- -

An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery

Mostrar el registro completo del ítem

Sánchez-García, E.; Palomar-Vázquez, J.; Pardo Pascual, JE.; Almonacid-Caballer, J.; Cabezas-Rabadán, C.; Gómez Pujol, L. (2020). An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery. Coastal Engineering. 160:1-15. https://doi.org/10.1016/j.coastaleng.2020.103732

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166018

Ficheros en el ítem

Metadatos del ítem

Título: An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery
Autor: Sánchez-García, Elena Palomar-Vázquez, Jesús Pardo Pascual, Josep Eliseu Almonacid-Caballer, J. Cabezas-Rabadán, Carlos Gómez Pujol, L.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria
Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Fecha difusión:
Resumen:
[EN] Satellite images may constitute a useful source of information for coastal monitoring as long as it is possible to manage them in an efficient way and to derive precise indicators of the state of the beaches. In the ...[+]
Palabras clave: Sub-pixel shoreline mapping , Coastal monitoring , Beach changes , Landsat 8 , Sentinel 2 , Video-monitoring , SHOREX
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Coastal Engineering. (issn: 0378-3839 )
DOI: 10.1016/j.coastaleng.2020.103732
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.coastaleng.2020.103732
Código del Proyecto:
info:eu-repo/grantAgreement/MECD//FPU13%2F05877/ES/FPU13%2F05877/
info:eu-repo/grantAgreement/MINECO//CGL2015-69906-R/ES/MONITORIZACION DE LOS CAMBIOS COSTEROS MEDIANTE TELEDETECCION PARA MITIGAR LOS IMPACTOS DEL CAMBIO CLIMATICO/
info:eu-repo/grantAgreement/MECD//FPU15%2F04501/ES/FPU15%2F04501/
Agradecimientos:
This study is supported by the grants of E. S.anchez-Garcia (FPU13/05877) and C. Cabezas-Rabad.an (FPU15/04501) from the Spanish Ministry of Education, Culture and Sports, as well as the project RESE-TOCOAST (CGL 2015-69906-R) ...[+]
Tipo: Artículo

References

Aarninkhof, S. G. ., Turner, I. L., Dronkers, T. D. ., Caljouw, M., & Nipius, L. (2003). A video-based technique for mapping intertidal beach bathymetry. Coastal Engineering, 49(4), 275-289. doi:10.1016/s0378-3839(03)00064-4

Appeaning Addo, K., Jayson-Quashigah, P. N., & Kufogbe, K. S. (2012). Quantitative Analysis of Shoreline Change Using Medium Resolution Satellite Imagery in Keta, Ghana. Marine Science, 1(1), 1-9. doi:10.5923/j.ms.20110101.01

Aedla, R., Dwarakish, G. S., & Reddy, D. V. (2015). Automatic Shoreline Detection and Change Detection Analysis of Netravati-GurpurRivermouth Using Histogram Equalization and Adaptive Thresholding Techniques. Aquatic Procedia, 4, 563-570. doi:10.1016/j.aqpro.2015.02.073 [+]
Aarninkhof, S. G. ., Turner, I. L., Dronkers, T. D. ., Caljouw, M., & Nipius, L. (2003). A video-based technique for mapping intertidal beach bathymetry. Coastal Engineering, 49(4), 275-289. doi:10.1016/s0378-3839(03)00064-4

Appeaning Addo, K., Jayson-Quashigah, P. N., & Kufogbe, K. S. (2012). Quantitative Analysis of Shoreline Change Using Medium Resolution Satellite Imagery in Keta, Ghana. Marine Science, 1(1), 1-9. doi:10.5923/j.ms.20110101.01

Aedla, R., Dwarakish, G. S., & Reddy, D. V. (2015). Automatic Shoreline Detection and Change Detection Analysis of Netravati-GurpurRivermouth Using Histogram Equalization and Adaptive Thresholding Techniques. Aquatic Procedia, 4, 563-570. doi:10.1016/j.aqpro.2015.02.073

Alharbi, O. A., Phillips, M. R., Williams, A. T., Thomas, T., Hakami, M., Kerbe, J., … Al-Ghamdi, K. (2017). Temporal shoreline change and infrastructure influences along the southern Red Sea coast of Saudi Arabia. Arabian Journal of Geosciences, 10(16). doi:10.1007/s12517-017-3109-7

Almonacid-Caballer, J., Sánchez-García, E., Pardo-Pascual, J. E., Balaguer-Beser, A. A., & Palomar-Vázquez, J. (2016). Evaluation of annual mean shoreline position deduced from Landsat imagery as a mid-term coastal evolution indicator. Marine Geology, 372, 79-88. doi:10.1016/j.margeo.2015.12.015

Almonacid-Caballer, J., Pardo-Pascual, J., & Ruiz, L. (2017). Evaluating Fourier Cross-Correlation Sub-Pixel Registration in Landsat Images. Remote Sensing, 9(10), 1051. doi:10.3390/rs9101051

Alvarez-Ellacuria, A., Orfila, A., Gómez-Pujol, L., Simarro, G., & Obregon, N. (2011). Decoupling spatial and temporal patterns in short-term beach shoreline response to wave climate. Geomorphology, 128(3-4), 199-208. doi:10.1016/j.geomorph.2011.01.008

Boak, E. H., & Turner, I. L. (2005). Shoreline Definition and Detection: A Review. Journal of Coastal Research, 214, 688-703. doi:10.2112/03-0071.1

Brignone, M., Schiaffino, C. F., Isla, F. I., & Ferrari, M. (2012). A system for beach video-monitoring: Beachkeeper plus. Computers & Geosciences, 49, 53-61. doi:10.1016/j.cageo.2012.06.008

Cabezas-Rabadán, C., Pardo-Pascual, J. E., Almonacid-Caballer, J., & Rodilla, M. (2019). Detecting problematic beach widths for the recreational function along the Gulf of Valencia (Spain) from Landsat 8 subpixel shorelines. Applied Geography, 110, 102047. doi:10.1016/j.apgeog.2019.102047

Cabezas-Rabadán, C., Pardo-Pascual, J. E., Palomar-Vázquez, J., & Fernández-Sarría, A. (2019). Characterizing beach changes using high-frequency Sentinel-2 derived shorelines on the Valencian coast (Spanish Mediterranean). Science of The Total Environment, 691, 216-231. doi:10.1016/j.scitotenv.2019.07.084

Choung, Y.-J., & Jo, M.-H. (2015). Shoreline change assessment for various types of coasts using multi-temporal Landsat imagery of the east coast of South Korea. Remote Sensing Letters, 7(1), 91-100. doi:10.1080/2150704x.2015.1109157

Davidson, M., Van Koningsveld, M., de Kruif, A., Rawson, J., Holman, R., Lamberti, A., … Aarninkhof, S. (2007). The CoastView project: Developing video-derived Coastal State Indicators in support of coastal zone management. Coastal Engineering, 54(6-7), 463-475. doi:10.1016/j.coastaleng.2007.01.007

Vries, S. de, Do, A. T. K., & Stive, M. J. F. (2019). The Estimation and Evaluation of Shoreline Locations, Shoreline-Change Rates, and Coastal Volume Changes Derived from Landsat Images. Journal of Coastal Research, 35(1), 56. doi:10.2112/jcoastres-d-18-00021.1

Donchyts, G., Baart, F., Winsemius, H., Gorelick, N., Kwadijk, J., & van de Giesen, N. (2016). Earth’s surface water change over the past 30 years. Nature Climate Change, 6(9), 810-813. doi:10.1038/nclimate3111

Enríquez, A. R., Marcos, M., Álvarez-Ellacuría, A., Orfila, A., & Gomis, D. (2017). Changes in beach shoreline due to sea level rise and waves under climate change scenarios: application to the Balearic Islands (western Mediterranean). Natural Hazards and Earth System Sciences, 17(7), 1075-1089. doi:10.5194/nhess-17-1075-2017

Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23-35. doi:10.1016/j.rse.2013.08.029

Foody, G. M., Muslim, A. M., & Atkinson, P. M. (2005). Super‐resolution mapping of the waterline from remotely sensed data. International Journal of Remote Sensing, 26(24), 5381-5392. doi:10.1080/01431160500213292

Ford, M. (2013). Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite images: Wotje Atoll, Marshall Islands. Remote Sensing of Environment, 135, 130-140. doi:10.1016/j.rse.2013.03.027

García-Rubio, G., Huntley, D., & Russell, P. (2015). Evaluating shoreline identification using optical satellite images. Marine Geology, 359, 96-105. doi:10.1016/j.margeo.2014.11.002

Gómez-Pujol, L., Orfila, A., Álvarez-Ellacuría, A., & Tintoré, J. (2011). Controls on sediment dynamics and medium-term morphological change in a barred microtidal beach (Cala Millor, Mallorca, Western Mediterranean). Geomorphology, 132(3-4), 87-98. doi:10.1016/j.geomorph.2011.04.026

Gómez-Pujol, L., Orfila, A., Cañellas, B., Alvarez-Ellacuria, A., Méndez, F. J., Medina, R., & Tintoré, J. (2007). Morphodynamic classification of sandy beaches in low energetic marine environment. Marine Geology, 242(4), 235-246. doi:10.1016/j.margeo.2007.03.008

Graham, R. L., & Hell, P. (1985). On the History of the Minimum Spanning Tree Problem. IEEE Annals of the History of Computing, 7(1), 43-57. doi:10.1109/mahc.1985.10011

Guizar-Sicairos, M., Thurman, S. T., & Fienup, J. R. (2008). Efficient subpixel image registration algorithms. Optics Letters, 33(2), 156. doi:10.1364/ol.33.000156

Hagenaars, G., de Vries, S., Luijendijk, A. P., de Boer, W. P., & Reniers, A. J. H. M. (2018). On the accuracy of automated shoreline detection derived from satellite imagery: A case study of the sand motor mega-scale nourishment. Coastal Engineering, 133, 113-125. doi:10.1016/j.coastaleng.2017.12.011

Holman, R. A., & Stanley, J. (2007). The history and technical capabilities of Argus. Coastal Engineering, 54(6-7), 477-491. doi:10.1016/j.coastaleng.2007.01.003

Infantes, E., Orfila, A., Simarro, G., Terrados, J., Luhar, M., & Nepf, H. (2012). Effect of a seagrass (Posidonia oceanica) meadow on wave propagation. Marine Ecology Progress Series, 456, 63-72. doi:10.3354/meps09754

Irons, J. R., Dwyer, J. L., & Barsi, J. A. (2012). The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sensing of Environment, 122, 11-21. doi:10.1016/j.rse.2011.08.026

Ji, L., Zhang, L., & Wylie, B. (2009). Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogrammetric Engineering & Remote Sensing, 75(11), 1307-1317. doi:10.14358/pers.75.11.1307

Jones, B. M., Arp, C. D., Jorgenson, M. T., Hinkel, K. M., Schmutz, J. A., & Flint, P. L. (2009). Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophysical Research Letters, 36(3), n/a-n/a. doi:10.1029/2008gl036205

Li, J., & Roy, D. (2017). A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sensing, 9(9), 902. doi:10.3390/rs9090902

Li, L., Chen, Y., Xu, T., Liu, R., Shi, K., & Huang, C. (2015). Super-resolution mapping of wetland inundation from remote sensing imagery based on integration of back-propagation neural network and genetic algorithm. Remote Sensing of Environment, 164, 142-154. doi:10.1016/j.rse.2015.04.009

Li, X., & Damen, M. C. J. (2010). Coastline change detection with satellite remote sensing for environmental management of the Pearl River Estuary, China. Journal of Marine Systems, 82, S54-S61. doi:10.1016/j.jmarsys.2010.02.005

Li, W., & Gong, P. (2016). Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery. Remote Sensing of Environment, 179, 196-209. doi:10.1016/j.rse.2016.03.031

Liu, Q., Trinder, J., & Turner, I. L. (2017). Automatic super-resolution shoreline change monitoring using Landsat archival data: a case study at Narrabeen–Collaroy Beach, Australia. Journal of Applied Remote Sensing, 11(1), 016036. doi:10.1117/1.jrs.11.016036

Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., & Aarninkhof, S. (2018). The State of the World’s Beaches. Scientific Reports, 8(1). doi:10.1038/s41598-018-24630-6

Maiti, S., & Bhattacharya, A. K. (2009). Shoreline change analysis and its application to prediction: A remote sensing and statistics based approach. Marine Geology, 257(1-4), 11-23. doi:10.1016/j.margeo.2008.10.006

McFEETERS, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432. doi:10.1080/01431169608948714

Mentaschi, L., Vousdoukas, M. I., Pekel, J.-F., Voukouvalas, E., & Feyen, L. (2018). Global long-term observations of coastal erosion and accretion. Scientific Reports, 8(1). doi:10.1038/s41598-018-30904-w

Mills, J. P., Buckley, S. J., Mitchell, H. L., Clarke, P. J., & Edwards, S. J. (2005). A geomatics data integration technique for coastal change monitoring. Earth Surface Processes and Landforms, 30(6), 651-664. doi:10.1002/esp.1165

Nieto, M. A., Garau, B., Balle, S., Simarro, G., Zarruk, G. A., Ortiz, A., … Orfila, A. (2010). An open source, low cost video-based coastal monitoring system. Earth Surface Processes and Landforms, 35(14), 1712-1719. doi:10.1002/esp.2025

Osorio, A. F., Medina, R., & Gonzalez, M. (2012). An algorithm for the measurement of shoreline and intertidal beach profiles using video imagery: PSDM. Computers & Geosciences, 46, 196-207. doi:10.1016/j.cageo.2011.12.008

Ouma, Y. O., & Tateishi, R. (2006). A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data. International Journal of Remote Sensing, 27(15), 3153-3181. doi:10.1080/01431160500309934

Pardo-Pascual, J. E., Almonacid-Caballer, J., Ruiz, L. A., & Palomar-Vázquez, J. (2012). Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sensing of Environment, 123, 1-11. doi:10.1016/j.rse.2012.02.024

Pardo-Pascual, J. E., Almonacid-Caballer, J., Ruiz, L. A., Palomar-Vázquez, J., & Rodrigo-Alemany, R. (2014). Evaluation of storm impact on sandy beaches of the Gulf of Valencia using Landsat imagery series. Geomorphology, 214, 388-401. doi:10.1016/j.geomorph.2014.02.020

Pardo-Pascual, J., Sánchez-García, E., Almonacid-Caballer, J., Palomar-Vázquez, J., Priego de los Santos, E., Fernández-Sarría, A., & Balaguer-Beser, Á. (2018). Assessing the Accuracy of Automatically Extracted Shorelines on Microtidal Beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery. Remote Sensing, 10(2), 326. doi:10.3390/rs10020326

Quang Tuan, N., Cong Tin, H., Quang Doc, L., & Anh Tuan, T. (2017). Historical Monitoring of Shoreline Changes in the Cua Dai Estuary, Central Vietnam Using Multi-Temporal Remote Sensing Data. Geosciences, 7(3), 72. doi:10.3390/geosciences7030072

Rokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery. Remote Sensing, 6(5), 4173-4189. doi:10.3390/rs6054173

Ruiz de Alegria-Arzaburu, A., & Masselink, G. (2010). Storm response and beach rotation on a gravel beach, Slapton Sands, U.K. Marine Geology, 278(1-4), 77-99. doi:10.1016/j.margeo.2010.09.004

RYU, J., WON, J., & MIN, K. (2002). Waterline extraction from Landsat TM data in a tidal flatA case study in Gomso Bay, Korea. Remote Sensing of Environment, 83(3), 442-456. doi:10.1016/s0034-4257(02)00059-7

Sánchez-García, E., Pardo-Pascual, J. E., Balaguer-Beser, A., & Almonacid-Caballer, J. (2015). ANALYSIS OF THE SHORELINE POSITION EXTRACTED FROM LANDSAT TM AND ETM+ IMAGERY. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3, 991-998. doi:10.5194/isprsarchives-xl-7-w3-991-2015

Sánchez-García, E., Balaguer-Beser, A., & Pardo-Pascual, J. E. (2017). C-Pro: A coastal projector monitoring system using terrestrial photogrammetry with a geometric horizon constraint. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 255-273. doi:10.1016/j.isprsjprs.2017.03.023

Sánchez-García, E., Balaguer-Beser, Á., Almonacid-Caballer, J., & Pardo-Pascual, J. E. (2019). A New Adaptive Image Interpolation Method to Define the Shoreline at Sub-Pixel Level. Remote Sensing, 11(16), 1880. doi:10.3390/rs11161880

Simarro, G., Ribas, F., Álvarez, A., Guillén, J., Chic, Ò., & Orfila, A. (2017). ULISES: An Open Source Code for Extrinsic Calibrations and Planview Generations in Coastal Video Monitoring Systems. Journal of Coastal Research, 335, 1217-1227. doi:10.2112/jcoastres-d-16-00022.1

Song, Liu, Ling, & Yue. (2019). Automatic Semi-Global Artificial Shoreline Subpixel Localization Algorithm for Landsat Imagery. Remote Sensing, 11(15), 1779. doi:10.3390/rs11151779

Splinter, K., Harley, M., & Turner, I. (2018). Remote Sensing Is Changing Our View of the Coast: Insights from 40 Years of Monitoring at Narrabeen-Collaroy, Australia. Remote Sensing, 10(11), 1744. doi:10.3390/rs10111744

Taborda, R., & Silva, A. (2012). COSMOS: A lightweight coastal video monitoring system. Computers & Geosciences, 49, 248-255. doi:10.1016/j.cageo.2012.07.013

Tintoré, J., Vizoso, G., Casas, B., Heslop, E., Pascual, A., Orfila, A., … Manriquez, M. (2013). SOCIB: The Balearic Islands Coastal Ocean Observing and Forecasting System Responding to Science, Technology and Society Needs. Marine Technology Society Journal, 47(1), 101-117. doi:10.4031/mtsj.47.1.10

Tintoré, J., Medina, R., Gómez-Pujol, L., Orfila, A., & Vizoso, G. (2009). Integrated and interdisciplinary scientific approach to coastal management. Ocean & Coastal Management, 52(10), 493-505. doi:10.1016/j.ocecoaman.2009.08.002

Valentini, N., Saponieri, A., Molfetta, M. G., & Damiani, L. (2017). New algorithms for shoreline monitoring from coastal video systems. Earth Science Informatics, 10(4), 495-506. doi:10.1007/s12145-017-0302-x

Viaña-Borja, S., & Ortega-Sánchez, M. (2019). Automatic Methodology to Detect the Coastline from Landsat Images with a New Water Index Assessed on Three Different Spanish Mediterranean Deltas. Remote Sensing, 11(18), 2186. doi:10.3390/rs11182186

Vos, K., Harley, M. D., Splinter, K. D., Simmons, J. A., & Turner, I. L. (2019). Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coastal Engineering, 150, 160-174. doi:10.1016/j.coastaleng.2019.04.004

Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A., & Turner, I. L. (2019). CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environmental Modelling & Software, 122, 104528. doi:10.1016/j.envsoft.2019.104528

Wang, C. L., Zhao, C. X., & Yang, J. Y. (2011). Local Upsampling Fourier Transform for High Accuracy Image Rotation Estimation. Advanced Materials Research, 268-270, 1488-1493. doi:10.4028/www.scientific.net/amr.268-270.1488

Yamano, H., Shimazaki, H., Matsunaga, T., Ishoda, A., McClennen, C., Yokoki, H., … Kayanne, H. (2006). Evaluation of various satellite sensors for waterline extraction in a coral reef environment: Majuro Atoll, Marshall Islands. Geomorphology, 82(3-4), 398-411. doi:10.1016/j.geomorph.2006.06.003

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem