- -

Ranolazine-mediated attenuation of mechanoelectric feedback in atrial myocyte monolayers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ranolazine-mediated attenuation of mechanoelectric feedback in atrial myocyte monolayers

Mostrar el registro completo del ítem

Del-Canto, I.; Gómez-Cid, L.; Hernández-Romero, I.; Guillem Sánchez, MS.; Fernández-Santos, ME.; Atienza, F.; Such, L.... (2020). Ranolazine-mediated attenuation of mechanoelectric feedback in atrial myocyte monolayers. Frontiers in Physiology. 11:1-13. https://doi.org/10.3389/fphys.2020.00922

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166054

Ficheros en el ítem

Metadatos del ítem

Título: Ranolazine-mediated attenuation of mechanoelectric feedback in atrial myocyte monolayers
Autor: Del-Canto, Irene Gómez-Cid, Lidia Hernández-Romero, Ismael Guillem Sánchez, María Salud Fernández-Santos, María Eugenia Atienza, Felipe Such, Luis Fernández-Avilés, Francisco Chorro, Francisco J. Martínez Climent, Batiste Andreu
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
[EN] Background Mechanical stretch increases Na(+)inflow into myocytes, related to mechanisms including stretch-activated channels or Na+/H(+)exchanger activation, involving Ca(2+)increase that leads to changes in ...[+]
Palabras clave: Mechanical stretch , Mechanoelectric feedback , Fibrillatory patterns , Ranolazine , Optical mapping , Rotor dynamic analysis , HL-1 cell
Derechos de uso: Reconocimiento (by)
Fuente:
Frontiers in Physiology. (issn: 1664-042X )
DOI: 10.3389/fphys.2020.00922
Editorial:
Frontiers Media SA
Versión del editor: https://doi.org/10.3389/fphys.2020.00922
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F078/
...[+]
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F078/
info:eu-repo/grantAgreement/MINECO//PI16%2F01123/ES/Regeneración Cardiaca de Infarto Crónico Porcino mediante Inyecciónes Intramiocardiacas de Células Progenitoras Embebidas en Hidrogeles de Matriz Decelularizada/
info:eu-repo/grantAgreement/ISCIII//PI17%2F01059/ES/Estratificación y tratamiento de la fibrilación auricular basada en los mecanismos de perpetuación de la arritmia/STRATIFY-AF/
info:eu-repo/grantAgreement/ISCIII//DTS16%2F0160/
info:eu-repo/grantAgreement/ISCIII//CIBERCV16%2F11%2F00486/
info:eu-repo/grantAgreement/MINECO//CB16%2F11%2F00292/ES/ENFERMEDADES CARDIOVASCULARES/
info:eu-repo/grantAgreement/ISCIII//PI17%2F01106/ES/Estratificación y tratamiento de la fibrilación auricular basada en los mecanismos de perpetuación de la arritmia/
info:eu-repo/grantAgreement/ISCIII//PI18%2F01620/ES/Modificación de los efectos pro-arrítmicos inducidos por la sobrecarga mecánica o el remodelado ventricular/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F181/
[-]
Agradecimientos:
This work was supported by the Instituto de Salud Carlos III-FEDER (Fondo Europeo de Desarrollo Regional) (Grant Nos. CB16/11/00486, CB16/11/00292, PI16/01123, PI17/01059, PI17/01106, PI18/01620, and DTS16/0160) and the ...[+]
Tipo: Artículo

References

Agladze, N. N., Halaidych, O. V., Tsvelaya, V. A., Bruegmann, T., Kilgus, C., Sasse, P., & Agladze, K. I. (2017). Synchronization of excitable cardiac cultures of different origin. Biomaterials Science, 5(9), 1777-1785. doi:10.1039/c7bm00171a

Antzelevitch, C., Burashnikov, A., Sicouri, S., & Belardinelli, L. (2011). Electrophysiologic basis for the antiarrhythmic actions of ranolazine. Heart Rhythm, 8(8), 1281-1290. doi:10.1016/j.hrthm.2011.03.045

Belardinelli, L., Giles, W. R., Rajamani, S., Karagueuzian, H. S., & Shryock, J. C. (2015). Cardiac late Na+ current: Proarrhythmic effects, roles in long QT syndromes, and pathological relationship to CaMKII and oxidative stress. Heart Rhythm, 12(2), 440-448. doi:10.1016/j.hrthm.2014.11.009 [+]
Agladze, N. N., Halaidych, O. V., Tsvelaya, V. A., Bruegmann, T., Kilgus, C., Sasse, P., & Agladze, K. I. (2017). Synchronization of excitable cardiac cultures of different origin. Biomaterials Science, 5(9), 1777-1785. doi:10.1039/c7bm00171a

Antzelevitch, C., Burashnikov, A., Sicouri, S., & Belardinelli, L. (2011). Electrophysiologic basis for the antiarrhythmic actions of ranolazine. Heart Rhythm, 8(8), 1281-1290. doi:10.1016/j.hrthm.2011.03.045

Belardinelli, L., Giles, W. R., Rajamani, S., Karagueuzian, H. S., & Shryock, J. C. (2015). Cardiac late Na+ current: Proarrhythmic effects, roles in long QT syndromes, and pathological relationship to CaMKII and oxidative stress. Heart Rhythm, 12(2), 440-448. doi:10.1016/j.hrthm.2014.11.009

BERENFELD, O., MANDAPATI, R., DIXIT, S., SKANES, A. C., CHEN, J., MANSOUR, M., & JALIFE, J. (2000). Spatially Distributed Dominant Excitation Frequencies Reveal Hidden Organization in Atrial Fibrillation in the Langendorff-Perfused Sheep Heart. Journal of Cardiovascular Electrophysiology, 11(8), 869-879. doi:10.1111/j.1540-8167.2000.tb00066.x

Beyder, A., Strege, P. R., Reyes, S., Bernard, C. E., Terzic, A., Makielski, J., … Farrugia, G. (2012). Ranolazine Decreases Mechanosensitivity of the Voltage-Gated Sodium Ion Channel Na V 1.5. Circulation, 125(22), 2698-2706. doi:10.1161/circulationaha.112.094714

Bray, M.-A., & Wikswo, J. P. (2002). Considerations in phase plane analysis for nonstationary reentrant cardiac behavior. Physical Review E, 65(5). doi:10.1103/physreve.65.051902

Caves, R. E., Cheng, H., Choisy, S. C., Gadeberg, H. C., Bryant, S. M., Hancox, J. C., & James, A. F. (2017). Atrial-ventricular differences in rabbit cardiac voltage-gated Na + currents: Basis for atrial-selective block by ranolazine. Heart Rhythm, 14(11), 1657-1664. doi:10.1016/j.hrthm.2017.06.012

Chorro, F. J., del Canto, I., Brines, L., Such-Miquel, L., Calvo, C., Soler, C., … Such, L. (2015). Ranolazine Attenuates the Electrophysiological Effects of Myocardial Stretch in Langendorff-Perfused Rabbit Hearts. Cardiovascular Drugs and Therapy, 29(3), 231-241. doi:10.1007/s10557-015-6587-4

Claycomb, W. C., Lanson, N. A., Stallworth, B. S., Egeland, D. B., Delcarpio, J. B., Bahinski, A., & Izzo, N. J. (1998). HL-1 cells: A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proceedings of the National Academy of Sciences, 95(6), 2979-2984. doi:10.1073/pnas.95.6.2979

Climent, A. M., Guillem, M. S., Fuentes, L., Lee, P., Bollensdorff, C., Fernández-Santos, M. E., … Fernández-Avilés, F. (2015). Role of atrial tissue remodeling on rotor dynamics: an in vitro study. American Journal of Physiology-Heart and Circulatory Physiology, 309(11), H1964-H1973. doi:10.1152/ajpheart.00055.2015

De Jong, A. M., Maass, A. H., Oberdorf-Maass, S. U., Van Veldhuisen, D. J., Van Gilst, W. H., & Van Gelder, I. C. (2010). Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. Cardiovascular Research, 89(4), 754-765. doi:10.1093/cvr/cvq357

Del-Canto, I., Gomez-Cid, L., Hernandez-Romero, I., Guillem, M. S., Fern�ndez-Santos, M. E., Such, L., … Climent, A. M. (2017). Ranolazine Attenuates Stretch-induced Modifications of Electrophysiological Characteristics in HL-1 Cells. 2017 Computing in Cardiology Conference (CinC). doi:10.22489/cinc.2017.311-412

Del Canto, I., Santamaría, L., Genovés, P., Such-Miquel, L., Arias-Mutis, O., Zarzoso, M., … Chorro, F. J. (2018). Effects of the Inhibition of Late Sodium Current by GS967 on Stretch-Induced Changes in Cardiac Electrophysiology. Cardiovascular Drugs and Therapy, 32(5), 413-425. doi:10.1007/s10557-018-6822-x

Dias, P., Desplantez, T., El-Harasis, M. A., Chowdhury, R. A., Ullrich, N. D., Cabestrero de Diego, A., … Dupont, E. (2014). Characterisation of Connexin Expression and Electrophysiological Properties in Stable Clones of the HL-1 Myocyte Cell Line. PLoS ONE, 9(2), e90266. doi:10.1371/journal.pone.0090266

Entcheva, E., & Bien, H. (2006). Macroscopic optical mapping of excitation in cardiac cell networks with ultra-high spatiotemporal resolution. Progress in Biophysics and Molecular Biology, 92(2), 232-257. doi:10.1016/j.pbiomolbio.2005.10.003

Gong, M., Zhang, Z., Fragakis, N., Korantzopoulos, P., Letsas, K. P., Li, G., … Liu, T. (2017). Role of ranolazine in the prevention and treatment of atrial fibrillation: A meta-analysis of randomized clinical trials. Heart Rhythm, 14(1), 3-11. doi:10.1016/j.hrthm.2016.10.008

Gutbrod, S. R., Walton, R., Gilbert, S., Meillet, V., Jaïs, P., Hocini, M., … Efimov, I. R. (2015). Quantification of the Transmural Dynamics of Atrial Fibrillation by Simultaneous Endocardial and Epicardial Optical Mapping in an Acute Sheep Model. Circulation: Arrhythmia and Electrophysiology, 8(2), 456-465. doi:10.1161/circep.114.002545

Hong, J. H., Choi, J. H., Kim, T. Y., & Lee, K. J. (2008). Spiral reentry waves in confluent layer of HL-1 cardiomyocyte cell lines. Biochemical and Biophysical Research Communications, 377(4), 1269-1273. doi:10.1016/j.bbrc.2008.10.168

Houston, C., Tzortzis, K. N., Roney, C., Saglietto, A., Pitcher, D. S., Cantwell, C. D., … Dupont, E. (2018). Characterisation of re-entrant circuit (or rotational activity) in vitro using the HL1-6 myocyte cell line. Journal of Molecular and Cellular Cardiology, 119, 155-164. doi:10.1016/j.yjmcc.2018.05.002

Ishikawa, K., Watanabe, S., Lee, P., Akar, F. G., Lee, A., Bikou, O., … Hajjar, R. J. (2018). Acute Left Ventricular Unloading Reduces Atrial Stretch and Inhibits Atrial Arrhythmias. Journal of the American College of Cardiology, 72(7), 738-750. doi:10.1016/j.jacc.2018.05.059

Jalife, J. (2010). Deja vu in the theories of atrial fibrillation dynamics. Cardiovascular Research, 89(4), 766-775. doi:10.1093/cvr/cvq364

Jerling, M. (2006). Clinical Pharmacokinetics of Ranolazine. Clinical Pharmacokinetics, 45(5), 469-491. doi:10.2165/00003088-200645050-00003

Karagueuzian, H. S., Pezhouman, A., Angelini, M., & Olcese, R. (2017). Enhanced Late Na and Ca Currents as Effective Antiarrhythmic Drug Targets. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00036

Laughner, J. I., Ng, F. S., Sulkin, M. S., Arthur, R. M., & Efimov, I. R. (2012). Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes. American Journal of Physiology-Heart and Circulatory Physiology, 303(7), H753-H765. doi:10.1152/ajpheart.00404.2012

Ma, J., Luo, A., Wu, L., Wan, W., Zhang, P., Ren, Z., … Belardinelli, L. (2012). Calmodulin kinase II and protein kinase C mediate the effect of increased intracellular calcium to augment late sodium current in rabbit ventricular myocytes. American Journal of Physiology-Cell Physiology, 302(8), C1141-C1151. doi:10.1152/ajpcell.00374.2011

Maltsev, V. A., & Undrovinas, A. (2008). Late sodium current in failing heart: Friend or foe? Progress in Biophysics and Molecular Biology, 96(1-3), 421-451. doi:10.1016/j.pbiomolbio.2007.07.010

Meo, M., Pambrun, T., Derval, N., Dumas-Pomier, C., Puyo, S., Duchâteau, J., … Dubois, R. (2018). Noninvasive Assessment of Atrial Fibrillation Complexity in Relation to Ablation Characteristics and Outcome. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.00929

Nattel, S., & Dobrev, D. (2012). The multidimensional role of calcium in atrial fibrillation pathophysiology: mechanistic insights and therapeutic opportunities. European Heart Journal, 33(15), 1870-1877. doi:10.1093/eurheartj/ehs079

Nesterenko, V. V., Zygmunt, A. C., Rajamani, S., Belardinelli, L., & Antzelevitch, C. (2011). Mechanisms of atrial-selective block of Na+ channels by ranolazine: II. Insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 301(4), H1615-H1624. doi:10.1152/ajpheart.00243.2011

Neves, J. S., Leite-Moreira, A. M., Neiva-Sousa, M., Almeida-Coelho, J., Castro-Ferreira, R., & Leite-Moreira, A. F. (2016). Acute Myocardial Response to Stretch: What We (don’t) Know. Frontiers in Physiology, 6. doi:10.3389/fphys.2015.00408

Pandit, S. V., Berenfeld, O., Anumonwo, J. M. B., Zaritski, R. M., Kneller, J., Nattel, S., & Jalife, J. (2005). Ionic Determinants of Functional Reentry in a 2-D Model of Human Atrial Cells During Simulated Chronic Atrial Fibrillation. Biophysical Journal, 88(6), 3806-3821. doi:10.1529/biophysj.105.060459

Pandit, S. V., & Jalife, J. (2013). Rotors and the Dynamics of Cardiac Fibrillation. Circulation Research, 112(5), 849-862. doi:10.1161/circresaha.111.300158

Patel, N., & Kluger, J. (2018). Ranolazine for Prevention of Atrial Fibrillation after Cardiac Surgery: A Systematic Review. Cureus. doi:10.7759/cureus.2584

Peyronnet, R., Nerbonne, J. M., & Kohl, P. (2016). Cardiac Mechano-Gated Ion Channels and Arrhythmias. Circulation Research, 118(2), 311-329. doi:10.1161/circresaha.115.305043

Prosser, B. L., Ward, C. W., & Lederer, W. J. (2013). X-ROS signalling is enhanced and graded by cyclic cardiomyocyte stretch. Cardiovascular Research, 98(2), 307-314. doi:10.1093/cvr/cvt066

Quinn, T. A., & Kohl, P. (2016). Rabbit models of cardiac mechano-electric and mechano-mechanical coupling. Progress in Biophysics and Molecular Biology, 121(2), 110-122. doi:10.1016/j.pbiomolbio.2016.05.003

Ravelli, F., & Allessie, M. (1997). Effects of Atrial Dilatation on Refractory Period and Vulnerability to Atrial Fibrillation in the Isolated Langendorff-Perfused Rabbit Heart. Circulation, 96(5), 1686-1695. doi:10.1161/01.cir.96.5.1686

RAVELLI, F., MASÈ, M., DEL GRECO, M., MARINI, M., & DISERTORI, M. (2010). Acute Atrial Dilatation Slows Conduction and Increases AF Vulnerability in the Human Atrium. Journal of Cardiovascular Electrophysiology, 22(4), 394-401. doi:10.1111/j.1540-8167.2010.01939.x

Salinet, J., Schlindwein, F. S., Stafford, P., Almeida, T. P., Li, X., Vanheusden, F. J., … Ng, G. A. (2017). Propagation of meandering rotors surrounded by areas of high dominant frequency in persistent atrial fibrillation. Heart Rhythm, 14(9), 1269-1278. doi:10.1016/j.hrthm.2017.04.031

Seo, K., Inagaki, M., Hidaka, I., Fukano, H., Sugimachi, M., Hisada, T., … Sugiura, S. (2014). Relevance of cardiomyocyte mechano-electric coupling to stretch-induced arrhythmias: Optical voltage/calcium measurement in mechanically stimulated cells, tissues and organs. Progress in Biophysics and Molecular Biology, 115(2-3), 129-139. doi:10.1016/j.pbiomolbio.2014.07.008

Shryock, J. C., Song, Y., Rajamani, S., Antzelevitch, C., & Belardinelli, L. (2013). The arrhythmogenic consequences of increasing late INa in the cardiomyocyte. Cardiovascular Research, 99(4), 600-611. doi:10.1093/cvr/cvt145

Song, Y., Shryock, J. C., & Belardinelli, L. (2008). An increase of late sodium current induces delayed afterdepolarizations and sustained triggered activity in atrial myocytes. American Journal of Physiology-Heart and Circulatory Physiology, 294(5), H2031-H2039. doi:10.1152/ajpheart.01357.2007

Sossalla, S., Kallmeyer, B., Wagner, S., Mazur, M., Maurer, U., Toischer, K., … Maier, L. S. (2010). Altered Na+Currents in Atrial Fibrillation. Journal of the American College of Cardiology, 55(21), 2330-2342. doi:10.1016/j.jacc.2009.12.055

Strege, P., Beyder, A., Bernard, C., Crespo-Diaz, R., Behfar, A., Terzic, A., … Farrugia, G. (2012). Ranolazine inhibits shear sensitivity of endogenous Na+current and spontaneous action potentials in HL-1 cells. Channels, 6(6), 457-462. doi:10.4161/chan.22017

Tsai, C.-T., Chiang, F.-T., Tseng, C.-D., Yu, C.-C., Wang, Y.-C., Lai, L.-P., … Lin, J.-L. (2011). Mechanical Stretch of Atrial Myocyte Monolayer Decreases Sarcoplasmic Reticulum Calcium Adenosine Triphosphatase Expression and Increases Susceptibility to Repolarization Alternans. Journal of the American College of Cardiology, 58(20), 2106-2115. doi:10.1016/j.jacc.2011.07.039

White, S. M., Constantin, P. E., & Claycomb, W. C. (2004). Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. American Journal of Physiology-Heart and Circulatory Physiology, 286(3), H823-H829. doi:10.1152/ajpheart.00986.2003

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem