- -

Reforesting drylands under novel climates with extreme drought filters: The importance of trait-based species selection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reforesting drylands under novel climates with extreme drought filters: The importance of trait-based species selection

Mostrar el registro completo del ítem

Campo García, ADD.; Segura-Orenga, G.; Ceacero, CJ.; González-Sanchis, M.; Molina, AJ.; Reyna Domenech, S.; Hermoso, J. (2020). Reforesting drylands under novel climates with extreme drought filters: The importance of trait-based species selection. Forest Ecology and Management. 467:1-13. https://doi.org/10.1016/j.foreco.2020.118156

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166055

Ficheros en el ítem

Metadatos del ítem

Título: Reforesting drylands under novel climates with extreme drought filters: The importance of trait-based species selection
Autor: Campo García, Antonio Dámaso Del Segura-Orenga, Guillem Ceacero, Carlos J. González-Sanchis, María Molina, Antonio J. Reyna Domenech, Santiago Hermoso, Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal
Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària
Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Fecha difusión:
Resumen:
[EN] Having regard to the substantial world-scale forest restoration needs, the efforts must be done efficiently, which necessarily forces to consider the adaptation of new forests to the extremes arising from climate ...[+]
Palabras clave: Adaptive forest management , Ecosystem restoration , Quercus , Pinus , Juniperus , Fraxinus , Arbutus , Boosted regression tree (BRT)
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Forest Ecology and Management. (issn: 0378-1127 )
DOI: 10.1016/j.foreco.2020.118156
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.foreco.2020.118156
Código del Proyecto:
info:eu-repo/grantAgreement/EC//LIFE17 CCA%2FES%2F000063/EU/Coupling water, fire and climate resilience with biomass production in Forestry to adapt watersheds to climate change/LIFE RESILIENT FORESTS/
info:eu-repo/grantAgreement/UPV//CNMY18%2F0301%2F26
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2017-86839-C3-2-R/ES/INCORPORACION DE CRITERIOS ECO-HIDROLOGICOS Y DE RESILIENCIA FRENTE A PERTURBACIONES CLIMATICAS Y DEL FUEGO EN LA PLANIFICACION Y GESTION FORESTAL DE CUENCAS MEDITERRANEAS/
info:eu-repo/grantAgreement/AEI//RED2018-102719-T/ES/RED ESPAÑOLA DE SELVICULTURA ADAPTATIVA AL CAMBIO CLIMATICO/
Agradecimientos:
This study is part of two research projects: "Comprehensive quality control of the reforestation works in the public forests of Cortes de Pallas, Valencia" signed between the Polytechnic University of Valencia (Re-ForeST) ...[+]
Tipo: Artículo

References

Abrantes, J., Campelo, F., García-González, I., & Nabais, C. (2012). Environmental control of vessel traits in Quercus ilex under Mediterranean climate: relating xylem anatomy to function. Trees, 27(3), 655-662. doi:10.1007/s00468-012-0820-6

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., … Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660-684. doi:10.1016/j.foreco.2009.09.001

Al-Qaddi, N., Vessella, F., Stephan, J., Al-Eisawi, D., & Schirone, B. (2016). Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Regional Environmental Change, 17(1), 143-156. doi:10.1007/s10113-016-0987-2 [+]
Abrantes, J., Campelo, F., García-González, I., & Nabais, C. (2012). Environmental control of vessel traits in Quercus ilex under Mediterranean climate: relating xylem anatomy to function. Trees, 27(3), 655-662. doi:10.1007/s00468-012-0820-6

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., … Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660-684. doi:10.1016/j.foreco.2009.09.001

Al-Qaddi, N., Vessella, F., Stephan, J., Al-Eisawi, D., & Schirone, B. (2016). Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Regional Environmental Change, 17(1), 143-156. doi:10.1007/s10113-016-0987-2

Alrababah, M. A., Bani-Hani, M. G., Alhamad, M. N., & Bataineh, M. M. (2008). Boosting seedling survival and growth under semi-arid Mediterranean conditions: Selecting appropriate species under rainfed and wastewater irrigation. Journal of Arid Environments, 72(9), 1606-1612. doi:10.1016/j.jaridenv.2008.03.013

Andivia, E., Zuccarini, P., Grau, B., de Herralde, F., Villar-Salvador, P., & Savé, R. (2018). Rooting big and deep rapidly: the ecological roots of pine species distribution in southern Europe. Trees, 33(1), 293-303. doi:10.1007/s00468-018-1777-x

AUSSENAC, G., & VALETTE, J. C. (1982). Comportement hydrique estival de Cedrus atlantica Manetti, Quercus ilex L. et Quercus pubescens Willd. et de divers pins dans le Mont Ventoux. Annales des Sciences Forestières, 39(1), 41-62. doi:10.1051/forest:19820103

Badía, D., Valero, R., Gracia, A., Martí, C., & Molina, F. (2007). Ten-Year Growth of Woody Species Planted in Reclaimed Mined Banks with Different Slopes. Arid Land Research and Management, 21(1), 67-79. doi:10.1080/15324980601094022

Baquedano, F. J., & Castillo, F. J. (2006). Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. Trees, 20(6), 689-700. doi:10.1007/s00468-006-0084-0

Bouche, P. S., Delzon, S., Choat, B., Badel, E., Brodribb, T. J., Burlett, R., … Jansen, S. (2015). Are needles of Pinus pinaster more vulnerable to xylem embolism than branches? New insights from X-ray computed tomography. Plant, Cell & Environment, 39(4), 860-870. doi:10.1111/pce.12680

Brodribb, T. J., McAdam, S. A. M., Jordan, G. J., & Martins, S. C. V. (2014). Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proceedings of the National Academy of Sciences, 111(40), 14489-14493. doi:10.1073/pnas.1407930111

Burdett, A. N. (1990). Physiological processes in plantation establishment and the development of specifications for forest planting stock. Canadian Journal of Forest Research, 20(4), 415-427. doi:10.1139/x90-059

Carrión, J. S., & Fernández, S. (2009). The survival of the â natural potential vegetationâ concept (or the power of tradition). Journal of Biogeography, 36(12), 2202-2203. doi:10.1111/j.1365-2699.2009.02209.x

Castell, C., Terradas, J., & Tenhunen, J. D. (1994). Water relations, gas exchange, and growth of resprouts and mature plant shoots of Arbutus unedo L. and Quercus ilex L. Oecologia, 98(2), 201-211. doi:10.1007/bf00341473

Castillo, J. M., Casal, A. E., Luque, C. J., Luque, T., & Figueroa, M. E. (2002). Comparative Field Summer Stress of Three Tree Species Co-occurring in Mediterranean Coastal Dunes. Photosynthetica, 40(1), 49-56. doi:10.1023/a:1020133921204

Ceacero, C. J., Díaz-Hernández, J. L., del Campo, A. D., & Navarro-Cerrillo, R. M. (2012). Interactions between soil gravel content and neighboring vegetation control management in oak seedling establishment success in Mediterranean environments. Forest Ecology and Management, 271, 10-18. doi:10.1016/j.foreco.2012.01.044

Ceacero, C.J., Navarro-Cerrillo, R.M., Díaz-Hernández, J.L., del Campo, A., 2014. Is tree shelter protection an effective complement to weed competition management in improving the morpho- physiological response of holm oak planted seedlings ?. iForest 7(1), 289–299.

Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., … Zanne, A. E. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491(7426), 752-755. doi:10.1038/nature11688

Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00442

Corcuera, L., Camarero, J. J., & Gil-Pelegrín, E. (2004). EFFECTS OF A SEVERE DROUGHT ON GROWTH AND WOOD ANATOMICAL PROPERTIES OF QUERCUS FAGINEA. IAWA Journal, 25(2), 185-204. doi:10.1163/22941932-90000360

David-Schwartz, R., Paudel, I., Mizrachi, M., Delzon, S., Cochard, H., Lukyanov, V., … Cohen, S. (2016). Indirect Evidence for Genetic Differentiation in Vulnerability to Embolism in Pinus halepensis. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00768

Campo, A. D., Navarro Cerrillo, R. M., Hermoso, J., & Ibáñez, A. J. (2007). Relationships between site and stock quality in Pinus halepensis Mill. reforestation on semiarid landscapes in eastern Spain. Annals of Forest Science, 64(7), 719-731. doi:10.1051/forest:2007052

Del Campo, A. D., Navarro-Cerrillo, R. M., Hermoso, J., & Ibáñez, A. J. (2007). Relationship between root growth potential and field performance in Aleppo pine. Annals of Forest Science, 64(5), 541-548. doi:10.1051/forest:2007031

del Campo, A.D., Segura G., 2009. Definición de protocolos para el control de calidad de planta en vivero y puesta en obra de la misma. Entrega GVA, Universidad Politécnica de Valencia. Valencia, 97 pp inédito.

Del Campo, A. D., Navarro, R. M., & Ceacero, C. J. (2009). Seedling quality and field performance of commercial stocklots of containerized holm oak (Quercus ilex) in Mediterranean Spain: an approach for establishing a quality standard. New Forests, 39(1), 19-37. doi:10.1007/s11056-009-9152-9

del Campo, A.D., Verdú, M., del Campo, María A. Prada Sáez. 2012. Fraxinus ornus L. In: Pemán J., Navarro- Cerrillo R.M., Nicolás J.L., Prada M.A., Serrada R. (Coords.). Handbook of Forest Seed and Seedling production and managament (vol I). In: Spanish (Producción y Manejo de Semillas y Plantas Forestales. Tomo I). Ed. Organismo Autónomo Parques Nacionales, Serie Forestal, Madrid, pp. 558–570.

DELZON, S., DOUTHE, C., SALA, A., & COCHARD, H. (2010). Mechanism of water‐stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary‐seeding. Plant, Cell & Environment, 33(12), 2101-2111. doi:10.1111/j.1365-3040.2010.02208.x

Domínguez Núñez, J. A., Serrano, J. S., Barreal, J. A. R., & González, J. A. S. de O. (2006). The influence of mycorrhization with Tuber melanosporum in the afforestation of a Mediterranean site with Quercus ilex and Quercus faginea. Forest Ecology and Management, 231(1-3), 226-233. doi:10.1016/j.foreco.2006.05.052

Dougherty, P.M., Duryea, M.L., 1991. Regeneration: an overview of past trends and basic steps needed to ensure future success. In: Duryea, M.L., Dougherty, P.M. (Eds), Forest Regeneration Manual. Forestry Sciences, 36. Springer, Dordrecht.

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802-813. doi:10.1111/j.1365-2656.2008.01390.x

Elith, J., Leathwick, J., 2017. Boosted regression trees for ecological modelling. p. 22. http://cran.r‐project.org/web/packages/dismo/vignettes/brt.pdf (accessed 10.05.2019).

FAO, 2010. Global Forest Resources Assessment 2010. Main report. FAO Forestry paper 163, Rome.

Farris, E., Filibeck, G., Marignani, M., & Rosati, L. (2010). The power of potential natural vegetation (and of spatial-temporal scale): a response to Carrión & Fernández (2009). Journal of Biogeography, 37(11), 2211-2213. doi:10.1111/j.1365-2699.2010.02323.x

Fei, S., Desprez, J. M., Potter, K. M., Jo, I., Knott, J. A., & Oswalt, C. M. (2017). Divergence of species responses to climate change. Science Advances, 3(5). doi:10.1126/sciadv.1603055

Fern�ndez, M., Gil, L., & Pardos, J. A. (2000). Effects of water supply on gas exchange in Pinus pinaster Ait. provenances during their first growing season. Annals of Forest Science, 57(1), 9-16. doi:10.1051/forest:2000107

Froux, F., Huc, R., Ducrey, M., & Dreyer, E. (2002). Xylem hydraulic efficiency versus vulnerability in seedlings of four contrasting Mediterranean tree species (Cedrus atlantica, Cupressus sempervirens, Pinus halepensis and Pinus nigra). Annals of Forest Science, 59(4), 409-418. doi:10.1051/forest:2002015

García de la Serrana, R., Vilagrosa, A., & Alloza, J. A. (2015). Pine mortality in southeast Spain after an extreme dry and warm year: interactions among drought stress, carbohydrates and bark beetle attack. Trees, 29(6), 1791-1804. doi:10.1007/s00468-015-1261-9

Garcia-Forner, N., Biel, C., Savé, R., & Martínez-Vilalta, J. (2016). Isohydric species are not necessarily more carbon limited than anisohydric species during drought. Tree Physiology, 37(4), 441-455. doi:10.1093/treephys/tpw109

Gil-Pelegrín, E., Saz, M.A., Cuadrat, J.M., Peguero-Pina, J.J., Sancho-Knapik, D., 2017. Oaks Under Mediterranean-Type Climates: Functional Response to Summer Aridity, in: Gil-Pelegrín E., Peguero-Pina J., Sancho-Knapik D. (Eds.), Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Tree Physiology 7, Springer, Cham.

González-Rodríguez, V., Villar, R., Casado, R., Suárez-Bonnet, E., Quero, J. L., & Navarro-Cerrillo, R. M. (2011). Spatio-temporal heterogeneity effects on seedling growth and establishment in four Quercus species. Annals of Forest Science, 68(7), 1217-1232. doi:10.1007/s13595-011-0069-z

Gortan, E., Nardini, A., Gasco, A., & Salleo, S. (2009). The hydraulic conductance of Fraxinus ornus leaves is constrained by soil water availability and coordinated with gas exchange rates. Tree Physiology, 29(4), 529-539. doi:10.1093/treephys/tpn053

Hällfors, M. H., Aikio, S., & Schulman, L. E. (2017). Quantifying the need and potential of assisted migration. Biological Conservation, 205, 34-41. doi:10.1016/j.biocon.2016.11.023

Hermoso, J., 2017. Calidad de planta de Pinus halepensis Mill. en repoblaciones forestales en la provincia de Valencia. Definición y contraste de los estándares de calidad de planta. Tesis doctoral. Universidad de Córdoba, Córdoba.

Hof, A. R., Dymond, C. C., & Mladenoff, D. J. (2017). Climate change mitigation through adaptation: the effectiveness of forest diversification by novel tree planting regimes. Ecosphere, 8(11), e01981. doi:10.1002/ecs2.1981

IBM Corp. Released, 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.

Jacobs, D. F., Oliet, J. A., Aronson, J., Bolte, A., Bullock, J. M., Donoso, P. J., … Weber, J. C. (2015). Restoring forests: What constitutes success in the twenty-first century? New Forests, 46(5-6), 601-614. doi:10.1007/s11056-015-9513-5

Jandl, R., Spathelf, P., Bolte, A., & Prescott, C. E. (2019). Forest adaptation to climate change—is non-management an option? Annals of Forest Science, 76(2). doi:10.1007/s13595-019-0827-x

Johnson, D. M., McCulloh, K. A., Woodruff, D. R., & Meinzer, F. C. (2012). Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different? Plant Science, 195, 48-53. doi:10.1016/j.plantsci.2012.06.010

Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van der Maaten, E., … Hanewinkel, M. (2014). Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146, 69-83. doi:10.1016/j.jenvman.2014.07.030

Löf, M., Dey, D. C., Navarro, R. M., & Jacobs, D. F. (2012). Mechanical site preparation for forest restoration. New Forests, 43(5-6), 825-848. doi:10.1007/s11056-012-9332-x

Löf, M., Madsen, P., Metslaid, M., Witzell, J., & Jacobs, D. F. (2019). Restoring forests: regeneration and ecosystem function for the future. New Forests, 50(2), 139-151. doi:10.1007/s11056-019-09713-0

MAPA, 2019. Ministerio de Agricultura, Pesca y Alimentación. Anuario de Estadistica Forestal 2008. https://www.mapa.gob.es/es/desarrollo-rural/estadisticas/forestal_anuario_2008.aspx (accessed 26 June 2019).

Martin-StPaul, N. K., Longepierre, D., Huc, R., Delzon, S., Burlett, R., Joffre, R., … Cochard, H. (2014). How reliable are methods to assess xylem vulnerability to cavitation? The issue of «open vessel» artifact in oaks. Tree Physiology, 34(8), 894-905. doi:10.1093/treephys/tpu059

Martinez-Ferri, E., Balaguer, L., Valladares, F., Chico, J. M., & Manrique, E. (2000). Energy dissipation in drought-avoiding and drought-tolerant tree species at midday during the Mediterranean summer. Tree Physiology, 20(2), 131-138. doi:10.1093/treephys/20.2.131

Martinez-Vilalta, J., Mangiron, M., Ogaya, R., Sauret, M., Serrano, L., Penuelas, J., & Pinol, J. (2003). Sap flow of three co-occurring Mediterranean woody species under varying atmospheric and soil water conditions. Tree Physiology, 23(11), 747-758. doi:10.1093/treephys/23.11.747

Mediavilla, S., & Escudero, A. (2004). Stomatal responses to drought of mature trees and seedlings of two co-occurring Mediterranean oaks. Forest Ecology and Management, 187(2-3), 281-294. doi:10.1016/j.foreco.2003.07.006

Melzack, R. N., Bravdo, B., & Riov, J. (1985). The effect of water stress on photosynthesis and related parameters in Pinus halepensis. Physiologia Plantarum, 64(3), 295-300. doi:10.1111/j.1399-3054.1985.tb03343.x

Muzzi, E., & Fabbri, T. (2007). Revegetation of mineral clay soils: shrub and tree species compared. Land Degradation & Development, 18(4), 441-451. doi:10.1002/ldr.786

Navarro Garnica, M. (Coord.), 1977. Técnicas de forestación 1975. Monografías 9, 2nd ed. Ministerio de Agricultura, ICONA, Madrid.

NAVARROCERRILLO, R., ARIZA, D., GONZALEZ, L., DELCAMPO, A., ARJONA, M., & CEACERO, C. (2009). Legume living mulch for afforestation in agricultural land in Southern Spain. Soil and Tillage Research, 102(1), 38-44. doi:10.1016/j.still.2008.07.013

Navarro-Cerrillo, R. M., Sánchez-Salguero, R., Rodriguez, C., Duque Lazo, J., Moreno-Rojas, J. M., Palacios-Rodriguez, G., & Camarero, J. J. (2019). Is thinning an alternative when trees could die in response to drought? The case of planted Pinus nigra and P. Sylvestris stands in southern Spain. Forest Ecology and Management, 433, 313-324. doi:10.1016/j.foreco.2018.11.006

Oliveras, I., Martínez-Vilalta, J., Jimenez-Ortiz, T., José Lledó, M., Escarré, A., & Piñol, J. (2003). Plant Ecology, 169(1), 131-141. doi:10.1023/a:1026223516580

Padilla, F. M., Ortega, R., Sánchez, J., & Pugnaire, F. I. (2009). Rethinking species selection for restoration of arid shrublands. Basic and Applied Ecology, 10(7), 640-647. doi:10.1016/j.baae.2009.03.003

Padilla, F. M., Miranda, J. de D., Ortega, R., Hervás, M., Sánchez, J., & Pugnaire, F. I. (2011). Does shelter enhance early seedling survival in dry environments? A test with eight Mediterranean species. Applied Vegetation Science, 14(1), 31-39. doi:10.1111/j.1654-109x.2010.01094.x

Palacios, G., Navarro Cerrillo, R. M., del Campo, A., & Toral, M. (2009). Site preparation, stock quality and planting date effect on early establishment of Holm oak (Quercus ilex L.) seedlings. Ecological Engineering, 35(1), 38-46. doi:10.1016/j.ecoleng.2008.09.006

Pausas, J. G., Bladé, C., Valdecantos, A., Seva, J. P., Fuentes, D., Alloza, J. A., … Vallejo, R. (2004). Pines and oaks in the restoration of Mediterranean landscapes of Spain: New perspectives for an old practice – a review. Plant Ecology (formerly Vegetatio), 171(1/2), 209-220. doi:10.1023/b:vege.0000029381.63336.20

Peguero-Pina, J. J., Sancho-Knapik, D., Barrón, E., Camarero, J. J., Vilagrosa, A., & Gil-Pelegrín, E. (2014). Morphological and physiological divergences within Quercus ilex support the existence of different ecotypes depending on climatic dryness. Annals of Botany, 114(2), 301-313. doi:10.1093/aob/mcu108

Petruzzellis, F., Nardini, A., Savi, T., Tonet, V., Castello, M., & Bacaro, G. (2018). Less safety for more efficiency: water relations and hydraulics of the invasive treeAilanthus altissima(Mill.) Swingle compared with nativeFraxinus ornusL. Tree Physiology, 39(1), 76-87. doi:10.1093/treephys/tpy076

PICON, C., GUEHL, J. M., & FERHI, A. (1996). Leaf gas exchange and carbon isotope composition responses to drought in a drought-avoiding (Pinus pinaster) and a drought-tolerant (Quercus petraea) species under present and elevated atmospheric CO2 concentrations. Plant, Cell and Environment, 19(2), 182-190. doi:10.1111/j.1365-3040.1996.tb00239.x

Pittermann, J., Choat, B., Jansen, S., Stuart, S. A., Lynn, L., & Dawson, T. E. (2010). The Relationships between Xylem Safety and Hydraulic Efficiency in the Cupressaceae: The Evolution of Pit Membrane Form and Function    . Plant Physiology, 153(4), 1919-1931. doi:10.1104/pp.110.158824

R Core Team, 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (accessed 10.05.2019).

Ridgeway, G., 2017. Generalized Boosted Regression Models. https://cran.r-project.org/web/packages/gbm/gbm.pdf (accessed 10.05.2019).

Rivas-Martínez, S., 1987. Memoria del mapa de Series de Vegetación de España. I.C.O.N.A. Serie Técnica. Ministerio Agricultura, Pesca y Alimentación, Madrid.

Robert, E.M.R., Mencuccini, M., Martínez-Vilalta, J., 2017. The anatomy and functioning of the xylem in oaks, in: Gil-Pelegrín E., Peguero-Pina J., Sancho-Knapik D. (Eds.), Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Tree Physiology 7, Springer, Cham.

Ruiz de la Torre, J., 2006. Flora Mayor. Dirección General para la Biodiversidad, Ministerio de Medio Ambiente, Madrid.

Ryser, P. (1996). The Importance of Tissue Density for Growth and Life Span of Leaves and Roots: A Comparison of Five Ecologically Contrasting Grasses. Functional Ecology, 10(6), 717. doi:10.2307/2390506

Sansilvestri, R., Frascaria-Lacoste, N., & Fernández-Manjarrés, J. F. (2015). Reconstructing a deconstructed concept: Policy tools for implementing assisted migration for species and ecosystem management. Environmental Science & Policy, 51, 192-201. doi:10.1016/j.envsci.2015.04.005

Stahl, U., Reu, B., & Wirth, C. (2014). Predicting species’ range limits from functional traits for the tree flora of North America. Proceedings of the National Academy of Sciences, 111(38), 13739-13744. doi:10.1073/pnas.1300673111

Tavşanoğlu, Ç., & Pausas, J. G. (2018). A functional trait database for Mediterranean Basin plants. Scientific Data, 5(1). doi:10.1038/sdata.2018.135

Trifilò, P., Nardini, A., Gullo, M. A. L., Barbera, P. M., Savi, T., & Raimondo, F. (2015). Diurnal changes in embolism rate in nine dry forest trees: relationships with species-specific xylem vulnerability, hydraulic strategy and wood traits. Tree Physiology, 35(7), 694-705. doi:10.1093/treephys/tpv049

Turnbull, L. A., Paul-Victor, C., Schmid, B., & Purves, D. W. (2008). GROWTH RATES, SEED SIZE, AND PHYSIOLOGY: DO SMALL-SEEDED SPECIES REALLY GROW FASTER. Ecology, 89(5), 1352-1363. doi:10.1890/07-1531.1

Vadell, E., de-Miguel, S., Pemán, J., 2016. Large-scale reforestation and afforestation policy in Spain: A historical review of its underlying ecological, socioeconomic and political dynamics. Land Use Policy 55, 37–48.

Valiente, J. A., Estrela, M. J., Corell, D., Fuentes, D., Valdecantos, A., & Baeza, M. J. (2011). Fog water collection and reforestation at a mountain location in a western Mediterranean basin region: air-mass origins and synoptic analysis. Erdkunde, 65(3), 277-290. doi:10.3112/erdkunde.2011.03.05

Van den Driessche, R. (1992). Absolute and relative growth of Douglas-fir seedlings of different sizes. Tree Physiology, 10(2), 141-152. doi:10.1093/treephys/10.2.141

Vieira, J., Rossi, S., Campelo, F., Freitas, H., & Nabais, C. (2013). Xylogenesis of Pinus pinaster under a Mediterranean climate. Annals of Forest Science, 71(1), 71-80. doi:10.1007/s13595-013-0341-5

Villar-Salvador, P., Puértolas, J., Cuesta, B., Peñuelas, J. L., Uscola, M., Heredia-Guerrero, N., & Rey Benayas, J. M. (2012). Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival. New Forests, 43(5-6), 755-770. doi:10.1007/s11056-012-9328-6

Villar-Salvador, P., Peñuelas, J. L., Nicolás-Peragón, J. L., Benito, L. F., & Domínguez-Lerena, S. (2013). Is nitrogen fertilization in the nursery a suitable tool for enhancing the performance of Mediterranean oak plantations? New Forests, 44(5), 733-751. doi:10.1007/s11056-013-9374-8

Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116(5), 882-892. doi:10.1111/j.0030-1299.2007.15559.x

Vizcaíno-Palomar, N., Revuelta-Eugercios, B., Zavala, M. A., Alía, R., & González-Martínez, S. C. (2014). The Role of Population Origin and Microenvironment in Seedling Emergence and Early Survival in Mediterranean Maritime Pine (Pinus pinaster Aiton). PLoS ONE, 9(10), e109132. doi:10.1371/journal.pone.0109132

Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821-827. doi:10.1038/nature02403

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem