lidar. Canadian Journal of Remote Sensing, 32(2), 116-125. doi:10.5589/m06-011 es_ES
dc.description.references Chen, Y., Zhu, X., Yebra, M., Harris, S., & Tapper, N. (2016). Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR. Journal of Applied Remote Sensing, 10(4), 046025. doi:10.1117/1.jrs.10.046025 es_ES
dc.description.references Crespo-Peremarch, P., Ruiz, L. A., & Balaguer-Beser, A. (2016). A comparative study of regression methods to predict forest structure and canopy fuel variables from LiDAR full-waveform data. Revista de Teledetección, (45), 27. doi:10.4995/raet.2016.4066 es_ES
dc.description.references Crespo-Peremarch, P., Ruiz, L.Á., 2017. Análisis comparativo del potencial del ALS y TLS en la caracterización estructural de la masa forestal basado en voxelización. Actas XVII Congr. la Asoc. Española Teledetección. Nuevas plataformas y sensores teledetección 131–135. es_ES
dc.description.references Crespo-Peremarch, P., Ruiz, L. Á., Balaguer-Beser, Á., & Estornell, J. (2018). Analyzing the role of pulse density and voxelization parameters on full-waveform LiDAR-derived metrics. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 453-464. doi:10.1016/j.isprsjprs.2018.10.012 es_ES
dc.description.references Crespo-Peremarch, P., Tompalski, P., Coops, N. C., & Ruiz, L. Á. (2018). Characterizing understory vegetation in Mediterranean forests using full-waveform airborne laser scanning data. Remote Sensing of Environment, 217, 400-413. doi:10.1016/j.rse.2018.08.033 es_ES
dc.description.references Crespo-Peremarch, P., & Ruiz, L. A. (2020). A Full-Waveform Airborne Laser Scanning Metric Extraction Tool for Forest Structure Modelling. Do Scan Angle and Radiometric Correction Matter? Remote Sensing, 12(2), 292. doi:10.3390/rs12020292 es_ES
dc.description.references Giannetti, F., Puletti, N., Quatrini, V., Travaglini, D., Bottalico, F., Corona, P., & Chirici, G. (2018). Integrating terrestrial and airborne laser scanning for the assessment of single-tree attributes in Mediterranean forest stands. European Journal of Remote Sensing, 51(1), 795-807. doi:10.1080/22797254.2018.1482733 es_ES
dc.description.references Gini, C., 1912. Variabilità e mutabilità. es_ES
dc.description.references González-Ferreiro, E., Diéguez-Aranda, U., & Miranda, D. (2012). Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities. Forestry: An International Journal of Forest Research, 85(2), 281-292. doi:10.1093/forestry/cps002 es_ES
dc.description.references Student. (1908). The Probable Error of a Mean. Biometrika, 6(1), 1. doi:10.2307/2331554 es_ES
dc.description.references Greaves, H. E., Vierling, L. A., Eitel, J. U. H., Boelman, N. T., Magney, T. S., Prager, C. M., & Griffin, K. L. (2015). Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR. Remote Sensing of Environment, 164, 26-35. doi:10.1016/j.rse.2015.02.023 es_ES
dc.description.references Hancock, S., Anderson, K., Disney, M., & Gaston, K. J. (2017). Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: Calibration and validation with voxelised terrestrial lidar. Remote Sensing of Environment, 188, 37-50. doi:10.1016/j.rse.2016.10.041 es_ES
dc.description.references Heinzel, J., & Koch, B. (2011). Exploring full-waveform LiDAR parameters for tree species classification. International Journal of Applied Earth Observation and Geoinformation, 13(1), 152-160. doi:10.1016/j.jag.2010.09.010 es_ES
dc.description.references Hermosilla, T., Ruiz, L. A., Kazakova, A. N., Coops, N. C., & Moskal, L. M. (2014). Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data. International Journal of Wildland Fire, 23(2), 224. doi:10.1071/wf13086 es_ES
dc.description.references Hermosilla, T., Coops, N. C., Ruiz, L. A., & Moskal, L. M. (2014). Deriving pseudo-vertical waveforms from small-footprint full-waveform LiDAR data. Remote Sensing Letters, 5(4), 332-341. doi:10.1080/2150704x.2014.903350 es_ES
dc.description.references Hilker, T., van Leeuwen, M., Coops, N. C., Wulder, M. A., Newnham, G. J., Jupp, D. L. B., & Culvenor, D. S. (2010). Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand. Trees, 24(5), 819-832. doi:10.1007/s00468-010-0452-7 es_ES
dc.description.references Hill, R. A., & Broughton, R. K. (2009). Mapping the understorey of deciduous woodland from leaf-on and leaf-off airborne LiDAR data: A case study in lowland Britain. ISPRS Journal of Photogrammetry and Remote Sensing, 64(2), 223-233. doi:10.1016/j.isprsjprs.2008.12.004 es_ES
dc.description.references Isenburg, M., 2017. LAStools. es_ES
dc.description.references Jung, S.-E., Kwak, D.-A., Park, T., Lee, W.-K., & Yoo, S. (2011). Estimating Crown Variables of Individual Trees Using Airborne and Terrestrial Laser Scanners. Remote Sensing, 3(11), 2346-2363. doi:10.3390/rs3112346 es_ES
dc.description.references Kankare, V., Vastaranta, M., Holopainen, M., Räty, M., Yu, X., Hyyppä, J., … Viitala, R. (2013). Retrieval of Forest Aboveground Biomass and Stem Volume with Airborne Scanning LiDAR. Remote Sensing, 5(5), 2257-2274. doi:10.3390/rs5052257 es_ES
dc.description.references Kükenbrink, D., Schneider, F. D., Leiterer, R., Schaepman, M. E., & Morsdorf, F. (2017). Quantification of hidden canopy volume of airborne laser scanning data using a voxel traversal algorithm. Remote Sensing of Environment, 194, 424-436. doi:10.1016/j.rse.2016.10.023 es_ES
dc.description.references LaRue, E., Wagner, F., Fei, S., Atkins, J., Fahey, R., Gough, C., & Hardiman, B. (2020). Compatibility of Aerial and Terrestrial LiDAR for Quantifying Forest Structural Diversity. Remote Sensing, 12(9), 1407. doi:10.3390/rs12091407 es_ES
dc.description.references Lefsky, M. A., Harding, D. J., Keller, M., Cohen, W. B., Carabajal, C. C., Del Bom Espirito-Santo, F., … de Oliveira, R. (2005). Estimates of forest canopy height and aboveground biomass using ICESat. Geophysical Research Letters, 32(22), n/a-n/a. doi:10.1029/2005gl023971 es_ES
dc.description.references Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., … Vastaranta, M. (2016). Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 63-77. doi:10.1016/j.isprsjprs.2016.01.006 es_ES
dc.description.references Lin, Y., & Herold, M. (2016). Tree species classification based on explicit tree structure feature parameters derived from static terrestrial laser scanning data. Agricultural and Forest Meteorology, 216, 105-114. doi:10.1016/j.agrformet.2015.10.008 es_ES
dc.description.references Lindberg, E., Olofsson, K., Holmgren, J., & Olsson, H. (2012). Estimation of 3D vegetation structure from waveform and discrete return airborne laser scanning data. Remote Sensing of Environment, 118, 151-161. doi:10.1016/j.rse.2011.11.015 es_ES
dc.description.references Liu, L., Pang, Y., Li, Z., Si, L., & Liao, S. (2017). Combining Airborne and Terrestrial Laser Scanning Technologies to Measure Forest Understorey Volume. Forests, 8(4), 111. doi:10.3390/f8040111 es_ES
dc.description.references Luther, J. E., Fournier, R. A., van Lier, O. R., & Bujold, M. (2019). Extending ALS-Based Mapping of Forest Attributes with Medium Resolution Satellite and Environmental Data. Remote Sensing, 11(9), 1092. doi:10.3390/rs11091092 es_ES
dc.description.references Maltamo, M., Næsset, E., Vauhkonen, J., 2014. Foresty Applications of Airborne Laser Scanning. Springer, Netherlands. es_ES
dc.description.references Olivier, M.-D., Robert, S., & Fournier, R. A. (2016). Response of sugar maple (Acer saccharum, Marsh.) tree crown structure to competition in pure versus mixed stands. Forest Ecology and Management, 374, 20-32. doi:10.1016/j.foreco.2016.04.047 es_ES
dc.description.references Martinuzzi, S., Vierling, L. A., Gould, W. A., Falkowski, M. J., Evans, J. S., Hudak, A. T., & Vierling, K. T. (2009). Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability. Remote Sensing of Environment, 113(12), 2533-2546. doi:10.1016/j.rse.2009.07.002 es_ES
dc.description.references McGaughey, R.J., 2014. FUSION/LDV: Software for LiDAR data analysis and visualization, Manual. es_ES
dc.description.references Morsdorf, F., Mårell, A., Koetz, B., Cassagne, N., Pimont, F., Rigolot, E., & Allgöwer, B. (2010). Discrimination of vegetation strata in a multi-layered Mediterranean forest ecosystem using height and intensity information derived from airborne laser scanning. Remote Sensing of Environment, 114(7), 1403-1415. doi:10.1016/j.rse.2010.01.023 es_ES
dc.description.references Nie, S., Wang, C., Zeng, H., Xi, X., & Li, G. (2017). Above-ground biomass estimation using airborne discrete-return and full-waveform LiDAR data in a coniferous forest. Ecological Indicators, 78, 221-228. doi:10.1016/j.ecolind.2017.02.045 es_ES
dc.description.references Olsoy, P. J., Glenn, N. F., Clark, P. E., & Derryberry, D. R. (2014). Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 88, 166-173. doi:10.1016/j.isprsjprs.2013.12.006 es_ES
dc.description.references Piboule, A., Krebs, M., Esclatine, L., Hervé, J.-C., 2015. Computree: A collaborative platform for use of terrestrial lidar in dendrometry, in: International IUFRO Conference MeMoWood. Nancy, France. es_ES
dc.description.references Pimont, F., Allard, D., Soma, M., & Dupuy, J.-L. (2018). Estimators and confidence intervals for plant area density at voxel scale with T-LiDAR. Remote Sensing of Environment, 215, 343-370. doi:10.1016/j.rse.2018.06.024 es_ES
dc.description.references QGIS, D.T., 2016. QGIS Geographic Information System. es_ES
dc.description.references Ravaglia, Fournier, Bac, Véga, Côté, Piboule, & Rémillard. (2019). Comparison of Three Algorithms to Estimate Tree Stem Diameter from Terrestrial Laser Scanner Data. Forests, 10(7), 599. doi:10.3390/f10070599 es_ES
dc.description.references Ruiz, L., Hermosilla, T., Mauro, F., & Godino, M. (2014). Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates. Forests, 5(5), 936-951. doi:10.3390/f5050936 es_ES
dc.description.references Ruiz, L. Á., Recio, J. A., Crespo-Peremarch, P., & Sapena, M. (2016). An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery. Geocarto International, 33(5), 443-457. doi:10.1080/10106049.2016.1265595 es_ES
dc.description.references Srinivasan, S., Popescu, S., Eriksson, M., Sheridan, R., & Ku, N.-W. (2015). Terrestrial Laser Scanning as an Effective Tool to Retrieve Tree Level Height, Crown Width, and Stem Diameter. Remote Sensing, 7(2), 1877-1896. doi:10.3390/rs70201877 es_ES
dc.description.references Team, R.C., 2013. R: A language and environment for statistical computing. es_ES
dc.description.references Torralba, J., Crespo-Peremarch, P., & Ruiz, L. A. (2018). Evaluación del uso de LiDAR discreto, full-waveform y TLS en la clasificación por composición de especies en bosques mediterráneos. Revista de Teledetección, (52), 27. doi:10.4995/raet.2018.11106 es_ES
dc.description.references Treitz, P., Lim, K., Woods, M., Pitt, D., Nesbitt, D., & Etheridge, D. (2012). LiDAR Sampling Density for Forest Resource Inventories in Ontario, Canada. Remote Sensing, 4(4), 830-848. doi:10.3390/rs4040830 es_ES
dc.description.references Valbuena, R., Packalén, P., Martı´n-Fernández, S., & Maltamo, M. (2012). Diversity and equitability ordering profiles applied to study forest structure. Forest Ecology and Management, 276, 185-195. doi:10.1016/j.foreco.2012.03.036 es_ES
dc.description.references Valbuena, R., Packalen, P., Mehtätalo, L., García-Abril, A., & Maltamo, M. (2013). Characterizing forest structural types and shelterwood dynamics from Lorenz-based indicators predicted by airborne laser scanning. Canadian Journal of Forest Research, 43(11), 1063-1074. doi:10.1139/cjfr-2013-0147 es_ES
dc.description.references Valbuena, R., Vauhkonen, J., Packalen, P., Pitkänen, J., & Maltamo, M. (2014). Comparison of airborne laser scanning methods for estimating forest structure indicators based on Lorenz curves. ISPRS Journal of Photogrammetry and Remote Sensing, 95, 23-33. doi:10.1016/j.isprsjprs.2014.06.002 es_ES
dc.description.references Valbuena, R., Eerikäinen, K., Packalen, P., & Maltamo, M. (2016). Gini coefficient predictions from airborne lidar remote sensing display the effect of management intensity on forest structure. Ecological Indicators, 60, 574-585. doi:10.1016/j.ecolind.2015.08.001 es_ES
dc.description.references Valbuena, R., Maltamo, M., Mehtätalo, L., & Packalen, P. (2017). Key structural features of Boreal forests may be detected directly using L-moments from airborne lidar data. Remote Sensing of Environment, 194, 437-446. doi:10.1016/j.rse.2016.10.024 es_ES
dc.description.references van Rossum, G., 1995. Python tutorial, technical report CS-R9526. Amsterdam, The Netherlands. es_ES
dc.description.references Vaughn, N. R., Moskal, L. M., & Turnblom, E. C. (2012). Tree Species Detection Accuracies Using Discrete Point Lidar and Airborne Waveform Lidar. Remote Sensing, 4(2), 377-403. doi:10.3390/rs4020377 es_ES
dc.description.references Vierling, L. A., Xu, Y., Eitel, J. U. H., & Oldow, J. S. (2013). Shrub characterization using terrestrial laser scanning and implications for airborne LiDAR assessment. Canadian Journal of Remote Sensing, 38(6), 709-722. doi:10.5589/m12-057 es_ES
dc.description.references Watt, P. J., & Donoghue, D. N. M. (2005). Measuring forest structure with terrestrial laser scanning. International Journal of Remote Sensing, 26(7), 1437-1446. doi:10.1080/01431160512331337961 es_ES
dc.description.references Wing, B. M., Ritchie, M. W., Boston, K., Cohen, W. B., Gitelman, A., & Olsen, M. J. (2012). Prediction of understory vegetation cover with airborne lidar in an interior ponderosa pine forest. Remote Sensing of Environment, 124, 730-741. doi:10.1016/j.rse.2012.06.024 es_ES
dc.description.references Zeileis, A., Kleiber, C., Zeileis, M.A., 2009. Package “ineq.”. es_ES


This item appears in the following Collection(s)

Show simple item record