Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez-Prieto, Luis Miguel | es_ES |
dc.contributor.author | Marbaix, Julien | es_ES |
dc.contributor.author | Asensio, Juan M. | es_ES |
dc.contributor.author | Cerezo-Navarrete, Christian | es_ES |
dc.contributor.author | Fazzini, Pier-Francesco | es_ES |
dc.contributor.author | Soulantica, Katerina | es_ES |
dc.contributor.author | Chaudret, Bruno | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2021-05-07T03:32:15Z | |
dc.date.available | 2021-05-07T03:32:15Z | |
dc.date.issued | 2020-07-24 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166058 | |
dc.description.abstract | [EN] Magnetically induced catalysis using magnetic nanoparticles (MagNPs) as heating agents is a new efficient method to perform reactions at high temperatures. However, the main limitation is the lack of stability of the catalysts operating in such harsh conditions. Normally, above 500 degrees C, significant sintering of MagNPs takes place. Here we present encapsulated magnetic FeCo and Co NPs in carbon (Co@C and FeCo@C) as an ultrastable heating material suitable for high-temperature magnetic catalysis. Indeed, FeCo@C or a mixture of FeCo@C:Co@C (2:1) decorated with Ni or Pt-Sn showed good stability in terms of temperature and catalytic performances. In addition, consistent conversions and selectivities regarding conventional heating were observed for CO2 methanation (Sabatier reaction), propane dehydrogenation (PDH), and propane dry reforming (PDR). Thus, the encapsulation of MagNPs in carbon constitutes a major advance in the development of stable catalysts for high-temperature magnetically induced catalysis. | es_ES |
dc.description.sponsorship | The authors thank the Instituto de Tecnologia Quimica (ITQ), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de València (UPV) for the facilities and Severo Ochoa programe (SEV-2016-0683), "Juan de la Cierva" by MINECO (IJCI-2016-27966), and Primero Proyectos de Investigación PAID-06-18 (SP20180088) for financial support. The authors acknowledge ERC Advanced Grants (MONACAT-2015-694159 and SynCatMatch-2014671093). We also thank the Electron Microscopy Service of the UPV for TEM facilities. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.relation.ispartof | ACS Applied Nano Materials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Magnetic nanoparticles | es_ES |
dc.subject | Carbon encapsulation | es_ES |
dc.subject | Magnetic catalysis | es_ES |
dc.subject | Methanation | es_ES |
dc.subject | Propane dry reforming | es_ES |
dc.subject | Propane dehydrogenation | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1021/acsanm.0c01392 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/694159/EU/Magnetism and Optics for Nanoparticle Catalysis/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//IJCI-2016-27966/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20180088/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Martínez-Prieto, LM.; Marbaix, J.; Asensio, JM.; Cerezo-Navarrete, C.; Fazzini, P.; Soulantica, K.; Chaudret, B.... (2020). Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis. ACS Applied Nano Materials. 3(7):7076-7087. https://doi.org/10.1021/acsanm.0c01392 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1021/acsanm.0c01392 | es_ES |
dc.description.upvformatpinicio | 7076 | es_ES |
dc.description.upvformatpfin | 7087 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.eissn | 2574-0970 | es_ES |
dc.identifier.pmid | 32743352 | es_ES |
dc.identifier.pmcid | PMC7386363 | es_ES |
dc.relation.pasarela | S\418873 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Ceylan, S., Friese, C., Lammel, C., Mazac, K., & Kirschning, A. (2008). Inductive Heating for Organic Synthesis by Using Functionalized Magnetic Nanoparticles Inside Microreactors. Angewandte Chemie International Edition, 47(46), 8950-8953. doi:10.1002/anie.200801474 | es_ES |
dc.description.references | Ceylan, S., Coutable, L., Wegner, J., & Kirschning, A. (2011). Inductive Heating with Magnetic Materials inside Flow Reactors. Chemistry - A European Journal, 17(6), 1884-1893. doi:10.1002/chem.201002291 | es_ES |
dc.description.references | Houlding, T. K., Gao, P., Degirmenci, V., Tchabanenko, K., & Rebrov, E. V. (2015). Mechanochemical synthesis of TiO2/NiFe2O4 magnetic catalysts for operation under RF field. Materials Science and Engineering: B, 193, 175-180. doi:10.1016/j.mseb.2014.12.011 | es_ES |
dc.description.references | Asensio, J. M., Miguel, A. B., Fazzini, P., van Leeuwen, P. W. N. M., & Chaudret, B. (2019). Hydrodeoxygenation Using Magnetic Induction: High‐Temperature Heterogeneous Catalysis in Solution. Angewandte Chemie International Edition, 58(33), 11306-11310. doi:10.1002/anie.201904366 | es_ES |
dc.description.references | Liu, Y., Gao, P., Cherkasov, N., & Rebrov, E. V. (2016). Direct amide synthesis over core–shell TiO2@NiFe2O4 catalysts in a continuous flow radiofrequency-heated reactor. RSC Advances, 6(103), 100997-101007. doi:10.1039/c6ra22659k | es_ES |
dc.description.references | Liu, Y., Cherkasov, N., Gao, P., Fernández, J., Lees, M. R., & Rebrov, E. V. (2017). The enhancement of direct amide synthesis reaction rate over TiO 2 @SiO 2 @NiFe 2 O 4 magnetic catalysts in the continuous flow under radiofrequency heating. Journal of Catalysis, 355, 120-130. doi:10.1016/j.jcat.2017.09.010 | es_ES |
dc.description.references | Meffre, A., Mehdaoui, B., Connord, V., Carrey, J., Fazzini, P. F., Lachaize, S., … Chaudret, B. (2015). Complex Nano-objects Displaying Both Magnetic and Catalytic Properties: A Proof of Concept for Magnetically Induced Heterogeneous Catalysis. Nano Letters, 15(5), 3241-3248. doi:10.1021/acs.nanolett.5b00446 | es_ES |
dc.description.references | Bordet, A., Lacroix, L.-M., Fazzini, P.-F., Carrey, J., Soulantica, K., & Chaudret, B. (2016). Magnetically Induced Continuous CO2Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power. Angewandte Chemie International Edition, 55(51), 15894-15898. doi:10.1002/anie.201609477 | es_ES |
dc.description.references | Mortensen, P. M., Engbæk, J. S., Vendelbo, S. B., Hansen, M. F., & Østberg, M. (2017). Direct Hysteresis Heating of Catalytically Active Ni–Co Nanoparticles as Steam Reforming Catalyst. Industrial & Engineering Chemistry Research, 56(47), 14006-14013. doi:10.1021/acs.iecr.7b02331 | es_ES |
dc.description.references | Marbaix, J., Mille, N., Lacroix, L.-M., Asensio, J. M., Fazzini, P.-F., Soulantica, K., … Chaudret, B. (2020). Tuning the Composition of FeCo Nanoparticle Heating Agents for Magnetically Induced Catalysis. ACS Applied Nano Materials, 3(4), 3767-3778. doi:10.1021/acsanm.0c00444 | es_ES |
dc.description.references | Vinum, M. G., Almind, M. R., Engbæk, J. S., Vendelbo, S. B., Hansen, M. F., Frandsen, C., … Mortensen, P. M. (2018). Dual‐Function Cobalt–Nickel Nanoparticles Tailored for High‐Temperature Induction‐Heated Steam Methane Reforming. Angewandte Chemie International Edition, 57(33), 10569-10573. doi:10.1002/anie.201804832 | es_ES |
dc.description.references | Kale, S. S., Asensio, J. M., Estrader, M., Werner, M., Bordet, A., Yi, D., … Chaudret, B. (2019). Iron carbide or iron carbide/cobalt nanoparticles for magnetically-induced CO2 hydrogenation over Ni/SiRAlOx catalysts. Catalysis Science & Technology, 9(10), 2601-2607. doi:10.1039/c9cy00437h | es_ES |
dc.description.references | Varsano, F., Bellusci, M., La Barbera, A., Petrecca, M., Albino, M., & Sangregorio, C. (2019). Dry reforming of methane powered by magnetic induction. International Journal of Hydrogen Energy, 44(38), 21037-21044. doi:10.1016/j.ijhydene.2019.02.055 | es_ES |
dc.description.references | Wang, W., Duong-Viet, C., Xu, Z., Ba, H., Tuci, G., Giambastiani, G., … Pham-Huu, C. (2020). CO2 methanation under dynamic operational mode using nickel nanoparticles decorated carbon felt (Ni/OCF) combined with inductive heating. Catalysis Today, 357, 214-220. doi:10.1016/j.cattod.2019.02.050 | es_ES |
dc.description.references | Benkowsky, G. Induktionserwärmung: Härten, Glühen, Schmelzen, Löten, Schweißn: Grundlagen und praktische Anleitungen für Induktionserwärmungsverfahren, insbesondere auf dem Gebiet der Hochfrequenzerwärmung, 5th ed. Verlag Technik: Berlin, 1990; p 12. | es_ES |
dc.description.references | Carrey, J., Mehdaoui, B., & Respaud, M. (2011). Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. Journal of Applied Physics, 109(8), 083921. doi:10.1063/1.3551582 | es_ES |
dc.description.references | Khodakov, A. Y., Chu, W., & Fongarland, P. (2007). Advances in the Development of Novel Cobalt Fischer−Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. Chemical Reviews, 107(5), 1692-1744. doi:10.1021/cr050972v | es_ES |
dc.description.references | Liu, J., Guo, Z., Childers, D., Schweitzer, N., Marshall, C. L., Klie, R. F., … Meyer, R. J. (2014). Correlating the degree of metal–promoter interaction to ethanol selectivity over MnRh/CNTs CO hydrogenation catalysts. Journal of Catalysis, 313, 149-158. doi:10.1016/j.jcat.2014.03.002 | es_ES |
dc.description.references | Ghaib, K., Nitz, K., & Ben-Fares, F.-Z. (2016). Chemical Methanation of CO2: A Review. ChemBioEng Reviews, 3(6), 266-275. doi:10.1002/cben.201600022 | es_ES |
dc.description.references | Cored, J., García-Ortiz, A., Iborra, S., Climent, M. J., Liu, L., Chuang, C.-H., … Corma, A. (2019). Hydrothermal Synthesis of Ruthenium Nanoparticles with a Metallic Core and a Ruthenium Carbide Shell for Low-Temperature Activation of CO2 to Methane. Journal of the American Chemical Society, 141(49), 19304-19311. doi:10.1021/jacs.9b07088 | es_ES |
dc.description.references | Schiermeier, Q. (2013). Location may stymie wind and solar power benefits. Nature. doi:10.1038/nature.2013.13258 | es_ES |
dc.description.references | Wilhelm, D. ., Simbeck, D. ., Karp, A. ., & Dickenson, R. . (2001). Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Processing Technology, 71(1-3), 139-148. doi:10.1016/s0378-3820(01)00140-0 | es_ES |
dc.description.references | Sattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E., & Weckhuysen, B. M. (2014). Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chemical Reviews, 114(20), 10613-10653. doi:10.1021/cr5002436 | es_ES |
dc.description.references | Siahvashi, A., Chesterfield, D., & Adesina, A. A. (2013). Propane CO2 (dry) reforming over bimetallic Mo–Ni/Al2O3 catalyst. Chemical Engineering Science, 93, 313-325. doi:10.1016/j.ces.2013.02.003 | es_ES |
dc.description.references | Lee, M.-H., Nagaraja, B. M., Lee, K. Y., & Jung, K.-D. (2014). Dehydrogenation of alkane to light olefin over PtSn/θ-Al2O3 catalyst: Effects of Sn loading. Catalysis Today, 232, 53-62. doi:10.1016/j.cattod.2013.10.011 | es_ES |
dc.description.references | Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757 | es_ES |
dc.description.references | Liu, L., Zakharov, D. N., Arenal, R., Concepcion, P., Stach, E. A., & Corma, A. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 9(1). doi:10.1038/s41467-018-03012-6 | es_ES |
dc.description.references | Liu, L., Gao, F., Concepción, P., & Corma, A. (2017). A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. Journal of Catalysis, 350, 218-225. doi:10.1016/j.jcat.2017.03.014 | es_ES |
dc.description.references | Liu, L., Concepción, P., & Corma, A. (2016). Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. Journal of Catalysis, 340, 1-9. doi:10.1016/j.jcat.2016.04.006 | es_ES |
dc.description.references | Fu, T., Wang, M., Cai, W., Cui, Y., Gao, F., Peng, L., … Ding, W. (2014). Acid-Resistant Catalysis without Use of Noble Metals: Carbon Nitride with Underlying Nickel. ACS Catalysis, 4(8), 2536-2543. doi:10.1021/cs500523k | es_ES |
dc.description.references | Garnero, C., Lepesant, M., Garcia-Marcelot, C., Shin, Y., Meny, C., Farger, P., … Chaudret, B. (2019). Chemical Ordering in Bimetallic FeCo Nanoparticles: From a Direct Chemical Synthesis to Application As Efficient High-Frequency Magnetic Material. Nano Letters, 19(2), 1379-1386. doi:10.1021/acs.nanolett.8b05083 | es_ES |
dc.description.references | Lepesant, M., Bardet, B., Lacroix, L.-M., Fau, P., Garnero, C., Chaudret, B., … Gautier, G. (2018). Impregnation of High-Magnetization FeCo Nanoparticles in Mesoporous Silicon: An Experimental Approach. Frontiers in Chemistry, 6. doi:10.3389/fchem.2018.00609 | es_ES |
dc.description.references | Deng, J., Ren, P., Deng, D., & Bao, X. (2015). Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 54(7), 2100-2104. doi:10.1002/anie.201409524 | es_ES |
dc.description.references | Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143(1-2), 47-57. doi:10.1016/j.ssc.2007.03.052 | es_ES |
dc.description.references | Hadjiev, V. G., Iliev, M. N., & Vergilov, I. V. (1988). The Raman spectra of Co3O4. Journal of Physics C: Solid State Physics, 21(7), L199-L201. doi:10.1088/0022-3719/21/7/007 | es_ES |
dc.description.references | Saxena, P., & Varshney, D. (2017). Effect of d-block element substitution on structural and dielectric properties on iron cobaltite. Journal of Alloys and Compounds, 705, 320-326. doi:10.1016/j.jallcom.2017.02.120 | es_ES |
dc.description.references | Biesinger, M. C., Payne, B. P., Grosvenor, A. P., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2011). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257(7), 2717-2730. doi:10.1016/j.apsusc.2010.10.051 | es_ES |
dc.description.references | Cullity, B. D., & Graham, C. D. (2008). Introduction to Magnetic Materials. doi:10.1002/9780470386323 | es_ES |
dc.description.references | Zhang, Y., Zhu, Y., Wang, K., Li, D., Wang, D., Ding, F., … Zhang, Z. (2018). Controlled synthesis of Co2C nanochains using cobalt laurate as precursor: Structure, growth mechanism and magnetic properties. Journal of Magnetism and Magnetic Materials, 456, 71-77. doi:10.1016/j.jmmm.2018.02.014 | es_ES |
dc.description.references | Desvaux, C., Amiens, C., Fejes, P., Renaud, P., Respaud, M., Lecante, P., … Chaudret, B. (2005). Multimillimetre-large superlattices of air-stable iron–cobalt nanoparticles. Nature Materials, 4(10), 750-753. doi:10.1038/nmat1480 | es_ES |
dc.description.references | Desvaux, C., Dumestre, F., Amiens, C., Respaud, M., Lecante, P., Snoeck, E., … Chaudret, B. (2009). FeCo nanoparticles from an organometallic approach: synthesis, organisation and physical properties. Journal of Materials Chemistry, 19(20), 3268. doi:10.1039/b816509b | es_ES |
dc.description.references | Nogués, J., & Schuller, I. K. (1999). Exchange bias. Journal of Magnetism and Magnetic Materials, 192(2), 203-232. doi:10.1016/s0304-8853(98)00266-2 | es_ES |
dc.description.references | Saville, S. L., Qi, B., Baker, J., Stone, R., Camley, R. E., Livesey, K. L., … Thompson Mefford, O. (2014). The formation of linear aggregates in magnetic hyperthermia: Implications on specific absorption rate and magnetic anisotropy. Journal of Colloid and Interface Science, 424, 141-151. doi:10.1016/j.jcis.2014.03.007 | es_ES |
dc.description.references | Mehdaoui, B., Tan, R. P., Meffre, A., Carrey, J., Lachaize, S., Chaudret, B., & Respaud, M. (2013). Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results. Physical Review B, 87(17). doi:10.1103/physrevb.87.174419 | es_ES |
dc.description.references | Mehdaoui, B., Meffre, A., Lacroix, L.-M., Carrey, J., Lachaize, S., Respaud, M., … Chaudret, B. (2010). Magnetic anisotropy determination and magnetic hyperthermia properties of small Fe nanoparticles in the superparamagnetic regime. Journal of Applied Physics, 107(9), 09A324. doi:10.1063/1.3348795 | es_ES |
dc.description.references | Serantes, D., Simeonidis, K., Angelakeris, M., Chubykalo-Fesenko, O., Marciello, M., Morales, M. del P., … Martinez-Boubeta, C. (2014). Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling. The Journal of Physical Chemistry C, 118(11), 5927-5934. doi:10.1021/jp410717m | es_ES |
dc.description.references | Asensio, J. M., Marbaix, J., Mille, N., Lacroix, L.-M., Soulantica, K., Fazzini, P.-F., … Chaudret, B. (2019). To heat or not to heat: a study of the performances of iron carbide nanoparticles in magnetic heating. Nanoscale, 11(12), 5402-5411. doi:10.1039/c8nr10235j | es_ES |
dc.description.references | Xiong, H., Lin, S., Goetze, J., Pletcher, P., Guo, H., Kovarik, L., … Datye, A. K. (2017). Thermally Stable and Regenerable Platinum–Tin Clusters for Propane Dehydrogenation Prepared by Atom Trapping on Ceria. Angewandte Chemie International Edition, 56(31), 8986-8991. doi:10.1002/anie.201701115 | es_ES |
dc.description.references | Zhu, Y., An, Z., Song, H., Xiang, X., Yan, W., & He, J. (2017). Lattice-Confined Sn (IV/II) Stabilizing Raft-Like Pt Clusters: High Selectivity and Durability in Propane Dehydrogenation. ACS Catalysis, 7(10), 6973-6978. doi:10.1021/acscatal.7b02264 | es_ES |
dc.description.references | Hauser, A. W., Gomes, J., Bajdich, M., Head-Gordon, M., & Bell, A. T. (2013). Subnanometer-sized Pt/Sn alloy cluster catalysts for the dehydrogenation of linear alkanes. Physical Chemistry Chemical Physics, 15(47), 20727. doi:10.1039/c3cp53796j | es_ES |
dc.description.references | Bursavich, J., Abu-Laban, M., Muley, P. D., Boldor, D., & Hayes, D. J. (2019). Thermal performance and surface analysis of steel-supported platinum nanoparticles designed for bio-oil catalytic upconversion during radio frequency-based inductive heating. Energy Conversion and Management, 183, 689-697. doi:10.1016/j.enconman.2019.01.025 | es_ES |
dc.description.references | Pashchenko, D. (2017). Thermodynamic equilibrium analysis of combined dry and steam reforming of propane for thermochemical waste-heat recuperation. International Journal of Hydrogen Energy, 42(22), 14926-14935. doi:10.1016/j.ijhydene.2017.04.284 | es_ES |
dc.description.references | Ojeda, M., Nabar, R., Nilekar, A. U., Ishikawa, A., Mavrikakis, M., & Iglesia, E. (2010). CO activation pathways and the mechanism of Fischer–Tropsch synthesis. Journal of Catalysis, 272(2), 287-297. doi:10.1016/j.jcat.2010.04.012 | es_ES |
dc.description.references | Gao, J., Wang, Y., Ping, Y., Hu, D., Xu, G., Gu, F., & Su, F. (2012). A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, 2(6), 2358. doi:10.1039/c2ra00632d | es_ES |
dc.description.references | Zangeneh, F. T., Taeb, A., Gholivand, K., & Sahebdelfar, S. (2015). Thermodynamic Equilibrium Analysis of Propane Dehydrogenation with Carbon Dioxide and Side Reactions. Chemical Engineering Communications, 203(4), 557-565. doi:10.1080/00986445.2015.1017638 | es_ES |
dc.description.references | Wang, X., Wang, N., Zhao, J., & Wang, L. (2010). Thermodynamic analysis of propane dry and steam reforming for synthesis gas or hydrogen production. International Journal of Hydrogen Energy, 35(23), 12800-12807. doi:10.1016/j.ijhydene.2010.08.132 | es_ES |
dc.description.references | Martínez-Prieto, L. M., Puche, M., Cerezo-Navarrete, C., & Chaudret, B. (2019). Uniform Ru nanoparticles on N-doped graphene for selective hydrogenation of fatty acids to alcohols. Journal of Catalysis, 377, 429-437. doi:10.1016/j.jcat.2019.07.040 | es_ES |
dc.description.references | Soulantica, K., Maisonnat, A., Fromen, M.-C., Casanove, M.-J., & Chaudret, B. (2003). Spontaneous Formation of Ordered 3D Superlattices of Nanocrystals from Polydisperse Colloidal Solutions. Angewandte Chemie International Edition, 42(17), 1945-1949. doi:10.1002/anie.200250484 | es_ES |