Mostrar el registro sencillo del ítem
dc.contributor.author | Del-Canto, Irene | es_ES |
dc.contributor.author | Gómez-Cid, Lidia | es_ES |
dc.contributor.author | Hernández-Romero, Ismael | es_ES |
dc.contributor.author | Guillem Sánchez, María Salud | es_ES |
dc.contributor.author | Fernández-Santos, María Eugenia | es_ES |
dc.contributor.author | Atienza, Felipe | es_ES |
dc.contributor.author | Such, Luis | es_ES |
dc.contributor.author | Fernández-Avilés, Francisco | es_ES |
dc.contributor.author | Chorro, Francisco J. | es_ES |
dc.contributor.author | Martínez Climent, Batiste Andreu | es_ES |
dc.date.accessioned | 2021-05-07T03:30:55Z | |
dc.date.available | 2021-05-07T03:30:55Z | |
dc.date.issued | 2020-08-04 | es_ES |
dc.identifier.issn | 1664-042X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166054 | |
dc.description.abstract | [EN] Background Mechanical stretch increases Na(+)inflow into myocytes, related to mechanisms including stretch-activated channels or Na+/H(+)exchanger activation, involving Ca(2+)increase that leads to changes in electrophysiological properties favoring arrhythmia induction. Ranolazine is an antianginal drug with confirmed beneficial effects against cardiac arrhythmias associated with the augmentation ofI(NaL)current and Ca(2+)overload. Objective This study investigates the effects of mechanical stretch on activation patterns in atrial cell monolayers and its pharmacological response to ranolazine. Methods Confluent HL-1 cells were cultured in silicone membrane plates and were stretched to 110% of original length. The characteristics ofin vitrofibrillation (dominant frequency, regularity index, density of phase singularities, rotor meandering, and rotor curvature) were analyzed using optical mapping in order to study the mechanoelectric response to stretch under control conditions and ranolazine action. Results HL-1 cell stretch increased fibrillatory dominant frequency (3.65 +/- 0.69 vs. 4.35 +/- 0.74 Hz,p< 0.01) and activation complexity (1.97 +/- 0.45 vs. 2.66 +/- 0.58 PS/cm(2),p< 0.01) under control conditions. These effects were related to stretch-induced changes affecting the reentrant patterns, comprising a decrease in rotor meandering (0.72 +/- 0.12 vs. 0.62 +/- 0.12 cm/s,p< 0.001) and an increase in wavefront curvature (4.90 +/- 0.42 vs. 5.68 +/- 0.40 rad/cm,p< 0.001). Ranolazine reduced stretch-induced effects, attenuating the activation rate increment (12.8% vs. 19.7%,p< 0.01) and maintaining activation complexity-both parameters being lower during stretch than under control conditions. Moreover, under baseline conditions, ranolazine slowed and regularized the activation patterns (3.04 +/- 0.61 vs. 3.65 +/- 0.69 Hz,p< 0.01). Conclusion Ranolazine attenuates the modifications of activation patterns induced by mechanical stretch in atrial myocyte monolayers. | es_ES |
dc.description.sponsorship | This work was supported by the Instituto de Salud Carlos III-FEDER (Fondo Europeo de Desarrollo Regional) (Grant Nos. CB16/11/00486, CB16/11/00292, PI16/01123, PI17/01059, PI17/01106, PI18/01620, and DTS16/0160) and the Generalitat Valenciana (Grant Nos. PROMETEO/2018/078 and APOSTD/2018/181). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Physiology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Mechanical stretch | es_ES |
dc.subject | Mechanoelectric feedback | es_ES |
dc.subject | Fibrillatory patterns | es_ES |
dc.subject | Ranolazine | es_ES |
dc.subject | Optical mapping | es_ES |
dc.subject | Rotor dynamic analysis | es_ES |
dc.subject | HL-1 cell | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Ranolazine-mediated attenuation of mechanoelectric feedback in atrial myocyte monolayers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fphys.2020.00922 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F078/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI16%2F01123/ES/Regeneración Cardiaca de Infarto Crónico Porcino mediante Inyecciónes Intramiocardiacas de Células Progenitoras Embebidas en Hidrogeles de Matriz Decelularizada/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//PI17%2F01059/ES/Estratificación y tratamiento de la fibrilación auricular basada en los mecanismos de perpetuación de la arritmia/STRATIFY-AF/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//DTS16%2F0160/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//CIBERCV16%2F11%2F00486/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CB16%2F11%2F00292/ES/ENFERMEDADES CARDIOVASCULARES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//PI17%2F01106/ES/Estratificación y tratamiento de la fibrilación auricular basada en los mecanismos de perpetuación de la arritmia/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//PI18%2F01620/ES/Modificación de los efectos pro-arrítmicos inducidos por la sobrecarga mecánica o el remodelado ventricular/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F181/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Del-Canto, I.; Gómez-Cid, L.; Hernández-Romero, I.; Guillem Sánchez, MS.; Fernández-Santos, ME.; Atienza, F.; Such, L.... (2020). Ranolazine-mediated attenuation of mechanoelectric feedback in atrial myocyte monolayers. Frontiers in Physiology. 11:1-13. https://doi.org/10.3389/fphys.2020.00922 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fphys.2020.00922 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.identifier.pmid | 32848863 | es_ES |
dc.identifier.pmcid | PMC7417656 | es_ES |
dc.relation.pasarela | S\418604 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Agladze, N. N., Halaidych, O. V., Tsvelaya, V. A., Bruegmann, T., Kilgus, C., Sasse, P., & Agladze, K. I. (2017). Synchronization of excitable cardiac cultures of different origin. Biomaterials Science, 5(9), 1777-1785. doi:10.1039/c7bm00171a | es_ES |
dc.description.references | Antzelevitch, C., Burashnikov, A., Sicouri, S., & Belardinelli, L. (2011). Electrophysiologic basis for the antiarrhythmic actions of ranolazine. Heart Rhythm, 8(8), 1281-1290. doi:10.1016/j.hrthm.2011.03.045 | es_ES |
dc.description.references | Belardinelli, L., Giles, W. R., Rajamani, S., Karagueuzian, H. S., & Shryock, J. C. (2015). Cardiac late Na+ current: Proarrhythmic effects, roles in long QT syndromes, and pathological relationship to CaMKII and oxidative stress. Heart Rhythm, 12(2), 440-448. doi:10.1016/j.hrthm.2014.11.009 | es_ES |
dc.description.references | BERENFELD, O., MANDAPATI, R., DIXIT, S., SKANES, A. C., CHEN, J., MANSOUR, M., & JALIFE, J. (2000). Spatially Distributed Dominant Excitation Frequencies Reveal Hidden Organization in Atrial Fibrillation in the Langendorff-Perfused Sheep Heart. Journal of Cardiovascular Electrophysiology, 11(8), 869-879. doi:10.1111/j.1540-8167.2000.tb00066.x | es_ES |
dc.description.references | Beyder, A., Strege, P. R., Reyes, S., Bernard, C. E., Terzic, A., Makielski, J., … Farrugia, G. (2012). Ranolazine Decreases Mechanosensitivity of the Voltage-Gated Sodium Ion Channel Na V 1.5. Circulation, 125(22), 2698-2706. doi:10.1161/circulationaha.112.094714 | es_ES |
dc.description.references | Bray, M.-A., & Wikswo, J. P. (2002). Considerations in phase plane analysis for nonstationary reentrant cardiac behavior. Physical Review E, 65(5). doi:10.1103/physreve.65.051902 | es_ES |
dc.description.references | Caves, R. E., Cheng, H., Choisy, S. C., Gadeberg, H. C., Bryant, S. M., Hancox, J. C., & James, A. F. (2017). Atrial-ventricular differences in rabbit cardiac voltage-gated Na + currents: Basis for atrial-selective block by ranolazine. Heart Rhythm, 14(11), 1657-1664. doi:10.1016/j.hrthm.2017.06.012 | es_ES |
dc.description.references | Chorro, F. J., del Canto, I., Brines, L., Such-Miquel, L., Calvo, C., Soler, C., … Such, L. (2015). Ranolazine Attenuates the Electrophysiological Effects of Myocardial Stretch in Langendorff-Perfused Rabbit Hearts. Cardiovascular Drugs and Therapy, 29(3), 231-241. doi:10.1007/s10557-015-6587-4 | es_ES |
dc.description.references | Claycomb, W. C., Lanson, N. A., Stallworth, B. S., Egeland, D. B., Delcarpio, J. B., Bahinski, A., & Izzo, N. J. (1998). HL-1 cells: A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proceedings of the National Academy of Sciences, 95(6), 2979-2984. doi:10.1073/pnas.95.6.2979 | es_ES |
dc.description.references | Climent, A. M., Guillem, M. S., Fuentes, L., Lee, P., Bollensdorff, C., Fernández-Santos, M. E., … Fernández-Avilés, F. (2015). Role of atrial tissue remodeling on rotor dynamics: an in vitro study. American Journal of Physiology-Heart and Circulatory Physiology, 309(11), H1964-H1973. doi:10.1152/ajpheart.00055.2015 | es_ES |
dc.description.references | De Jong, A. M., Maass, A. H., Oberdorf-Maass, S. U., Van Veldhuisen, D. J., Van Gilst, W. H., & Van Gelder, I. C. (2010). Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. Cardiovascular Research, 89(4), 754-765. doi:10.1093/cvr/cvq357 | es_ES |
dc.description.references | Del-Canto, I., Gomez-Cid, L., Hernandez-Romero, I., Guillem, M. S., Fern�ndez-Santos, M. E., Such, L., … Climent, A. M. (2017). Ranolazine Attenuates Stretch-induced Modifications of Electrophysiological Characteristics in HL-1 Cells. 2017 Computing in Cardiology Conference (CinC). doi:10.22489/cinc.2017.311-412 | es_ES |
dc.description.references | Del Canto, I., Santamaría, L., Genovés, P., Such-Miquel, L., Arias-Mutis, O., Zarzoso, M., … Chorro, F. J. (2018). Effects of the Inhibition of Late Sodium Current by GS967 on Stretch-Induced Changes in Cardiac Electrophysiology. Cardiovascular Drugs and Therapy, 32(5), 413-425. doi:10.1007/s10557-018-6822-x | es_ES |
dc.description.references | Dias, P., Desplantez, T., El-Harasis, M. A., Chowdhury, R. A., Ullrich, N. D., Cabestrero de Diego, A., … Dupont, E. (2014). Characterisation of Connexin Expression and Electrophysiological Properties in Stable Clones of the HL-1 Myocyte Cell Line. PLoS ONE, 9(2), e90266. doi:10.1371/journal.pone.0090266 | es_ES |
dc.description.references | Entcheva, E., & Bien, H. (2006). Macroscopic optical mapping of excitation in cardiac cell networks with ultra-high spatiotemporal resolution. Progress in Biophysics and Molecular Biology, 92(2), 232-257. doi:10.1016/j.pbiomolbio.2005.10.003 | es_ES |
dc.description.references | Gong, M., Zhang, Z., Fragakis, N., Korantzopoulos, P., Letsas, K. P., Li, G., … Liu, T. (2017). Role of ranolazine in the prevention and treatment of atrial fibrillation: A meta-analysis of randomized clinical trials. Heart Rhythm, 14(1), 3-11. doi:10.1016/j.hrthm.2016.10.008 | es_ES |
dc.description.references | Gutbrod, S. R., Walton, R., Gilbert, S., Meillet, V., Jaïs, P., Hocini, M., … Efimov, I. R. (2015). Quantification of the Transmural Dynamics of Atrial Fibrillation by Simultaneous Endocardial and Epicardial Optical Mapping in an Acute Sheep Model. Circulation: Arrhythmia and Electrophysiology, 8(2), 456-465. doi:10.1161/circep.114.002545 | es_ES |
dc.description.references | Hong, J. H., Choi, J. H., Kim, T. Y., & Lee, K. J. (2008). Spiral reentry waves in confluent layer of HL-1 cardiomyocyte cell lines. Biochemical and Biophysical Research Communications, 377(4), 1269-1273. doi:10.1016/j.bbrc.2008.10.168 | es_ES |
dc.description.references | Houston, C., Tzortzis, K. N., Roney, C., Saglietto, A., Pitcher, D. S., Cantwell, C. D., … Dupont, E. (2018). Characterisation of re-entrant circuit (or rotational activity) in vitro using the HL1-6 myocyte cell line. Journal of Molecular and Cellular Cardiology, 119, 155-164. doi:10.1016/j.yjmcc.2018.05.002 | es_ES |
dc.description.references | Ishikawa, K., Watanabe, S., Lee, P., Akar, F. G., Lee, A., Bikou, O., … Hajjar, R. J. (2018). Acute Left Ventricular Unloading Reduces Atrial Stretch and Inhibits Atrial Arrhythmias. Journal of the American College of Cardiology, 72(7), 738-750. doi:10.1016/j.jacc.2018.05.059 | es_ES |
dc.description.references | Jalife, J. (2010). Deja vu in the theories of atrial fibrillation dynamics. Cardiovascular Research, 89(4), 766-775. doi:10.1093/cvr/cvq364 | es_ES |
dc.description.references | Jerling, M. (2006). Clinical Pharmacokinetics of Ranolazine. Clinical Pharmacokinetics, 45(5), 469-491. doi:10.2165/00003088-200645050-00003 | es_ES |
dc.description.references | Karagueuzian, H. S., Pezhouman, A., Angelini, M., & Olcese, R. (2017). Enhanced Late Na and Ca Currents as Effective Antiarrhythmic Drug Targets. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00036 | es_ES |
dc.description.references | Laughner, J. I., Ng, F. S., Sulkin, M. S., Arthur, R. M., & Efimov, I. R. (2012). Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes. American Journal of Physiology-Heart and Circulatory Physiology, 303(7), H753-H765. doi:10.1152/ajpheart.00404.2012 | es_ES |
dc.description.references | Ma, J., Luo, A., Wu, L., Wan, W., Zhang, P., Ren, Z., … Belardinelli, L. (2012). Calmodulin kinase II and protein kinase C mediate the effect of increased intracellular calcium to augment late sodium current in rabbit ventricular myocytes. American Journal of Physiology-Cell Physiology, 302(8), C1141-C1151. doi:10.1152/ajpcell.00374.2011 | es_ES |
dc.description.references | Maltsev, V. A., & Undrovinas, A. (2008). Late sodium current in failing heart: Friend or foe? Progress in Biophysics and Molecular Biology, 96(1-3), 421-451. doi:10.1016/j.pbiomolbio.2007.07.010 | es_ES |
dc.description.references | Meo, M., Pambrun, T., Derval, N., Dumas-Pomier, C., Puyo, S., Duchâteau, J., … Dubois, R. (2018). Noninvasive Assessment of Atrial Fibrillation Complexity in Relation to Ablation Characteristics and Outcome. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.00929 | es_ES |
dc.description.references | Nattel, S., & Dobrev, D. (2012). The multidimensional role of calcium in atrial fibrillation pathophysiology: mechanistic insights and therapeutic opportunities. European Heart Journal, 33(15), 1870-1877. doi:10.1093/eurheartj/ehs079 | es_ES |
dc.description.references | Nesterenko, V. V., Zygmunt, A. C., Rajamani, S., Belardinelli, L., & Antzelevitch, C. (2011). Mechanisms of atrial-selective block of Na+ channels by ranolazine: II. Insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 301(4), H1615-H1624. doi:10.1152/ajpheart.00243.2011 | es_ES |
dc.description.references | Neves, J. S., Leite-Moreira, A. M., Neiva-Sousa, M., Almeida-Coelho, J., Castro-Ferreira, R., & Leite-Moreira, A. F. (2016). Acute Myocardial Response to Stretch: What We (don’t) Know. Frontiers in Physiology, 6. doi:10.3389/fphys.2015.00408 | es_ES |
dc.description.references | Pandit, S. V., Berenfeld, O., Anumonwo, J. M. B., Zaritski, R. M., Kneller, J., Nattel, S., & Jalife, J. (2005). Ionic Determinants of Functional Reentry in a 2-D Model of Human Atrial Cells During Simulated Chronic Atrial Fibrillation. Biophysical Journal, 88(6), 3806-3821. doi:10.1529/biophysj.105.060459 | es_ES |
dc.description.references | Pandit, S. V., & Jalife, J. (2013). Rotors and the Dynamics of Cardiac Fibrillation. Circulation Research, 112(5), 849-862. doi:10.1161/circresaha.111.300158 | es_ES |
dc.description.references | Patel, N., & Kluger, J. (2018). Ranolazine for Prevention of Atrial Fibrillation after Cardiac Surgery: A Systematic Review. Cureus. doi:10.7759/cureus.2584 | es_ES |
dc.description.references | Peyronnet, R., Nerbonne, J. M., & Kohl, P. (2016). Cardiac Mechano-Gated Ion Channels and Arrhythmias. Circulation Research, 118(2), 311-329. doi:10.1161/circresaha.115.305043 | es_ES |
dc.description.references | Prosser, B. L., Ward, C. W., & Lederer, W. J. (2013). X-ROS signalling is enhanced and graded by cyclic cardiomyocyte stretch. Cardiovascular Research, 98(2), 307-314. doi:10.1093/cvr/cvt066 | es_ES |
dc.description.references | Quinn, T. A., & Kohl, P. (2016). Rabbit models of cardiac mechano-electric and mechano-mechanical coupling. Progress in Biophysics and Molecular Biology, 121(2), 110-122. doi:10.1016/j.pbiomolbio.2016.05.003 | es_ES |
dc.description.references | Ravelli, F., & Allessie, M. (1997). Effects of Atrial Dilatation on Refractory Period and Vulnerability to Atrial Fibrillation in the Isolated Langendorff-Perfused Rabbit Heart. Circulation, 96(5), 1686-1695. doi:10.1161/01.cir.96.5.1686 | es_ES |
dc.description.references | RAVELLI, F., MASÈ, M., DEL GRECO, M., MARINI, M., & DISERTORI, M. (2010). Acute Atrial Dilatation Slows Conduction and Increases AF Vulnerability in the Human Atrium. Journal of Cardiovascular Electrophysiology, 22(4), 394-401. doi:10.1111/j.1540-8167.2010.01939.x | es_ES |
dc.description.references | Salinet, J., Schlindwein, F. S., Stafford, P., Almeida, T. P., Li, X., Vanheusden, F. J., … Ng, G. A. (2017). Propagation of meandering rotors surrounded by areas of high dominant frequency in persistent atrial fibrillation. Heart Rhythm, 14(9), 1269-1278. doi:10.1016/j.hrthm.2017.04.031 | es_ES |
dc.description.references | Seo, K., Inagaki, M., Hidaka, I., Fukano, H., Sugimachi, M., Hisada, T., … Sugiura, S. (2014). Relevance of cardiomyocyte mechano-electric coupling to stretch-induced arrhythmias: Optical voltage/calcium measurement in mechanically stimulated cells, tissues and organs. Progress in Biophysics and Molecular Biology, 115(2-3), 129-139. doi:10.1016/j.pbiomolbio.2014.07.008 | es_ES |
dc.description.references | Shryock, J. C., Song, Y., Rajamani, S., Antzelevitch, C., & Belardinelli, L. (2013). The arrhythmogenic consequences of increasing late INa in the cardiomyocyte. Cardiovascular Research, 99(4), 600-611. doi:10.1093/cvr/cvt145 | es_ES |
dc.description.references | Song, Y., Shryock, J. C., & Belardinelli, L. (2008). An increase of late sodium current induces delayed afterdepolarizations and sustained triggered activity in atrial myocytes. American Journal of Physiology-Heart and Circulatory Physiology, 294(5), H2031-H2039. doi:10.1152/ajpheart.01357.2007 | es_ES |
dc.description.references | Sossalla, S., Kallmeyer, B., Wagner, S., Mazur, M., Maurer, U., Toischer, K., … Maier, L. S. (2010). Altered Na+Currents in Atrial Fibrillation. Journal of the American College of Cardiology, 55(21), 2330-2342. doi:10.1016/j.jacc.2009.12.055 | es_ES |
dc.description.references | Strege, P., Beyder, A., Bernard, C., Crespo-Diaz, R., Behfar, A., Terzic, A., … Farrugia, G. (2012). Ranolazine inhibits shear sensitivity of endogenous Na+current and spontaneous action potentials in HL-1 cells. Channels, 6(6), 457-462. doi:10.4161/chan.22017 | es_ES |
dc.description.references | Tsai, C.-T., Chiang, F.-T., Tseng, C.-D., Yu, C.-C., Wang, Y.-C., Lai, L.-P., … Lin, J.-L. (2011). Mechanical Stretch of Atrial Myocyte Monolayer Decreases Sarcoplasmic Reticulum Calcium Adenosine Triphosphatase Expression and Increases Susceptibility to Repolarization Alternans. Journal of the American College of Cardiology, 58(20), 2106-2115. doi:10.1016/j.jacc.2011.07.039 | es_ES |
dc.description.references | White, S. M., Constantin, P. E., & Claycomb, W. C. (2004). Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. American Journal of Physiology-Heart and Circulatory Physiology, 286(3), H823-H829. doi:10.1152/ajpheart.00986.2003 | es_ES |