- -

An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez-García, Elena es_ES
dc.contributor.author Palomar-Vázquez, Jesús es_ES
dc.contributor.author Pardo Pascual, Josep Eliseu es_ES
dc.contributor.author Almonacid-Caballer, J. es_ES
dc.contributor.author Cabezas-Rabadán, Carlos es_ES
dc.contributor.author Gómez Pujol, L. es_ES
dc.date.accessioned 2021-05-06T03:31:26Z
dc.date.available 2021-05-06T03:31:26Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 0378-3839 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166018
dc.description.abstract [EN] Satellite images may constitute a useful source of information for coastal monitoring as long as it is possible to manage them in an efficient way and to derive precise indicators of the state of the beaches. In the present work, SHOREX system is employed for managing and processing Landsat 8 and Sentinel 2 images to automatically define the instantaneous shoreline position at sub-pixel level. Between the years 2013 and 2017, 91 satellite-derived shorelines (SDS) were assessed by comparing with high-resolution shorelines obtained simultaneously through video-monitoring. The analysis allowed identifying the combination of parameters to perform the extraction algorithm with the highest accuracy. Furthermore, an efficient self-contained workflow is proposed, more robust and independent from inaccuracies in the approximate input line and from multiple morphological and oceanographic issues that may condition the radiometric response near the shore. An iterative procedure ensures firstly a suitable kernel of analysis representing the water-land interface to get, afterward, the definition of the sub-pixel shoreline with high accuracy (below 3 m RMSE). es_ES
dc.description.sponsorship This study is supported by the grants of E. S.anchez-Garcia (FPU13/05877) and C. Cabezas-Rabad.an (FPU15/04501) from the Spanish Ministry of Education, Culture and Sports, as well as the project RESE-TOCOAST (CGL 2015-69906-R) from the Spanish Ministry of Economy and Competitiveness. Authors also acknowledge SOCIB (MICINN-CAIB) for providing video-monitoring images and sea level tide gauge records. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Coastal Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Sub-pixel shoreline mapping es_ES
dc.subject Coastal monitoring es_ES
dc.subject Beach changes es_ES
dc.subject Landsat 8 es_ES
dc.subject Sentinel 2 es_ES
dc.subject Video-monitoring es_ES
dc.subject SHOREX es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.coastaleng.2020.103732 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F05877/ES/FPU13%2F05877/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2015-69906-R/ES/MONITORIZACION DE LOS CAMBIOS COSTEROS MEDIANTE TELEDETECCION PARA MITIGAR LOS IMPACTOS DEL CAMBIO CLIMATICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F04501/ES/FPU15%2F04501/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Sánchez-García, E.; Palomar-Vázquez, J.; Pardo Pascual, JE.; Almonacid-Caballer, J.; Cabezas-Rabadán, C.; Gómez Pujol, L. (2020). An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery. Coastal Engineering. 160:1-15. https://doi.org/10.1016/j.coastaleng.2020.103732 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.coastaleng.2020.103732 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 160 es_ES
dc.relation.pasarela S\414340 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.description.references Aarninkhof, S. G. ., Turner, I. L., Dronkers, T. D. ., Caljouw, M., & Nipius, L. (2003). A video-based technique for mapping intertidal beach bathymetry. Coastal Engineering, 49(4), 275-289. doi:10.1016/s0378-3839(03)00064-4 es_ES
dc.description.references Appeaning Addo, K., Jayson-Quashigah, P. N., & Kufogbe, K. S. (2012). Quantitative Analysis of Shoreline Change Using Medium Resolution Satellite Imagery in Keta, Ghana. Marine Science, 1(1), 1-9. doi:10.5923/j.ms.20110101.01 es_ES
dc.description.references Aedla, R., Dwarakish, G. S., & Reddy, D. V. (2015). Automatic Shoreline Detection and Change Detection Analysis of Netravati-GurpurRivermouth Using Histogram Equalization and Adaptive Thresholding Techniques. Aquatic Procedia, 4, 563-570. doi:10.1016/j.aqpro.2015.02.073 es_ES
dc.description.references Alharbi, O. A., Phillips, M. R., Williams, A. T., Thomas, T., Hakami, M., Kerbe, J., … Al-Ghamdi, K. (2017). Temporal shoreline change and infrastructure influences along the southern Red Sea coast of Saudi Arabia. Arabian Journal of Geosciences, 10(16). doi:10.1007/s12517-017-3109-7 es_ES
dc.description.references Almonacid-Caballer, J., Sánchez-García, E., Pardo-Pascual, J. E., Balaguer-Beser, A. A., & Palomar-Vázquez, J. (2016). Evaluation of annual mean shoreline position deduced from Landsat imagery as a mid-term coastal evolution indicator. Marine Geology, 372, 79-88. doi:10.1016/j.margeo.2015.12.015 es_ES
dc.description.references Almonacid-Caballer, J., Pardo-Pascual, J., & Ruiz, L. (2017). Evaluating Fourier Cross-Correlation Sub-Pixel Registration in Landsat Images. Remote Sensing, 9(10), 1051. doi:10.3390/rs9101051 es_ES
dc.description.references Alvarez-Ellacuria, A., Orfila, A., Gómez-Pujol, L., Simarro, G., & Obregon, N. (2011). Decoupling spatial and temporal patterns in short-term beach shoreline response to wave climate. Geomorphology, 128(3-4), 199-208. doi:10.1016/j.geomorph.2011.01.008 es_ES
dc.description.references Boak, E. H., & Turner, I. L. (2005). Shoreline Definition and Detection: A Review. Journal of Coastal Research, 214, 688-703. doi:10.2112/03-0071.1 es_ES
dc.description.references Brignone, M., Schiaffino, C. F., Isla, F. I., & Ferrari, M. (2012). A system for beach video-monitoring: Beachkeeper plus. Computers & Geosciences, 49, 53-61. doi:10.1016/j.cageo.2012.06.008 es_ES
dc.description.references Cabezas-Rabadán, C., Pardo-Pascual, J. E., Almonacid-Caballer, J., & Rodilla, M. (2019). Detecting problematic beach widths for the recreational function along the Gulf of Valencia (Spain) from Landsat 8 subpixel shorelines. Applied Geography, 110, 102047. doi:10.1016/j.apgeog.2019.102047 es_ES
dc.description.references Cabezas-Rabadán, C., Pardo-Pascual, J. E., Palomar-Vázquez, J., & Fernández-Sarría, A. (2019). Characterizing beach changes using high-frequency Sentinel-2 derived shorelines on the Valencian coast (Spanish Mediterranean). Science of The Total Environment, 691, 216-231. doi:10.1016/j.scitotenv.2019.07.084 es_ES
dc.description.references Choung, Y.-J., & Jo, M.-H. (2015). Shoreline change assessment for various types of coasts using multi-temporal Landsat imagery of the east coast of South Korea. Remote Sensing Letters, 7(1), 91-100. doi:10.1080/2150704x.2015.1109157 es_ES
dc.description.references Davidson, M., Van Koningsveld, M., de Kruif, A., Rawson, J., Holman, R., Lamberti, A., … Aarninkhof, S. (2007). The CoastView project: Developing video-derived Coastal State Indicators in support of coastal zone management. Coastal Engineering, 54(6-7), 463-475. doi:10.1016/j.coastaleng.2007.01.007 es_ES
dc.description.references Vries, S. de, Do, A. T. K., & Stive, M. J. F. (2019). The Estimation and Evaluation of Shoreline Locations, Shoreline-Change Rates, and Coastal Volume Changes Derived from Landsat Images. Journal of Coastal Research, 35(1), 56. doi:10.2112/jcoastres-d-18-00021.1 es_ES
dc.description.references Donchyts, G., Baart, F., Winsemius, H., Gorelick, N., Kwadijk, J., & van de Giesen, N. (2016). Earth’s surface water change over the past 30 years. Nature Climate Change, 6(9), 810-813. doi:10.1038/nclimate3111 es_ES
dc.description.references Enríquez, A. R., Marcos, M., Álvarez-Ellacuría, A., Orfila, A., & Gomis, D. (2017). Changes in beach shoreline due to sea level rise and waves under climate change scenarios: application to the Balearic Islands (western Mediterranean). Natural Hazards and Earth System Sciences, 17(7), 1075-1089. doi:10.5194/nhess-17-1075-2017 es_ES
dc.description.references Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23-35. doi:10.1016/j.rse.2013.08.029 es_ES
dc.description.references Foody, G. M., Muslim, A. M., & Atkinson, P. M. (2005). Super‐resolution mapping of the waterline from remotely sensed data. International Journal of Remote Sensing, 26(24), 5381-5392. doi:10.1080/01431160500213292 es_ES
dc.description.references Ford, M. (2013). Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite images: Wotje Atoll, Marshall Islands. Remote Sensing of Environment, 135, 130-140. doi:10.1016/j.rse.2013.03.027 es_ES
dc.description.references García-Rubio, G., Huntley, D., & Russell, P. (2015). Evaluating shoreline identification using optical satellite images. Marine Geology, 359, 96-105. doi:10.1016/j.margeo.2014.11.002 es_ES
dc.description.references Gómez-Pujol, L., Orfila, A., Álvarez-Ellacuría, A., & Tintoré, J. (2011). Controls on sediment dynamics and medium-term morphological change in a barred microtidal beach (Cala Millor, Mallorca, Western Mediterranean). Geomorphology, 132(3-4), 87-98. doi:10.1016/j.geomorph.2011.04.026 es_ES
dc.description.references Gómez-Pujol, L., Orfila, A., Cañellas, B., Alvarez-Ellacuria, A., Méndez, F. J., Medina, R., & Tintoré, J. (2007). Morphodynamic classification of sandy beaches in low energetic marine environment. Marine Geology, 242(4), 235-246. doi:10.1016/j.margeo.2007.03.008 es_ES
dc.description.references Graham, R. L., & Hell, P. (1985). On the History of the Minimum Spanning Tree Problem. IEEE Annals of the History of Computing, 7(1), 43-57. doi:10.1109/mahc.1985.10011 es_ES
dc.description.references Guizar-Sicairos, M., Thurman, S. T., & Fienup, J. R. (2008). Efficient subpixel image registration algorithms. Optics Letters, 33(2), 156. doi:10.1364/ol.33.000156 es_ES
dc.description.references Hagenaars, G., de Vries, S., Luijendijk, A. P., de Boer, W. P., & Reniers, A. J. H. M. (2018). On the accuracy of automated shoreline detection derived from satellite imagery: A case study of the sand motor mega-scale nourishment. Coastal Engineering, 133, 113-125. doi:10.1016/j.coastaleng.2017.12.011 es_ES
dc.description.references Holman, R. A., & Stanley, J. (2007). The history and technical capabilities of Argus. Coastal Engineering, 54(6-7), 477-491. doi:10.1016/j.coastaleng.2007.01.003 es_ES
dc.description.references Infantes, E., Orfila, A., Simarro, G., Terrados, J., Luhar, M., & Nepf, H. (2012). Effect of a seagrass (Posidonia oceanica) meadow on wave propagation. Marine Ecology Progress Series, 456, 63-72. doi:10.3354/meps09754 es_ES
dc.description.references Irons, J. R., Dwyer, J. L., & Barsi, J. A. (2012). The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sensing of Environment, 122, 11-21. doi:10.1016/j.rse.2011.08.026 es_ES
dc.description.references Ji, L., Zhang, L., & Wylie, B. (2009). Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogrammetric Engineering & Remote Sensing, 75(11), 1307-1317. doi:10.14358/pers.75.11.1307 es_ES
dc.description.references Jones, B. M., Arp, C. D., Jorgenson, M. T., Hinkel, K. M., Schmutz, J. A., & Flint, P. L. (2009). Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophysical Research Letters, 36(3), n/a-n/a. doi:10.1029/2008gl036205 es_ES
dc.description.references Li, J., & Roy, D. (2017). A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sensing, 9(9), 902. doi:10.3390/rs9090902 es_ES
dc.description.references Li, L., Chen, Y., Xu, T., Liu, R., Shi, K., & Huang, C. (2015). Super-resolution mapping of wetland inundation from remote sensing imagery based on integration of back-propagation neural network and genetic algorithm. Remote Sensing of Environment, 164, 142-154. doi:10.1016/j.rse.2015.04.009 es_ES
dc.description.references Li, X., & Damen, M. C. J. (2010). Coastline change detection with satellite remote sensing for environmental management of the Pearl River Estuary, China. Journal of Marine Systems, 82, S54-S61. doi:10.1016/j.jmarsys.2010.02.005 es_ES
dc.description.references Li, W., & Gong, P. (2016). Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery. Remote Sensing of Environment, 179, 196-209. doi:10.1016/j.rse.2016.03.031 es_ES
dc.description.references Liu, Q., Trinder, J., & Turner, I. L. (2017). Automatic super-resolution shoreline change monitoring using Landsat archival data: a case study at Narrabeen–Collaroy Beach, Australia. Journal of Applied Remote Sensing, 11(1), 016036. doi:10.1117/1.jrs.11.016036 es_ES
dc.description.references Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., & Aarninkhof, S. (2018). The State of the World’s Beaches. Scientific Reports, 8(1). doi:10.1038/s41598-018-24630-6 es_ES
dc.description.references Maiti, S., & Bhattacharya, A. K. (2009). Shoreline change analysis and its application to prediction: A remote sensing and statistics based approach. Marine Geology, 257(1-4), 11-23. doi:10.1016/j.margeo.2008.10.006 es_ES
dc.description.references McFEETERS, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432. doi:10.1080/01431169608948714 es_ES
dc.description.references Mentaschi, L., Vousdoukas, M. I., Pekel, J.-F., Voukouvalas, E., & Feyen, L. (2018). Global long-term observations of coastal erosion and accretion. Scientific Reports, 8(1). doi:10.1038/s41598-018-30904-w es_ES
dc.description.references Mills, J. P., Buckley, S. J., Mitchell, H. L., Clarke, P. J., & Edwards, S. J. (2005). A geomatics data integration technique for coastal change monitoring. Earth Surface Processes and Landforms, 30(6), 651-664. doi:10.1002/esp.1165 es_ES
dc.description.references Nieto, M. A., Garau, B., Balle, S., Simarro, G., Zarruk, G. A., Ortiz, A., … Orfila, A. (2010). An open source, low cost video-based coastal monitoring system. Earth Surface Processes and Landforms, 35(14), 1712-1719. doi:10.1002/esp.2025 es_ES
dc.description.references Osorio, A. F., Medina, R., & Gonzalez, M. (2012). An algorithm for the measurement of shoreline and intertidal beach profiles using video imagery: PSDM. Computers & Geosciences, 46, 196-207. doi:10.1016/j.cageo.2011.12.008 es_ES
dc.description.references Ouma, Y. O., & Tateishi, R. (2006). A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data. International Journal of Remote Sensing, 27(15), 3153-3181. doi:10.1080/01431160500309934 es_ES
dc.description.references Pardo-Pascual, J. E., Almonacid-Caballer, J., Ruiz, L. A., & Palomar-Vázquez, J. (2012). Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sensing of Environment, 123, 1-11. doi:10.1016/j.rse.2012.02.024 es_ES
dc.description.references Pardo-Pascual, J. E., Almonacid-Caballer, J., Ruiz, L. A., Palomar-Vázquez, J., & Rodrigo-Alemany, R. (2014). Evaluation of storm impact on sandy beaches of the Gulf of Valencia using Landsat imagery series. Geomorphology, 214, 388-401. doi:10.1016/j.geomorph.2014.02.020 es_ES
dc.description.references Pardo-Pascual, J., Sánchez-García, E., Almonacid-Caballer, J., Palomar-Vázquez, J., Priego de los Santos, E., Fernández-Sarría, A., & Balaguer-Beser, Á. (2018). Assessing the Accuracy of Automatically Extracted Shorelines on Microtidal Beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery. Remote Sensing, 10(2), 326. doi:10.3390/rs10020326 es_ES
dc.description.references Quang Tuan, N., Cong Tin, H., Quang Doc, L., & Anh Tuan, T. (2017). Historical Monitoring of Shoreline Changes in the Cua Dai Estuary, Central Vietnam Using Multi-Temporal Remote Sensing Data. Geosciences, 7(3), 72. doi:10.3390/geosciences7030072 es_ES
dc.description.references Rokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery. Remote Sensing, 6(5), 4173-4189. doi:10.3390/rs6054173 es_ES
dc.description.references Ruiz de Alegria-Arzaburu, A., & Masselink, G. (2010). Storm response and beach rotation on a gravel beach, Slapton Sands, U.K. Marine Geology, 278(1-4), 77-99. doi:10.1016/j.margeo.2010.09.004 es_ES
dc.description.references RYU, J., WON, J., & MIN, K. (2002). Waterline extraction from Landsat TM data in a tidal flatA case study in Gomso Bay, Korea. Remote Sensing of Environment, 83(3), 442-456. doi:10.1016/s0034-4257(02)00059-7 es_ES
dc.description.references Sánchez-García, E., Pardo-Pascual, J. E., Balaguer-Beser, A., & Almonacid-Caballer, J. (2015). ANALYSIS OF THE SHORELINE POSITION EXTRACTED FROM LANDSAT TM AND ETM+ IMAGERY. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3, 991-998. doi:10.5194/isprsarchives-xl-7-w3-991-2015 es_ES
dc.description.references Sánchez-García, E., Balaguer-Beser, A., & Pardo-Pascual, J. E. (2017). C-Pro: A coastal projector monitoring system using terrestrial photogrammetry with a geometric horizon constraint. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 255-273. doi:10.1016/j.isprsjprs.2017.03.023 es_ES
dc.description.references Sánchez-García, E., Balaguer-Beser, Á., Almonacid-Caballer, J., & Pardo-Pascual, J. E. (2019). A New Adaptive Image Interpolation Method to Define the Shoreline at Sub-Pixel Level. Remote Sensing, 11(16), 1880. doi:10.3390/rs11161880 es_ES
dc.description.references Simarro, G., Ribas, F., Álvarez, A., Guillén, J., Chic, Ò., & Orfila, A. (2017). ULISES: An Open Source Code for Extrinsic Calibrations and Planview Generations in Coastal Video Monitoring Systems. Journal of Coastal Research, 335, 1217-1227. doi:10.2112/jcoastres-d-16-00022.1 es_ES
dc.description.references Song, Liu, Ling, & Yue. (2019). Automatic Semi-Global Artificial Shoreline Subpixel Localization Algorithm for Landsat Imagery. Remote Sensing, 11(15), 1779. doi:10.3390/rs11151779 es_ES
dc.description.references Splinter, K., Harley, M., & Turner, I. (2018). Remote Sensing Is Changing Our View of the Coast: Insights from 40 Years of Monitoring at Narrabeen-Collaroy, Australia. Remote Sensing, 10(11), 1744. doi:10.3390/rs10111744 es_ES
dc.description.references Taborda, R., & Silva, A. (2012). COSMOS: A lightweight coastal video monitoring system. Computers & Geosciences, 49, 248-255. doi:10.1016/j.cageo.2012.07.013 es_ES
dc.description.references Tintoré, J., Vizoso, G., Casas, B., Heslop, E., Pascual, A., Orfila, A., … Manriquez, M. (2013). SOCIB: The Balearic Islands Coastal Ocean Observing and Forecasting System Responding to Science, Technology and Society Needs. Marine Technology Society Journal, 47(1), 101-117. doi:10.4031/mtsj.47.1.10 es_ES
dc.description.references Tintoré, J., Medina, R., Gómez-Pujol, L., Orfila, A., & Vizoso, G. (2009). Integrated and interdisciplinary scientific approach to coastal management. Ocean & Coastal Management, 52(10), 493-505. doi:10.1016/j.ocecoaman.2009.08.002 es_ES
dc.description.references Valentini, N., Saponieri, A., Molfetta, M. G., & Damiani, L. (2017). New algorithms for shoreline monitoring from coastal video systems. Earth Science Informatics, 10(4), 495-506. doi:10.1007/s12145-017-0302-x es_ES
dc.description.references Viaña-Borja, S., & Ortega-Sánchez, M. (2019). Automatic Methodology to Detect the Coastline from Landsat Images with a New Water Index Assessed on Three Different Spanish Mediterranean Deltas. Remote Sensing, 11(18), 2186. doi:10.3390/rs11182186 es_ES
dc.description.references Vos, K., Harley, M. D., Splinter, K. D., Simmons, J. A., & Turner, I. L. (2019). Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coastal Engineering, 150, 160-174. doi:10.1016/j.coastaleng.2019.04.004 es_ES
dc.description.references Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A., & Turner, I. L. (2019). CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environmental Modelling & Software, 122, 104528. doi:10.1016/j.envsoft.2019.104528 es_ES
dc.description.references Wang, C. L., Zhao, C. X., & Yang, J. Y. (2011). Local Upsampling Fourier Transform for High Accuracy Image Rotation Estimation. Advanced Materials Research, 268-270, 1488-1493. doi:10.4028/www.scientific.net/amr.268-270.1488 es_ES
dc.description.references Yamano, H., Shimazaki, H., Matsunaga, T., Ishoda, A., McClennen, C., Yokoki, H., … Kayanne, H. (2006). Evaluation of various satellite sensors for waterline extraction in a coral reef environment: Majuro Atoll, Marshall Islands. Geomorphology, 82(3-4), 398-411. doi:10.1016/j.geomorph.2006.06.003 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem