Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez-García, Elena | es_ES |
dc.contributor.author | Palomar-Vázquez, Jesús | es_ES |
dc.contributor.author | Pardo Pascual, Josep Eliseu | es_ES |
dc.contributor.author | Almonacid-Caballer, J. | es_ES |
dc.contributor.author | Cabezas-Rabadán, Carlos | es_ES |
dc.contributor.author | Gómez Pujol, L. | es_ES |
dc.date.accessioned | 2021-05-06T03:31:26Z | |
dc.date.available | 2021-05-06T03:31:26Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.issn | 0378-3839 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166018 | |
dc.description.abstract | [EN] Satellite images may constitute a useful source of information for coastal monitoring as long as it is possible to manage them in an efficient way and to derive precise indicators of the state of the beaches. In the present work, SHOREX system is employed for managing and processing Landsat 8 and Sentinel 2 images to automatically define the instantaneous shoreline position at sub-pixel level. Between the years 2013 and 2017, 91 satellite-derived shorelines (SDS) were assessed by comparing with high-resolution shorelines obtained simultaneously through video-monitoring. The analysis allowed identifying the combination of parameters to perform the extraction algorithm with the highest accuracy. Furthermore, an efficient self-contained workflow is proposed, more robust and independent from inaccuracies in the approximate input line and from multiple morphological and oceanographic issues that may condition the radiometric response near the shore. An iterative procedure ensures firstly a suitable kernel of analysis representing the water-land interface to get, afterward, the definition of the sub-pixel shoreline with high accuracy (below 3 m RMSE). | es_ES |
dc.description.sponsorship | This study is supported by the grants of E. S.anchez-Garcia (FPU13/05877) and C. Cabezas-Rabad.an (FPU15/04501) from the Spanish Ministry of Education, Culture and Sports, as well as the project RESE-TOCOAST (CGL 2015-69906-R) from the Spanish Ministry of Economy and Competitiveness. Authors also acknowledge SOCIB (MICINN-CAIB) for providing video-monitoring images and sea level tide gauge records. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Coastal Engineering | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Sub-pixel shoreline mapping | es_ES |
dc.subject | Coastal monitoring | es_ES |
dc.subject | Beach changes | es_ES |
dc.subject | Landsat 8 | es_ES |
dc.subject | Sentinel 2 | es_ES |
dc.subject | Video-monitoring | es_ES |
dc.subject | SHOREX | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.coastaleng.2020.103732 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU13%2F05877/ES/FPU13%2F05877/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CGL2015-69906-R/ES/MONITORIZACION DE LOS CAMBIOS COSTEROS MEDIANTE TELEDETECCION PARA MITIGAR LOS IMPACTOS DEL CAMBIO CLIMATICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU15%2F04501/ES/FPU15%2F04501/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Sánchez-García, E.; Palomar-Vázquez, J.; Pardo Pascual, JE.; Almonacid-Caballer, J.; Cabezas-Rabadán, C.; Gómez Pujol, L. (2020). An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery. Coastal Engineering. 160:1-15. https://doi.org/10.1016/j.coastaleng.2020.103732 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.coastaleng.2020.103732 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 160 | es_ES |
dc.relation.pasarela | S\414340 | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.description.references | Aarninkhof, S. G. ., Turner, I. L., Dronkers, T. D. ., Caljouw, M., & Nipius, L. (2003). A video-based technique for mapping intertidal beach bathymetry. Coastal Engineering, 49(4), 275-289. doi:10.1016/s0378-3839(03)00064-4 | es_ES |
dc.description.references | Appeaning Addo, K., Jayson-Quashigah, P. N., & Kufogbe, K. S. (2012). Quantitative Analysis of Shoreline Change Using Medium Resolution Satellite Imagery in Keta, Ghana. Marine Science, 1(1), 1-9. doi:10.5923/j.ms.20110101.01 | es_ES |
dc.description.references | Aedla, R., Dwarakish, G. S., & Reddy, D. V. (2015). Automatic Shoreline Detection and Change Detection Analysis of Netravati-GurpurRivermouth Using Histogram Equalization and Adaptive Thresholding Techniques. Aquatic Procedia, 4, 563-570. doi:10.1016/j.aqpro.2015.02.073 | es_ES |
dc.description.references | Alharbi, O. A., Phillips, M. R., Williams, A. T., Thomas, T., Hakami, M., Kerbe, J., … Al-Ghamdi, K. (2017). Temporal shoreline change and infrastructure influences along the southern Red Sea coast of Saudi Arabia. Arabian Journal of Geosciences, 10(16). doi:10.1007/s12517-017-3109-7 | es_ES |
dc.description.references | Almonacid-Caballer, J., Sánchez-García, E., Pardo-Pascual, J. E., Balaguer-Beser, A. A., & Palomar-Vázquez, J. (2016). Evaluation of annual mean shoreline position deduced from Landsat imagery as a mid-term coastal evolution indicator. Marine Geology, 372, 79-88. doi:10.1016/j.margeo.2015.12.015 | es_ES |
dc.description.references | Almonacid-Caballer, J., Pardo-Pascual, J., & Ruiz, L. (2017). Evaluating Fourier Cross-Correlation Sub-Pixel Registration in Landsat Images. Remote Sensing, 9(10), 1051. doi:10.3390/rs9101051 | es_ES |
dc.description.references | Alvarez-Ellacuria, A., Orfila, A., Gómez-Pujol, L., Simarro, G., & Obregon, N. (2011). Decoupling spatial and temporal patterns in short-term beach shoreline response to wave climate. Geomorphology, 128(3-4), 199-208. doi:10.1016/j.geomorph.2011.01.008 | es_ES |
dc.description.references | Boak, E. H., & Turner, I. L. (2005). Shoreline Definition and Detection: A Review. Journal of Coastal Research, 214, 688-703. doi:10.2112/03-0071.1 | es_ES |
dc.description.references | Brignone, M., Schiaffino, C. F., Isla, F. I., & Ferrari, M. (2012). A system for beach video-monitoring: Beachkeeper plus. Computers & Geosciences, 49, 53-61. doi:10.1016/j.cageo.2012.06.008 | es_ES |
dc.description.references | Cabezas-Rabadán, C., Pardo-Pascual, J. E., Almonacid-Caballer, J., & Rodilla, M. (2019). Detecting problematic beach widths for the recreational function along the Gulf of Valencia (Spain) from Landsat 8 subpixel shorelines. Applied Geography, 110, 102047. doi:10.1016/j.apgeog.2019.102047 | es_ES |
dc.description.references | Cabezas-Rabadán, C., Pardo-Pascual, J. E., Palomar-Vázquez, J., & Fernández-Sarría, A. (2019). Characterizing beach changes using high-frequency Sentinel-2 derived shorelines on the Valencian coast (Spanish Mediterranean). Science of The Total Environment, 691, 216-231. doi:10.1016/j.scitotenv.2019.07.084 | es_ES |
dc.description.references | Choung, Y.-J., & Jo, M.-H. (2015). Shoreline change assessment for various types of coasts using multi-temporal Landsat imagery of the east coast of South Korea. Remote Sensing Letters, 7(1), 91-100. doi:10.1080/2150704x.2015.1109157 | es_ES |
dc.description.references | Davidson, M., Van Koningsveld, M., de Kruif, A., Rawson, J., Holman, R., Lamberti, A., … Aarninkhof, S. (2007). The CoastView project: Developing video-derived Coastal State Indicators in support of coastal zone management. Coastal Engineering, 54(6-7), 463-475. doi:10.1016/j.coastaleng.2007.01.007 | es_ES |
dc.description.references | Vries, S. de, Do, A. T. K., & Stive, M. J. F. (2019). The Estimation and Evaluation of Shoreline Locations, Shoreline-Change Rates, and Coastal Volume Changes Derived from Landsat Images. Journal of Coastal Research, 35(1), 56. doi:10.2112/jcoastres-d-18-00021.1 | es_ES |
dc.description.references | Donchyts, G., Baart, F., Winsemius, H., Gorelick, N., Kwadijk, J., & van de Giesen, N. (2016). Earth’s surface water change over the past 30 years. Nature Climate Change, 6(9), 810-813. doi:10.1038/nclimate3111 | es_ES |
dc.description.references | Enríquez, A. R., Marcos, M., Álvarez-Ellacuría, A., Orfila, A., & Gomis, D. (2017). Changes in beach shoreline due to sea level rise and waves under climate change scenarios: application to the Balearic Islands (western Mediterranean). Natural Hazards and Earth System Sciences, 17(7), 1075-1089. doi:10.5194/nhess-17-1075-2017 | es_ES |
dc.description.references | Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23-35. doi:10.1016/j.rse.2013.08.029 | es_ES |
dc.description.references | Foody, G. M., Muslim, A. M., & Atkinson, P. M. (2005). Super‐resolution mapping of the waterline from remotely sensed data. International Journal of Remote Sensing, 26(24), 5381-5392. doi:10.1080/01431160500213292 | es_ES |
dc.description.references | Ford, M. (2013). Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite images: Wotje Atoll, Marshall Islands. Remote Sensing of Environment, 135, 130-140. doi:10.1016/j.rse.2013.03.027 | es_ES |
dc.description.references | García-Rubio, G., Huntley, D., & Russell, P. (2015). Evaluating shoreline identification using optical satellite images. Marine Geology, 359, 96-105. doi:10.1016/j.margeo.2014.11.002 | es_ES |
dc.description.references | Gómez-Pujol, L., Orfila, A., Álvarez-Ellacuría, A., & Tintoré, J. (2011). Controls on sediment dynamics and medium-term morphological change in a barred microtidal beach (Cala Millor, Mallorca, Western Mediterranean). Geomorphology, 132(3-4), 87-98. doi:10.1016/j.geomorph.2011.04.026 | es_ES |
dc.description.references | Gómez-Pujol, L., Orfila, A., Cañellas, B., Alvarez-Ellacuria, A., Méndez, F. J., Medina, R., & Tintoré, J. (2007). Morphodynamic classification of sandy beaches in low energetic marine environment. Marine Geology, 242(4), 235-246. doi:10.1016/j.margeo.2007.03.008 | es_ES |
dc.description.references | Graham, R. L., & Hell, P. (1985). On the History of the Minimum Spanning Tree Problem. IEEE Annals of the History of Computing, 7(1), 43-57. doi:10.1109/mahc.1985.10011 | es_ES |
dc.description.references | Guizar-Sicairos, M., Thurman, S. T., & Fienup, J. R. (2008). Efficient subpixel image registration algorithms. Optics Letters, 33(2), 156. doi:10.1364/ol.33.000156 | es_ES |
dc.description.references | Hagenaars, G., de Vries, S., Luijendijk, A. P., de Boer, W. P., & Reniers, A. J. H. M. (2018). On the accuracy of automated shoreline detection derived from satellite imagery: A case study of the sand motor mega-scale nourishment. Coastal Engineering, 133, 113-125. doi:10.1016/j.coastaleng.2017.12.011 | es_ES |
dc.description.references | Holman, R. A., & Stanley, J. (2007). The history and technical capabilities of Argus. Coastal Engineering, 54(6-7), 477-491. doi:10.1016/j.coastaleng.2007.01.003 | es_ES |
dc.description.references | Infantes, E., Orfila, A., Simarro, G., Terrados, J., Luhar, M., & Nepf, H. (2012). Effect of a seagrass (Posidonia oceanica) meadow on wave propagation. Marine Ecology Progress Series, 456, 63-72. doi:10.3354/meps09754 | es_ES |
dc.description.references | Irons, J. R., Dwyer, J. L., & Barsi, J. A. (2012). The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sensing of Environment, 122, 11-21. doi:10.1016/j.rse.2011.08.026 | es_ES |
dc.description.references | Ji, L., Zhang, L., & Wylie, B. (2009). Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogrammetric Engineering & Remote Sensing, 75(11), 1307-1317. doi:10.14358/pers.75.11.1307 | es_ES |
dc.description.references | Jones, B. M., Arp, C. D., Jorgenson, M. T., Hinkel, K. M., Schmutz, J. A., & Flint, P. L. (2009). Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophysical Research Letters, 36(3), n/a-n/a. doi:10.1029/2008gl036205 | es_ES |
dc.description.references | Li, J., & Roy, D. (2017). A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sensing, 9(9), 902. doi:10.3390/rs9090902 | es_ES |
dc.description.references | Li, L., Chen, Y., Xu, T., Liu, R., Shi, K., & Huang, C. (2015). Super-resolution mapping of wetland inundation from remote sensing imagery based on integration of back-propagation neural network and genetic algorithm. Remote Sensing of Environment, 164, 142-154. doi:10.1016/j.rse.2015.04.009 | es_ES |
dc.description.references | Li, X., & Damen, M. C. J. (2010). Coastline change detection with satellite remote sensing for environmental management of the Pearl River Estuary, China. Journal of Marine Systems, 82, S54-S61. doi:10.1016/j.jmarsys.2010.02.005 | es_ES |
dc.description.references | Li, W., & Gong, P. (2016). Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery. Remote Sensing of Environment, 179, 196-209. doi:10.1016/j.rse.2016.03.031 | es_ES |
dc.description.references | Liu, Q., Trinder, J., & Turner, I. L. (2017). Automatic super-resolution shoreline change monitoring using Landsat archival data: a case study at Narrabeen–Collaroy Beach, Australia. Journal of Applied Remote Sensing, 11(1), 016036. doi:10.1117/1.jrs.11.016036 | es_ES |
dc.description.references | Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., & Aarninkhof, S. (2018). The State of the World’s Beaches. Scientific Reports, 8(1). doi:10.1038/s41598-018-24630-6 | es_ES |
dc.description.references | Maiti, S., & Bhattacharya, A. K. (2009). Shoreline change analysis and its application to prediction: A remote sensing and statistics based approach. Marine Geology, 257(1-4), 11-23. doi:10.1016/j.margeo.2008.10.006 | es_ES |
dc.description.references | McFEETERS, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432. doi:10.1080/01431169608948714 | es_ES |
dc.description.references | Mentaschi, L., Vousdoukas, M. I., Pekel, J.-F., Voukouvalas, E., & Feyen, L. (2018). Global long-term observations of coastal erosion and accretion. Scientific Reports, 8(1). doi:10.1038/s41598-018-30904-w | es_ES |
dc.description.references | Mills, J. P., Buckley, S. J., Mitchell, H. L., Clarke, P. J., & Edwards, S. J. (2005). A geomatics data integration technique for coastal change monitoring. Earth Surface Processes and Landforms, 30(6), 651-664. doi:10.1002/esp.1165 | es_ES |
dc.description.references | Nieto, M. A., Garau, B., Balle, S., Simarro, G., Zarruk, G. A., Ortiz, A., … Orfila, A. (2010). An open source, low cost video-based coastal monitoring system. Earth Surface Processes and Landforms, 35(14), 1712-1719. doi:10.1002/esp.2025 | es_ES |
dc.description.references | Osorio, A. F., Medina, R., & Gonzalez, M. (2012). An algorithm for the measurement of shoreline and intertidal beach profiles using video imagery: PSDM. Computers & Geosciences, 46, 196-207. doi:10.1016/j.cageo.2011.12.008 | es_ES |
dc.description.references | Ouma, Y. O., & Tateishi, R. (2006). A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data. International Journal of Remote Sensing, 27(15), 3153-3181. doi:10.1080/01431160500309934 | es_ES |
dc.description.references | Pardo-Pascual, J. E., Almonacid-Caballer, J., Ruiz, L. A., & Palomar-Vázquez, J. (2012). Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sensing of Environment, 123, 1-11. doi:10.1016/j.rse.2012.02.024 | es_ES |
dc.description.references | Pardo-Pascual, J. E., Almonacid-Caballer, J., Ruiz, L. A., Palomar-Vázquez, J., & Rodrigo-Alemany, R. (2014). Evaluation of storm impact on sandy beaches of the Gulf of Valencia using Landsat imagery series. Geomorphology, 214, 388-401. doi:10.1016/j.geomorph.2014.02.020 | es_ES |
dc.description.references | Pardo-Pascual, J., Sánchez-García, E., Almonacid-Caballer, J., Palomar-Vázquez, J., Priego de los Santos, E., Fernández-Sarría, A., & Balaguer-Beser, Á. (2018). Assessing the Accuracy of Automatically Extracted Shorelines on Microtidal Beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery. Remote Sensing, 10(2), 326. doi:10.3390/rs10020326 | es_ES |
dc.description.references | Quang Tuan, N., Cong Tin, H., Quang Doc, L., & Anh Tuan, T. (2017). Historical Monitoring of Shoreline Changes in the Cua Dai Estuary, Central Vietnam Using Multi-Temporal Remote Sensing Data. Geosciences, 7(3), 72. doi:10.3390/geosciences7030072 | es_ES |
dc.description.references | Rokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery. Remote Sensing, 6(5), 4173-4189. doi:10.3390/rs6054173 | es_ES |
dc.description.references | Ruiz de Alegria-Arzaburu, A., & Masselink, G. (2010). Storm response and beach rotation on a gravel beach, Slapton Sands, U.K. Marine Geology, 278(1-4), 77-99. doi:10.1016/j.margeo.2010.09.004 | es_ES |
dc.description.references | RYU, J., WON, J., & MIN, K. (2002). Waterline extraction from Landsat TM data in a tidal flatA case study in Gomso Bay, Korea. Remote Sensing of Environment, 83(3), 442-456. doi:10.1016/s0034-4257(02)00059-7 | es_ES |
dc.description.references | Sánchez-García, E., Pardo-Pascual, J. E., Balaguer-Beser, A., & Almonacid-Caballer, J. (2015). ANALYSIS OF THE SHORELINE POSITION EXTRACTED FROM LANDSAT TM AND ETM+ IMAGERY. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3, 991-998. doi:10.5194/isprsarchives-xl-7-w3-991-2015 | es_ES |
dc.description.references | Sánchez-García, E., Balaguer-Beser, A., & Pardo-Pascual, J. E. (2017). C-Pro: A coastal projector monitoring system using terrestrial photogrammetry with a geometric horizon constraint. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 255-273. doi:10.1016/j.isprsjprs.2017.03.023 | es_ES |
dc.description.references | Sánchez-García, E., Balaguer-Beser, Á., Almonacid-Caballer, J., & Pardo-Pascual, J. E. (2019). A New Adaptive Image Interpolation Method to Define the Shoreline at Sub-Pixel Level. Remote Sensing, 11(16), 1880. doi:10.3390/rs11161880 | es_ES |
dc.description.references | Simarro, G., Ribas, F., Álvarez, A., Guillén, J., Chic, Ò., & Orfila, A. (2017). ULISES: An Open Source Code for Extrinsic Calibrations and Planview Generations in Coastal Video Monitoring Systems. Journal of Coastal Research, 335, 1217-1227. doi:10.2112/jcoastres-d-16-00022.1 | es_ES |
dc.description.references | Song, Liu, Ling, & Yue. (2019). Automatic Semi-Global Artificial Shoreline Subpixel Localization Algorithm for Landsat Imagery. Remote Sensing, 11(15), 1779. doi:10.3390/rs11151779 | es_ES |
dc.description.references | Splinter, K., Harley, M., & Turner, I. (2018). Remote Sensing Is Changing Our View of the Coast: Insights from 40 Years of Monitoring at Narrabeen-Collaroy, Australia. Remote Sensing, 10(11), 1744. doi:10.3390/rs10111744 | es_ES |
dc.description.references | Taborda, R., & Silva, A. (2012). COSMOS: A lightweight coastal video monitoring system. Computers & Geosciences, 49, 248-255. doi:10.1016/j.cageo.2012.07.013 | es_ES |
dc.description.references | Tintoré, J., Vizoso, G., Casas, B., Heslop, E., Pascual, A., Orfila, A., … Manriquez, M. (2013). SOCIB: The Balearic Islands Coastal Ocean Observing and Forecasting System Responding to Science, Technology and Society Needs. Marine Technology Society Journal, 47(1), 101-117. doi:10.4031/mtsj.47.1.10 | es_ES |
dc.description.references | Tintoré, J., Medina, R., Gómez-Pujol, L., Orfila, A., & Vizoso, G. (2009). Integrated and interdisciplinary scientific approach to coastal management. Ocean & Coastal Management, 52(10), 493-505. doi:10.1016/j.ocecoaman.2009.08.002 | es_ES |
dc.description.references | Valentini, N., Saponieri, A., Molfetta, M. G., & Damiani, L. (2017). New algorithms for shoreline monitoring from coastal video systems. Earth Science Informatics, 10(4), 495-506. doi:10.1007/s12145-017-0302-x | es_ES |
dc.description.references | Viaña-Borja, S., & Ortega-Sánchez, M. (2019). Automatic Methodology to Detect the Coastline from Landsat Images with a New Water Index Assessed on Three Different Spanish Mediterranean Deltas. Remote Sensing, 11(18), 2186. doi:10.3390/rs11182186 | es_ES |
dc.description.references | Vos, K., Harley, M. D., Splinter, K. D., Simmons, J. A., & Turner, I. L. (2019). Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coastal Engineering, 150, 160-174. doi:10.1016/j.coastaleng.2019.04.004 | es_ES |
dc.description.references | Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A., & Turner, I. L. (2019). CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environmental Modelling & Software, 122, 104528. doi:10.1016/j.envsoft.2019.104528 | es_ES |
dc.description.references | Wang, C. L., Zhao, C. X., & Yang, J. Y. (2011). Local Upsampling Fourier Transform for High Accuracy Image Rotation Estimation. Advanced Materials Research, 268-270, 1488-1493. doi:10.4028/www.scientific.net/amr.268-270.1488 | es_ES |
dc.description.references | Yamano, H., Shimazaki, H., Matsunaga, T., Ishoda, A., McClennen, C., Yokoki, H., … Kayanne, H. (2006). Evaluation of various satellite sensors for waterline extraction in a coral reef environment: Majuro Atoll, Marshall Islands. Geomorphology, 82(3-4), 398-411. doi:10.1016/j.geomorph.2006.06.003 | es_ES |