- -

Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Prieto, Luis Miguel es_ES
dc.contributor.author Marbaix, Julien es_ES
dc.contributor.author Asensio, Juan M. es_ES
dc.contributor.author Cerezo-Navarrete, Christian es_ES
dc.contributor.author Fazzini, Pier-Francesco es_ES
dc.contributor.author Soulantica, Katerina es_ES
dc.contributor.author Chaudret, Bruno es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2021-05-07T03:32:15Z
dc.date.available 2021-05-07T03:32:15Z
dc.date.issued 2020-07-24 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166058
dc.description.abstract [EN] Magnetically induced catalysis using magnetic nanoparticles (MagNPs) as heating agents is a new efficient method to perform reactions at high temperatures. However, the main limitation is the lack of stability of the catalysts operating in such harsh conditions. Normally, above 500 degrees C, significant sintering of MagNPs takes place. Here we present encapsulated magnetic FeCo and Co NPs in carbon (Co@C and FeCo@C) as an ultrastable heating material suitable for high-temperature magnetic catalysis. Indeed, FeCo@C or a mixture of FeCo@C:Co@C (2:1) decorated with Ni or Pt-Sn showed good stability in terms of temperature and catalytic performances. In addition, consistent conversions and selectivities regarding conventional heating were observed for CO2 methanation (Sabatier reaction), propane dehydrogenation (PDH), and propane dry reforming (PDR). Thus, the encapsulation of MagNPs in carbon constitutes a major advance in the development of stable catalysts for high-temperature magnetically induced catalysis. es_ES
dc.description.sponsorship The authors thank the Instituto de Tecnologia Quimica (ITQ), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de València (UPV) for the facilities and Severo Ochoa programe (SEV-2016-0683), "Juan de la Cierva" by MINECO (IJCI-2016-27966), and Primero Proyectos de Investigación PAID-06-18 (SP20180088) for financial support. The authors acknowledge ERC Advanced Grants (MONACAT-2015-694159 and SynCatMatch-2014671093). We also thank the Electron Microscopy Service of the UPV for TEM facilities. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof ACS Applied Nano Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Magnetic nanoparticles es_ES
dc.subject Carbon encapsulation es_ES
dc.subject Magnetic catalysis es_ES
dc.subject Methanation es_ES
dc.subject Propane dry reforming es_ES
dc.subject Propane dehydrogenation es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acsanm.0c01392 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/694159/EU/Magnetism and Optics for Nanoparticle Catalysis/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-27966/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180088/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Martínez-Prieto, LM.; Marbaix, J.; Asensio, JM.; Cerezo-Navarrete, C.; Fazzini, P.; Soulantica, K.; Chaudret, B.... (2020). Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis. ACS Applied Nano Materials. 3(7):7076-7087. https://doi.org/10.1021/acsanm.0c01392 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acsanm.0c01392 es_ES
dc.description.upvformatpinicio 7076 es_ES
dc.description.upvformatpfin 7087 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2574-0970 es_ES
dc.identifier.pmid 32743352 es_ES
dc.identifier.pmcid PMC7386363 es_ES
dc.relation.pasarela S\418873 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ceylan, S., Friese, C., Lammel, C., Mazac, K., & Kirschning, A. (2008). Inductive Heating for Organic Synthesis by Using Functionalized Magnetic Nanoparticles Inside Microreactors. Angewandte Chemie International Edition, 47(46), 8950-8953. doi:10.1002/anie.200801474 es_ES
dc.description.references Ceylan, S., Coutable, L., Wegner, J., & Kirschning, A. (2011). Inductive Heating with Magnetic Materials inside Flow Reactors. Chemistry - A European Journal, 17(6), 1884-1893. doi:10.1002/chem.201002291 es_ES
dc.description.references Houlding, T. K., Gao, P., Degirmenci, V., Tchabanenko, K., & Rebrov, E. V. (2015). Mechanochemical synthesis of TiO2/NiFe2O4 magnetic catalysts for operation under RF field. Materials Science and Engineering: B, 193, 175-180. doi:10.1016/j.mseb.2014.12.011 es_ES
dc.description.references Asensio, J. M., Miguel, A. B., Fazzini, P., van Leeuwen, P. W. N. M., & Chaudret, B. (2019). Hydrodeoxygenation Using Magnetic Induction: High‐Temperature Heterogeneous Catalysis in Solution. Angewandte Chemie International Edition, 58(33), 11306-11310. doi:10.1002/anie.201904366 es_ES
dc.description.references Liu, Y., Gao, P., Cherkasov, N., & Rebrov, E. V. (2016). Direct amide synthesis over core–shell TiO2@NiFe2O4 catalysts in a continuous flow radiofrequency-heated reactor. RSC Advances, 6(103), 100997-101007. doi:10.1039/c6ra22659k es_ES
dc.description.references Liu, Y., Cherkasov, N., Gao, P., Fernández, J., Lees, M. R., & Rebrov, E. V. (2017). The enhancement of direct amide synthesis reaction rate over TiO 2 @SiO 2 @NiFe 2 O 4 magnetic catalysts in the continuous flow under radiofrequency heating. Journal of Catalysis, 355, 120-130. doi:10.1016/j.jcat.2017.09.010 es_ES
dc.description.references Meffre, A., Mehdaoui, B., Connord, V., Carrey, J., Fazzini, P. F., Lachaize, S., … Chaudret, B. (2015). Complex Nano-objects Displaying Both Magnetic and Catalytic Properties: A Proof of Concept for Magnetically Induced Heterogeneous Catalysis. Nano Letters, 15(5), 3241-3248. doi:10.1021/acs.nanolett.5b00446 es_ES
dc.description.references Bordet, A., Lacroix, L.-M., Fazzini, P.-F., Carrey, J., Soulantica, K., & Chaudret, B. (2016). Magnetically Induced Continuous CO2Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power. Angewandte Chemie International Edition, 55(51), 15894-15898. doi:10.1002/anie.201609477 es_ES
dc.description.references Mortensen, P. M., Engbæk, J. S., Vendelbo, S. B., Hansen, M. F., & Østberg, M. (2017). Direct Hysteresis Heating of Catalytically Active Ni–Co Nanoparticles as Steam Reforming Catalyst. Industrial & Engineering Chemistry Research, 56(47), 14006-14013. doi:10.1021/acs.iecr.7b02331 es_ES
dc.description.references Marbaix, J., Mille, N., Lacroix, L.-M., Asensio, J. M., Fazzini, P.-F., Soulantica, K., … Chaudret, B. (2020). Tuning the Composition of FeCo Nanoparticle Heating Agents for Magnetically Induced Catalysis. ACS Applied Nano Materials, 3(4), 3767-3778. doi:10.1021/acsanm.0c00444 es_ES
dc.description.references Vinum, M. G., Almind, M. R., Engbæk, J. S., Vendelbo, S. B., Hansen, M. F., Frandsen, C., … Mortensen, P. M. (2018). Dual‐Function Cobalt–Nickel Nanoparticles Tailored for High‐Temperature Induction‐Heated Steam Methane Reforming. Angewandte Chemie International Edition, 57(33), 10569-10573. doi:10.1002/anie.201804832 es_ES
dc.description.references Kale, S. S., Asensio, J. M., Estrader, M., Werner, M., Bordet, A., Yi, D., … Chaudret, B. (2019). Iron carbide or iron carbide/cobalt nanoparticles for magnetically-induced CO2 hydrogenation over Ni/SiRAlOx catalysts. Catalysis Science & Technology, 9(10), 2601-2607. doi:10.1039/c9cy00437h es_ES
dc.description.references Varsano, F., Bellusci, M., La Barbera, A., Petrecca, M., Albino, M., & Sangregorio, C. (2019). Dry reforming of methane powered by magnetic induction. International Journal of Hydrogen Energy, 44(38), 21037-21044. doi:10.1016/j.ijhydene.2019.02.055 es_ES
dc.description.references Wang, W., Duong-Viet, C., Xu, Z., Ba, H., Tuci, G., Giambastiani, G., … Pham-Huu, C. (2020). CO2 methanation under dynamic operational mode using nickel nanoparticles decorated carbon felt (Ni/OCF) combined with inductive heating. Catalysis Today, 357, 214-220. doi:10.1016/j.cattod.2019.02.050 es_ES
dc.description.references Benkowsky, G. Induktionserwärmung: Härten, Glühen, Schmelzen, Löten, Schweißn: Grundlagen und praktische Anleitungen für Induktionserwärmungsverfahren, insbesondere auf dem Gebiet der Hochfrequenzerwärmung, 5th ed. Verlag Technik: Berlin, 1990; p 12. es_ES
dc.description.references Carrey, J., Mehdaoui, B., & Respaud, M. (2011). Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. Journal of Applied Physics, 109(8), 083921. doi:10.1063/1.3551582 es_ES
dc.description.references Khodakov, A. Y., Chu, W., & Fongarland, P. (2007). Advances in the Development of Novel Cobalt Fischer−Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. Chemical Reviews, 107(5), 1692-1744. doi:10.1021/cr050972v es_ES
dc.description.references Liu, J., Guo, Z., Childers, D., Schweitzer, N., Marshall, C. L., Klie, R. F., … Meyer, R. J. (2014). Correlating the degree of metal–promoter interaction to ethanol selectivity over MnRh/CNTs CO hydrogenation catalysts. Journal of Catalysis, 313, 149-158. doi:10.1016/j.jcat.2014.03.002 es_ES
dc.description.references Ghaib, K., Nitz, K., & Ben-Fares, F.-Z. (2016). Chemical Methanation of CO2: A Review. ChemBioEng Reviews, 3(6), 266-275. doi:10.1002/cben.201600022 es_ES
dc.description.references Cored, J., García-Ortiz, A., Iborra, S., Climent, M. J., Liu, L., Chuang, C.-H., … Corma, A. (2019). Hydrothermal Synthesis of Ruthenium Nanoparticles with a Metallic Core and a Ruthenium Carbide Shell for Low-Temperature Activation of CO2 to Methane. Journal of the American Chemical Society, 141(49), 19304-19311. doi:10.1021/jacs.9b07088 es_ES
dc.description.references Schiermeier, Q. (2013). Location may stymie wind and solar power benefits. Nature. doi:10.1038/nature.2013.13258 es_ES
dc.description.references Wilhelm, D. ., Simbeck, D. ., Karp, A. ., & Dickenson, R. . (2001). Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Processing Technology, 71(1-3), 139-148. doi:10.1016/s0378-3820(01)00140-0 es_ES
dc.description.references Sattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E., & Weckhuysen, B. M. (2014). Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chemical Reviews, 114(20), 10613-10653. doi:10.1021/cr5002436 es_ES
dc.description.references Siahvashi, A., Chesterfield, D., & Adesina, A. A. (2013). Propane CO2 (dry) reforming over bimetallic Mo–Ni/Al2O3 catalyst. Chemical Engineering Science, 93, 313-325. doi:10.1016/j.ces.2013.02.003 es_ES
dc.description.references Lee, M.-H., Nagaraja, B. M., Lee, K. Y., & Jung, K.-D. (2014). Dehydrogenation of alkane to light olefin over PtSn/θ-Al2O3 catalyst: Effects of Sn loading. Catalysis Today, 232, 53-62. doi:10.1016/j.cattod.2013.10.011 es_ES
dc.description.references Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757 es_ES
dc.description.references Liu, L., Zakharov, D. N., Arenal, R., Concepcion, P., Stach, E. A., & Corma, A. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 9(1). doi:10.1038/s41467-018-03012-6 es_ES
dc.description.references Liu, L., Gao, F., Concepción, P., & Corma, A. (2017). A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. Journal of Catalysis, 350, 218-225. doi:10.1016/j.jcat.2017.03.014 es_ES
dc.description.references Liu, L., Concepción, P., & Corma, A. (2016). Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. Journal of Catalysis, 340, 1-9. doi:10.1016/j.jcat.2016.04.006 es_ES
dc.description.references Fu, T., Wang, M., Cai, W., Cui, Y., Gao, F., Peng, L., … Ding, W. (2014). Acid-Resistant Catalysis without Use of Noble Metals: Carbon Nitride with Underlying Nickel. ACS Catalysis, 4(8), 2536-2543. doi:10.1021/cs500523k es_ES
dc.description.references Garnero, C., Lepesant, M., Garcia-Marcelot, C., Shin, Y., Meny, C., Farger, P., … Chaudret, B. (2019). Chemical Ordering in Bimetallic FeCo Nanoparticles: From a Direct Chemical Synthesis to Application As Efficient High-Frequency Magnetic Material. Nano Letters, 19(2), 1379-1386. doi:10.1021/acs.nanolett.8b05083 es_ES
dc.description.references Lepesant, M., Bardet, B., Lacroix, L.-M., Fau, P., Garnero, C., Chaudret, B., … Gautier, G. (2018). Impregnation of High-Magnetization FeCo Nanoparticles in Mesoporous Silicon: An Experimental Approach. Frontiers in Chemistry, 6. doi:10.3389/fchem.2018.00609 es_ES
dc.description.references Deng, J., Ren, P., Deng, D., & Bao, X. (2015). Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 54(7), 2100-2104. doi:10.1002/anie.201409524 es_ES
dc.description.references Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143(1-2), 47-57. doi:10.1016/j.ssc.2007.03.052 es_ES
dc.description.references Hadjiev, V. G., Iliev, M. N., & Vergilov, I. V. (1988). The Raman spectra of Co3O4. Journal of Physics C: Solid State Physics, 21(7), L199-L201. doi:10.1088/0022-3719/21/7/007 es_ES
dc.description.references Saxena, P., & Varshney, D. (2017). Effect of d-block element substitution on structural and dielectric properties on iron cobaltite. Journal of Alloys and Compounds, 705, 320-326. doi:10.1016/j.jallcom.2017.02.120 es_ES
dc.description.references Biesinger, M. C., Payne, B. P., Grosvenor, A. P., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2011). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257(7), 2717-2730. doi:10.1016/j.apsusc.2010.10.051 es_ES
dc.description.references Cullity, B. D., & Graham, C. D. (2008). Introduction to Magnetic Materials. doi:10.1002/9780470386323 es_ES
dc.description.references Zhang, Y., Zhu, Y., Wang, K., Li, D., Wang, D., Ding, F., … Zhang, Z. (2018). Controlled synthesis of Co2C nanochains using cobalt laurate as precursor: Structure, growth mechanism and magnetic properties. Journal of Magnetism and Magnetic Materials, 456, 71-77. doi:10.1016/j.jmmm.2018.02.014 es_ES
dc.description.references Desvaux, C., Amiens, C., Fejes, P., Renaud, P., Respaud, M., Lecante, P., … Chaudret, B. (2005). Multimillimetre-large superlattices of air-stable iron–cobalt nanoparticles. Nature Materials, 4(10), 750-753. doi:10.1038/nmat1480 es_ES
dc.description.references Desvaux, C., Dumestre, F., Amiens, C., Respaud, M., Lecante, P., Snoeck, E., … Chaudret, B. (2009). FeCo nanoparticles from an organometallic approach: synthesis, organisation and physical properties. Journal of Materials Chemistry, 19(20), 3268. doi:10.1039/b816509b es_ES
dc.description.references Nogués, J., & Schuller, I. K. (1999). Exchange bias. Journal of Magnetism and Magnetic Materials, 192(2), 203-232. doi:10.1016/s0304-8853(98)00266-2 es_ES
dc.description.references Saville, S. L., Qi, B., Baker, J., Stone, R., Camley, R. E., Livesey, K. L., … Thompson Mefford, O. (2014). The formation of linear aggregates in magnetic hyperthermia: Implications on specific absorption rate and magnetic anisotropy. Journal of Colloid and Interface Science, 424, 141-151. doi:10.1016/j.jcis.2014.03.007 es_ES
dc.description.references Mehdaoui, B., Tan, R. P., Meffre, A., Carrey, J., Lachaize, S., Chaudret, B., & Respaud, M. (2013). Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results. Physical Review B, 87(17). doi:10.1103/physrevb.87.174419 es_ES
dc.description.references Mehdaoui, B., Meffre, A., Lacroix, L.-M., Carrey, J., Lachaize, S., Respaud, M., … Chaudret, B. (2010). Magnetic anisotropy determination and magnetic hyperthermia properties of small Fe nanoparticles in the superparamagnetic regime. Journal of Applied Physics, 107(9), 09A324. doi:10.1063/1.3348795 es_ES
dc.description.references Serantes, D., Simeonidis, K., Angelakeris, M., Chubykalo-Fesenko, O., Marciello, M., Morales, M. del P., … Martinez-Boubeta, C. (2014). Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling. The Journal of Physical Chemistry C, 118(11), 5927-5934. doi:10.1021/jp410717m es_ES
dc.description.references Asensio, J. M., Marbaix, J., Mille, N., Lacroix, L.-M., Soulantica, K., Fazzini, P.-F., … Chaudret, B. (2019). To heat or not to heat: a study of the performances of iron carbide nanoparticles in magnetic heating. Nanoscale, 11(12), 5402-5411. doi:10.1039/c8nr10235j es_ES
dc.description.references Xiong, H., Lin, S., Goetze, J., Pletcher, P., Guo, H., Kovarik, L., … Datye, A. K. (2017). Thermally Stable and Regenerable Platinum–Tin Clusters for Propane Dehydrogenation Prepared by Atom Trapping on Ceria. Angewandte Chemie International Edition, 56(31), 8986-8991. doi:10.1002/anie.201701115 es_ES
dc.description.references Zhu, Y., An, Z., Song, H., Xiang, X., Yan, W., & He, J. (2017). Lattice-Confined Sn (IV/II) Stabilizing Raft-Like Pt Clusters: High Selectivity and Durability in Propane Dehydrogenation. ACS Catalysis, 7(10), 6973-6978. doi:10.1021/acscatal.7b02264 es_ES
dc.description.references Hauser, A. W., Gomes, J., Bajdich, M., Head-Gordon, M., & Bell, A. T. (2013). Subnanometer-sized Pt/Sn alloy cluster catalysts for the dehydrogenation of linear alkanes. Physical Chemistry Chemical Physics, 15(47), 20727. doi:10.1039/c3cp53796j es_ES
dc.description.references Bursavich, J., Abu-Laban, M., Muley, P. D., Boldor, D., & Hayes, D. J. (2019). Thermal performance and surface analysis of steel-supported platinum nanoparticles designed for bio-oil catalytic upconversion during radio frequency-based inductive heating. Energy Conversion and Management, 183, 689-697. doi:10.1016/j.enconman.2019.01.025 es_ES
dc.description.references Pashchenko, D. (2017). Thermodynamic equilibrium analysis of combined dry and steam reforming of propane for thermochemical waste-heat recuperation. International Journal of Hydrogen Energy, 42(22), 14926-14935. doi:10.1016/j.ijhydene.2017.04.284 es_ES
dc.description.references Ojeda, M., Nabar, R., Nilekar, A. U., Ishikawa, A., Mavrikakis, M., & Iglesia, E. (2010). CO activation pathways and the mechanism of Fischer–Tropsch synthesis. Journal of Catalysis, 272(2), 287-297. doi:10.1016/j.jcat.2010.04.012 es_ES
dc.description.references Gao, J., Wang, Y., Ping, Y., Hu, D., Xu, G., Gu, F., & Su, F. (2012). A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, 2(6), 2358. doi:10.1039/c2ra00632d es_ES
dc.description.references Zangeneh, F. T., Taeb, A., Gholivand, K., & Sahebdelfar, S. (2015). Thermodynamic Equilibrium Analysis of Propane Dehydrogenation with Carbon Dioxide and Side Reactions. Chemical Engineering Communications, 203(4), 557-565. doi:10.1080/00986445.2015.1017638 es_ES
dc.description.references Wang, X., Wang, N., Zhao, J., & Wang, L. (2010). Thermodynamic analysis of propane dry and steam reforming for synthesis gas or hydrogen production. International Journal of Hydrogen Energy, 35(23), 12800-12807. doi:10.1016/j.ijhydene.2010.08.132 es_ES
dc.description.references Martínez-Prieto, L. M., Puche, M., Cerezo-Navarrete, C., & Chaudret, B. (2019). Uniform Ru nanoparticles on N-doped graphene for selective hydrogenation of fatty acids to alcohols. Journal of Catalysis, 377, 429-437. doi:10.1016/j.jcat.2019.07.040 es_ES
dc.description.references Soulantica, K., Maisonnat, A., Fromen, M.-C., Casanove, M.-J., & Chaudret, B. (2003). Spontaneous Formation of Ordered 3D Superlattices of Nanocrystals from Polydisperse Colloidal Solutions. Angewandte Chemie International Edition, 42(17), 1945-1949. doi:10.1002/anie.200250484 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem