- -

Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis

Mostrar el registro completo del ítem

Martínez-Prieto, LM.; Marbaix, J.; Asensio, JM.; Cerezo-Navarrete, C.; Fazzini, P.; Soulantica, K.; Chaudret, B.... (2020). Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis. ACS Applied Nano Materials. 3(7):7076-7087. https://doi.org/10.1021/acsanm.0c01392

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166058

Ficheros en el ítem

Metadatos del ítem

Título: Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis
Autor: Martínez-Prieto, Luis Miguel Marbaix, Julien Asensio, Juan M. Cerezo-Navarrete, Christian Fazzini, Pier-Francesco Soulantica, Katerina Chaudret, Bruno Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Magnetically induced catalysis using magnetic nanoparticles (MagNPs) as heating agents is a new efficient method to perform reactions at high temperatures. However, the main limitation is the lack of stability of the ...[+]
Palabras clave: Magnetic nanoparticles , Carbon encapsulation , Magnetic catalysis , Methanation , Propane dry reforming , Propane dehydrogenation
Derechos de uso: Reserva de todos los derechos
Fuente:
ACS Applied Nano Materials. (eissn: 2574-0970 )
DOI: 10.1021/acsanm.0c01392
Editorial:
American Chemical Society
Versión del editor: https://doi.org/10.1021/acsanm.0c01392
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
...[+]
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
info:eu-repo/grantAgreement/UPV//PAID-06-18/
info:eu-repo/grantAgreement/EC/H2020/694159/EU/Magnetism and Optics for Nanoparticle Catalysis/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/MINECO//IJCI-2016-27966/
info:eu-repo/grantAgreement/UPV//SP20180088/
[-]
Agradecimientos:
The authors thank the Instituto de Tecnologia Quimica (ITQ), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de València (UPV) for the facilities and Severo Ochoa programe (SEV-2016-0683), ...[+]
Tipo: Artículo

References

Ceylan, S., Friese, C., Lammel, C., Mazac, K., & Kirschning, A. (2008). Inductive Heating for Organic Synthesis by Using Functionalized Magnetic Nanoparticles Inside Microreactors. Angewandte Chemie International Edition, 47(46), 8950-8953. doi:10.1002/anie.200801474

Ceylan, S., Coutable, L., Wegner, J., & Kirschning, A. (2011). Inductive Heating with Magnetic Materials inside Flow Reactors. Chemistry - A European Journal, 17(6), 1884-1893. doi:10.1002/chem.201002291

Houlding, T. K., Gao, P., Degirmenci, V., Tchabanenko, K., & Rebrov, E. V. (2015). Mechanochemical synthesis of TiO2/NiFe2O4 magnetic catalysts for operation under RF field. Materials Science and Engineering: B, 193, 175-180. doi:10.1016/j.mseb.2014.12.011 [+]
Ceylan, S., Friese, C., Lammel, C., Mazac, K., & Kirschning, A. (2008). Inductive Heating for Organic Synthesis by Using Functionalized Magnetic Nanoparticles Inside Microreactors. Angewandte Chemie International Edition, 47(46), 8950-8953. doi:10.1002/anie.200801474

Ceylan, S., Coutable, L., Wegner, J., & Kirschning, A. (2011). Inductive Heating with Magnetic Materials inside Flow Reactors. Chemistry - A European Journal, 17(6), 1884-1893. doi:10.1002/chem.201002291

Houlding, T. K., Gao, P., Degirmenci, V., Tchabanenko, K., & Rebrov, E. V. (2015). Mechanochemical synthesis of TiO2/NiFe2O4 magnetic catalysts for operation under RF field. Materials Science and Engineering: B, 193, 175-180. doi:10.1016/j.mseb.2014.12.011

Asensio, J. M., Miguel, A. B., Fazzini, P., van Leeuwen, P. W. N. M., & Chaudret, B. (2019). Hydrodeoxygenation Using Magnetic Induction: High‐Temperature Heterogeneous Catalysis in Solution. Angewandte Chemie International Edition, 58(33), 11306-11310. doi:10.1002/anie.201904366

Liu, Y., Gao, P., Cherkasov, N., & Rebrov, E. V. (2016). Direct amide synthesis over core–shell TiO2@NiFe2O4 catalysts in a continuous flow radiofrequency-heated reactor. RSC Advances, 6(103), 100997-101007. doi:10.1039/c6ra22659k

Liu, Y., Cherkasov, N., Gao, P., Fernández, J., Lees, M. R., & Rebrov, E. V. (2017). The enhancement of direct amide synthesis reaction rate over TiO 2 @SiO 2 @NiFe 2 O 4 magnetic catalysts in the continuous flow under radiofrequency heating. Journal of Catalysis, 355, 120-130. doi:10.1016/j.jcat.2017.09.010

Meffre, A., Mehdaoui, B., Connord, V., Carrey, J., Fazzini, P. F., Lachaize, S., … Chaudret, B. (2015). Complex Nano-objects Displaying Both Magnetic and Catalytic Properties: A Proof of Concept for Magnetically Induced Heterogeneous Catalysis. Nano Letters, 15(5), 3241-3248. doi:10.1021/acs.nanolett.5b00446

Bordet, A., Lacroix, L.-M., Fazzini, P.-F., Carrey, J., Soulantica, K., & Chaudret, B. (2016). Magnetically Induced Continuous CO2Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power. Angewandte Chemie International Edition, 55(51), 15894-15898. doi:10.1002/anie.201609477

Mortensen, P. M., Engbæk, J. S., Vendelbo, S. B., Hansen, M. F., & Østberg, M. (2017). Direct Hysteresis Heating of Catalytically Active Ni–Co Nanoparticles as Steam Reforming Catalyst. Industrial & Engineering Chemistry Research, 56(47), 14006-14013. doi:10.1021/acs.iecr.7b02331

Marbaix, J., Mille, N., Lacroix, L.-M., Asensio, J. M., Fazzini, P.-F., Soulantica, K., … Chaudret, B. (2020). Tuning the Composition of FeCo Nanoparticle Heating Agents for Magnetically Induced Catalysis. ACS Applied Nano Materials, 3(4), 3767-3778. doi:10.1021/acsanm.0c00444

Vinum, M. G., Almind, M. R., Engbæk, J. S., Vendelbo, S. B., Hansen, M. F., Frandsen, C., … Mortensen, P. M. (2018). Dual‐Function Cobalt–Nickel Nanoparticles Tailored for High‐Temperature Induction‐Heated Steam Methane Reforming. Angewandte Chemie International Edition, 57(33), 10569-10573. doi:10.1002/anie.201804832

Kale, S. S., Asensio, J. M., Estrader, M., Werner, M., Bordet, A., Yi, D., … Chaudret, B. (2019). Iron carbide or iron carbide/cobalt nanoparticles for magnetically-induced CO2 hydrogenation over Ni/SiRAlOx catalysts. Catalysis Science & Technology, 9(10), 2601-2607. doi:10.1039/c9cy00437h

Varsano, F., Bellusci, M., La Barbera, A., Petrecca, M., Albino, M., & Sangregorio, C. (2019). Dry reforming of methane powered by magnetic induction. International Journal of Hydrogen Energy, 44(38), 21037-21044. doi:10.1016/j.ijhydene.2019.02.055

Wang, W., Duong-Viet, C., Xu, Z., Ba, H., Tuci, G., Giambastiani, G., … Pham-Huu, C. (2020). CO2 methanation under dynamic operational mode using nickel nanoparticles decorated carbon felt (Ni/OCF) combined with inductive heating. Catalysis Today, 357, 214-220. doi:10.1016/j.cattod.2019.02.050

Benkowsky, G. Induktionserwärmung: Härten, Glühen, Schmelzen, Löten, Schweißn: Grundlagen und praktische Anleitungen für Induktionserwärmungsverfahren, insbesondere auf dem Gebiet der Hochfrequenzerwärmung, 5th ed. Verlag Technik: Berlin, 1990; p 12.

Carrey, J., Mehdaoui, B., & Respaud, M. (2011). Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. Journal of Applied Physics, 109(8), 083921. doi:10.1063/1.3551582

Khodakov, A. Y., Chu, W., & Fongarland, P. (2007). Advances in the Development of Novel Cobalt Fischer−Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. Chemical Reviews, 107(5), 1692-1744. doi:10.1021/cr050972v

Liu, J., Guo, Z., Childers, D., Schweitzer, N., Marshall, C. L., Klie, R. F., … Meyer, R. J. (2014). Correlating the degree of metal–promoter interaction to ethanol selectivity over MnRh/CNTs CO hydrogenation catalysts. Journal of Catalysis, 313, 149-158. doi:10.1016/j.jcat.2014.03.002

Ghaib, K., Nitz, K., & Ben-Fares, F.-Z. (2016). Chemical Methanation of CO2: A Review. ChemBioEng Reviews, 3(6), 266-275. doi:10.1002/cben.201600022

Cored, J., García-Ortiz, A., Iborra, S., Climent, M. J., Liu, L., Chuang, C.-H., … Corma, A. (2019). Hydrothermal Synthesis of Ruthenium Nanoparticles with a Metallic Core and a Ruthenium Carbide Shell for Low-Temperature Activation of CO2 to Methane. Journal of the American Chemical Society, 141(49), 19304-19311. doi:10.1021/jacs.9b07088

Schiermeier, Q. (2013). Location may stymie wind and solar power benefits. Nature. doi:10.1038/nature.2013.13258

Wilhelm, D. ., Simbeck, D. ., Karp, A. ., & Dickenson, R. . (2001). Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Processing Technology, 71(1-3), 139-148. doi:10.1016/s0378-3820(01)00140-0

Sattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E., & Weckhuysen, B. M. (2014). Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chemical Reviews, 114(20), 10613-10653. doi:10.1021/cr5002436

Siahvashi, A., Chesterfield, D., & Adesina, A. A. (2013). Propane CO2 (dry) reforming over bimetallic Mo–Ni/Al2O3 catalyst. Chemical Engineering Science, 93, 313-325. doi:10.1016/j.ces.2013.02.003

Lee, M.-H., Nagaraja, B. M., Lee, K. Y., & Jung, K.-D. (2014). Dehydrogenation of alkane to light olefin over PtSn/θ-Al2O3 catalyst: Effects of Sn loading. Catalysis Today, 232, 53-62. doi:10.1016/j.cattod.2013.10.011

Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757

Liu, L., Zakharov, D. N., Arenal, R., Concepcion, P., Stach, E. A., & Corma, A. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 9(1). doi:10.1038/s41467-018-03012-6

Liu, L., Gao, F., Concepción, P., & Corma, A. (2017). A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. Journal of Catalysis, 350, 218-225. doi:10.1016/j.jcat.2017.03.014

Liu, L., Concepción, P., & Corma, A. (2016). Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. Journal of Catalysis, 340, 1-9. doi:10.1016/j.jcat.2016.04.006

Fu, T., Wang, M., Cai, W., Cui, Y., Gao, F., Peng, L., … Ding, W. (2014). Acid-Resistant Catalysis without Use of Noble Metals: Carbon Nitride with Underlying Nickel. ACS Catalysis, 4(8), 2536-2543. doi:10.1021/cs500523k

Garnero, C., Lepesant, M., Garcia-Marcelot, C., Shin, Y., Meny, C., Farger, P., … Chaudret, B. (2019). Chemical Ordering in Bimetallic FeCo Nanoparticles: From a Direct Chemical Synthesis to Application As Efficient High-Frequency Magnetic Material. Nano Letters, 19(2), 1379-1386. doi:10.1021/acs.nanolett.8b05083

Lepesant, M., Bardet, B., Lacroix, L.-M., Fau, P., Garnero, C., Chaudret, B., … Gautier, G. (2018). Impregnation of High-Magnetization FeCo Nanoparticles in Mesoporous Silicon: An Experimental Approach. Frontiers in Chemistry, 6. doi:10.3389/fchem.2018.00609

Deng, J., Ren, P., Deng, D., & Bao, X. (2015). Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 54(7), 2100-2104. doi:10.1002/anie.201409524

Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143(1-2), 47-57. doi:10.1016/j.ssc.2007.03.052

Hadjiev, V. G., Iliev, M. N., & Vergilov, I. V. (1988). The Raman spectra of Co3O4. Journal of Physics C: Solid State Physics, 21(7), L199-L201. doi:10.1088/0022-3719/21/7/007

Saxena, P., & Varshney, D. (2017). Effect of d-block element substitution on structural and dielectric properties on iron cobaltite. Journal of Alloys and Compounds, 705, 320-326. doi:10.1016/j.jallcom.2017.02.120

Biesinger, M. C., Payne, B. P., Grosvenor, A. P., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2011). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257(7), 2717-2730. doi:10.1016/j.apsusc.2010.10.051

Cullity, B. D., & Graham, C. D. (2008). Introduction to Magnetic Materials. doi:10.1002/9780470386323

Zhang, Y., Zhu, Y., Wang, K., Li, D., Wang, D., Ding, F., … Zhang, Z. (2018). Controlled synthesis of Co2C nanochains using cobalt laurate as precursor: Structure, growth mechanism and magnetic properties. Journal of Magnetism and Magnetic Materials, 456, 71-77. doi:10.1016/j.jmmm.2018.02.014

Desvaux, C., Amiens, C., Fejes, P., Renaud, P., Respaud, M., Lecante, P., … Chaudret, B. (2005). Multimillimetre-large superlattices of air-stable iron–cobalt nanoparticles. Nature Materials, 4(10), 750-753. doi:10.1038/nmat1480

Desvaux, C., Dumestre, F., Amiens, C., Respaud, M., Lecante, P., Snoeck, E., … Chaudret, B. (2009). FeCo nanoparticles from an organometallic approach: synthesis, organisation and physical properties. Journal of Materials Chemistry, 19(20), 3268. doi:10.1039/b816509b

Nogués, J., & Schuller, I. K. (1999). Exchange bias. Journal of Magnetism and Magnetic Materials, 192(2), 203-232. doi:10.1016/s0304-8853(98)00266-2

Saville, S. L., Qi, B., Baker, J., Stone, R., Camley, R. E., Livesey, K. L., … Thompson Mefford, O. (2014). The formation of linear aggregates in magnetic hyperthermia: Implications on specific absorption rate and magnetic anisotropy. Journal of Colloid and Interface Science, 424, 141-151. doi:10.1016/j.jcis.2014.03.007

Mehdaoui, B., Tan, R. P., Meffre, A., Carrey, J., Lachaize, S., Chaudret, B., & Respaud, M. (2013). Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results. Physical Review B, 87(17). doi:10.1103/physrevb.87.174419

Mehdaoui, B., Meffre, A., Lacroix, L.-M., Carrey, J., Lachaize, S., Respaud, M., … Chaudret, B. (2010). Magnetic anisotropy determination and magnetic hyperthermia properties of small Fe nanoparticles in the superparamagnetic regime. Journal of Applied Physics, 107(9), 09A324. doi:10.1063/1.3348795

Serantes, D., Simeonidis, K., Angelakeris, M., Chubykalo-Fesenko, O., Marciello, M., Morales, M. del P., … Martinez-Boubeta, C. (2014). Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling. The Journal of Physical Chemistry C, 118(11), 5927-5934. doi:10.1021/jp410717m

Asensio, J. M., Marbaix, J., Mille, N., Lacroix, L.-M., Soulantica, K., Fazzini, P.-F., … Chaudret, B. (2019). To heat or not to heat: a study of the performances of iron carbide nanoparticles in magnetic heating. Nanoscale, 11(12), 5402-5411. doi:10.1039/c8nr10235j

Xiong, H., Lin, S., Goetze, J., Pletcher, P., Guo, H., Kovarik, L., … Datye, A. K. (2017). Thermally Stable and Regenerable Platinum–Tin Clusters for Propane Dehydrogenation Prepared by Atom Trapping on Ceria. Angewandte Chemie International Edition, 56(31), 8986-8991. doi:10.1002/anie.201701115

Zhu, Y., An, Z., Song, H., Xiang, X., Yan, W., & He, J. (2017). Lattice-Confined Sn (IV/II) Stabilizing Raft-Like Pt Clusters: High Selectivity and Durability in Propane Dehydrogenation. ACS Catalysis, 7(10), 6973-6978. doi:10.1021/acscatal.7b02264

Hauser, A. W., Gomes, J., Bajdich, M., Head-Gordon, M., & Bell, A. T. (2013). Subnanometer-sized Pt/Sn alloy cluster catalysts for the dehydrogenation of linear alkanes. Physical Chemistry Chemical Physics, 15(47), 20727. doi:10.1039/c3cp53796j

Bursavich, J., Abu-Laban, M., Muley, P. D., Boldor, D., & Hayes, D. J. (2019). Thermal performance and surface analysis of steel-supported platinum nanoparticles designed for bio-oil catalytic upconversion during radio frequency-based inductive heating. Energy Conversion and Management, 183, 689-697. doi:10.1016/j.enconman.2019.01.025

Pashchenko, D. (2017). Thermodynamic equilibrium analysis of combined dry and steam reforming of propane for thermochemical waste-heat recuperation. International Journal of Hydrogen Energy, 42(22), 14926-14935. doi:10.1016/j.ijhydene.2017.04.284

Ojeda, M., Nabar, R., Nilekar, A. U., Ishikawa, A., Mavrikakis, M., & Iglesia, E. (2010). CO activation pathways and the mechanism of Fischer–Tropsch synthesis. Journal of Catalysis, 272(2), 287-297. doi:10.1016/j.jcat.2010.04.012

Gao, J., Wang, Y., Ping, Y., Hu, D., Xu, G., Gu, F., & Su, F. (2012). A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, 2(6), 2358. doi:10.1039/c2ra00632d

Zangeneh, F. T., Taeb, A., Gholivand, K., & Sahebdelfar, S. (2015). Thermodynamic Equilibrium Analysis of Propane Dehydrogenation with Carbon Dioxide and Side Reactions. Chemical Engineering Communications, 203(4), 557-565. doi:10.1080/00986445.2015.1017638

Wang, X., Wang, N., Zhao, J., & Wang, L. (2010). Thermodynamic analysis of propane dry and steam reforming for synthesis gas or hydrogen production. International Journal of Hydrogen Energy, 35(23), 12800-12807. doi:10.1016/j.ijhydene.2010.08.132

Martínez-Prieto, L. M., Puche, M., Cerezo-Navarrete, C., & Chaudret, B. (2019). Uniform Ru nanoparticles on N-doped graphene for selective hydrogenation of fatty acids to alcohols. Journal of Catalysis, 377, 429-437. doi:10.1016/j.jcat.2019.07.040

Soulantica, K., Maisonnat, A., Fromen, M.-C., Casanove, M.-J., & Chaudret, B. (2003). Spontaneous Formation of Ordered 3D Superlattices of Nanocrystals from Polydisperse Colloidal Solutions. Angewandte Chemie International Edition, 42(17), 1945-1949. doi:10.1002/anie.200250484

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem