Hoffmann, N. (2008). Photochemical Reactions as Key Steps in Organic Synthesis. Chemical Reviews, 108(3), 1052-1103. doi:10.1021/cr0680336
Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angewandte Chemie International Edition, 57(32), 10034-10072. doi:10.1002/anie.201709766
Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Photokatalyse mit sichtbarem Licht: Welche Bedeutung hat sie für die organische Synthese? Angewandte Chemie, 130(32), 10188-10228. doi:10.1002/ange.201709766
[+]
Hoffmann, N. (2008). Photochemical Reactions as Key Steps in Organic Synthesis. Chemical Reviews, 108(3), 1052-1103. doi:10.1021/cr0680336
Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angewandte Chemie International Edition, 57(32), 10034-10072. doi:10.1002/anie.201709766
Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Photokatalyse mit sichtbarem Licht: Welche Bedeutung hat sie für die organische Synthese? Angewandte Chemie, 130(32), 10188-10228. doi:10.1002/ange.201709766
Michelin, C., & Hoffmann, N. (2018). Photosensitization and Photocatalysis—Perspectives in Organic Synthesis. ACS Catalysis, 8(12), 12046-12055. doi:10.1021/acscatal.8b03050
Narayanam, J. M. R., & Stephenson, C. R. J. (2011). Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev., 40(1), 102-113. doi:10.1039/b913880n
Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r
Shaw, M. H., Twilton, J., & MacMillan, D. W. C. (2016). Photoredox Catalysis in Organic Chemistry. The Journal of Organic Chemistry, 81(16), 6898-6926. doi:10.1021/acs.joc.6b01449
Zeitler, K. (2009). Photoredox Catalysis with Visible Light. Angewandte Chemie International Edition, 48(52), 9785-9789. doi:10.1002/anie.200904056
Zeitler, K. (2009). Photoredoxkatalyse mit sichtbarem Licht. Angewandte Chemie, 121(52), 9969-9974. doi:10.1002/ange.200904056
Hari, D. P., & König, B. (2014). Synthetic applications of eosin Y in photoredox catalysis. Chem. Commun., 50(51), 6688-6699. doi:10.1039/c4cc00751d
Romero, N. A., & Nicewicz, D. A. (2016). Organic Photoredox Catalysis. Chemical Reviews, 116(17), 10075-10166. doi:10.1021/acs.chemrev.6b00057
Sun, X., Gao, J. P., & Wang, Z. Y. (2008). Bicyclic Guanidinium Tetraphenylborate: A Photobase Generator and A Photocatalyst for Living Anionic Ring-Opening Polymerization and Cross-Linking of Polymeric Materials Containing Ester and Hydroxy Groups. Journal of the American Chemical Society, 130(26), 8130-8131. doi:10.1021/ja802816g
Xi, W., Krieger, M., Kloxin, C. J., & Bowman, C. N. (2013). A new photoclick reaction strategy: photo-induced catalysis of the thiol-Michael addition via a caged primary amine. Chem. Commun., 49(40), 4504-4506. doi:10.1039/c3cc41123k
Deo, C., Bogliotti, N., Retailleau, P., & Xie, J. (2016). Triphenylphosphine Photorelease and Induction of Catalytic Activity from Ruthenium-Arene Complexes Bearing a Photoswitchable o-Tosylamide Azobenzene Ligand. Organometallics, 35(16), 2694-2700. doi:10.1021/acs.organomet.6b00431
Maity, C., Trausel, F., & Eelkema, R. (2018). Selective activation of organocatalysts by specific signals. Chemical Science, 9(27), 5999-6005. doi:10.1039/c8sc02019a
Guruge, C., Rfaish, S. Y., Byrd, C., Yang, S., Starrett, A. K., Guisbert, E., & Nesnas, N. (2019). Caged Proline in Photoinitiated Organocatalysis. The Journal of Organic Chemistry, 84(9), 5236-5244. doi:10.1021/acs.joc.9b00220
Schroeder, M. A., & Wrighton, M. S. (1976). Pentacarbonyliron(0) photocatalyzed hydrogenation and isomerization of olefins. Journal of the American Chemical Society, 98(2), 551-558. doi:10.1021/ja00418a039
Vollhardt, K. P. C. (1984). Cobalt-Mediated [2 + 2 + 2]-Cycloadditions: A Maturing Synthetic Strategy [New Synthetic Methods (43)]. Angewandte Chemie International Edition in English, 23(8), 539-556. doi:10.1002/anie.198405393
Vollhardt, K. P. C. (1984). Cobalt-vermittelte [2+2+2]-Cycloadditionen: eine ausgereifte Synthesestrategie. Angewandte Chemie, 96(8), 525-541. doi:10.1002/ange.19840960804
Stumpf, A. W., Saive, E., Demonceau, A., & Noels, A. F. (1995). Ruthenium-based catalysts for the ring opening metathesis polymerisation of low-strain cyclic olefins and of functionalised derivatives of norbornene and cyclooctene. Journal of the Chemical Society, Chemical Communications, (11), 1127. doi:10.1039/c39950001127
Hafner, A., Mühlebach, A., & van der Schaaf, P. A. (1997). One-Component Catalysts for Thermal and Photoinduced Ring Opening Metathesis Polymerization. Angewandte Chemie International Edition in English, 36(19), 2121-2124. doi:10.1002/anie.199721211
Hafner, A., Mühlebach, A., & Van Der Schaaf, P. A. (1997). Einkomponentige Katalysatoren für die thermische und photoinduzierte Ringöffnungs-Metathese-Polymerisation. Angewandte Chemie, 109(19), 2213-2216. doi:10.1002/ange.19971091927
Picquet, M., Bruneau, C., & Dixneuf, P. H. (1998). Catalytic synthesis of 3-vinyl-2,5-dihydrofurans from yne-enes promoted by photochemically activated metal–allenylidene LnRuCCCR2 complex. Chemical Communications, (20), 2249-2250. doi:10.1039/a806005c
Fürstner, A., & Ackermann, L. (1999). A most user-friendly protocol for ring closing metathesis reactions. Chemical Communications, (1), 95-96. doi:10.1039/a808810a
Delaude, L., Demonceau, A., & Noels, A. F. (2001). Visible light induced ring-opening metathesis polymerisation of cyclooctene. Chemical Communications, (11), 986-987. doi:10.1039/b101699g
Wang, D., Wurst, K., Knolle, W., Decker, U., Prager, L., Naumov, S., & Buchmeiser, M. R. (2008). Cationic RuII Complexes with N-Heterocyclic Carbene Ligands for UV-Induced Ring-Opening Metathesis Polymerization. Angewandte Chemie International Edition, 47(17), 3267-3270. doi:10.1002/anie.200705220
Wang, D., Wurst, K., Knolle, W., Decker, U., Prager, L., Naumov, S., & Buchmeiser, M. R. (2008). Kationische RuII-Komplexe mit N-heterocyclischem Carbenliganden für die UV-induzierte ringöffnende Metathesepolymerisation. Angewandte Chemie, 120(17), 3311-3314. doi:10.1002/ange.200705220
Ueno, A., Takahashi, K., & Osa, T. (1980). Photoregulation of catalytic activity of β-cyclodextrin by an azo inhibitor. J. Chem. Soc., Chem. Commun., (17), 837-838. doi:10.1039/c39800000837
Würthner, F., & Rebek, J. (1995). Light-Switchable Catalysis in Synthetic Receptors. Angewandte Chemie International Edition in English, 34(4), 446-448. doi:10.1002/anie.199504461
Würthner, F., & Rebek, J. (1995). Photoschaltbare Katalyse mit synthetischen Rezeptoren. Angewandte Chemie, 107(4), 503-505. doi:10.1002/ange.19951070417
Sud, D., Norsten, T. B., & Branda, N. R. (2005). Photoswitching of Stereoselectivity in Catalysis Using a Copper Dithienylethene Complex. Angewandte Chemie International Edition, 44(13), 2019-2021. doi:10.1002/anie.200462538
Sud, D., Norsten, T. B., & Branda, N. R. (2005). Photoswitching of Stereoselectivity in Catalysis Using a Copper Dithienylethene Complex. Angewandte Chemie, 117(13), 2055-2057. doi:10.1002/ange.200462538
Peters, M. V., Stoll, R. S., Kühn, A., & Hecht, S. (2008). Photoswitching of Basicity. Angewandte Chemie International Edition, 47(32), 5968-5972. doi:10.1002/anie.200802050
Peters, M. V., Stoll, R. S., Kühn, A., & Hecht, S. (2008). Photoschalten von Basizität. Angewandte Chemie, 120(32), 6056-6060. doi:10.1002/ange.200802050
Stoll, R. S., Peters, M. V., Kuhn, A., Heiles, S., Goddard, R., Bühl, M., … Hecht, S. (2008). Photoswitchable Catalysts: Correlating Structure and Conformational Dynamics with Reactivity by a Combined Experimental and Computational Approach. Journal of the American Chemical Society, 131(1), 357-367. doi:10.1021/ja807694s
Neilson, B. M., & Bielawski, C. W. (2013). Photoswitchable NHC-promoted ring-opening polymerizations. Chemical Communications, 49(48), 5453. doi:10.1039/c3cc42424c
Vlatković, M., Bernardi, L., Otten, E., & Feringa, B. L. (2014). Dual stereocontrol over the Henry reaction using a light- and heat-triggered organocatalyst. Chemical Communications, 50(58), 7773. doi:10.1039/c4cc00794h
Neri, S., Garcia Martin, S., Pezzato, C., & Prins, L. J. (2017). Photoswitchable Catalysis by a Nanozyme Mediated by a Light-Sensitive Cofactor. Journal of the American Chemical Society, 139(5), 1794-1797. doi:10.1021/jacs.6b12932
Stoll, R. S., & Hecht, S. (2010). Artificial Light-Gated Catalyst Systems. Angewandte Chemie International Edition, 49(30), 5054-5075. doi:10.1002/anie.201000146
Stoll, R. S., & Hecht, S. (2010). Künstliche lichtgesteuerte Katalysatorsysteme. Angewandte Chemie, 122(30), 5176-5200. doi:10.1002/ange.201000146
List, B. (2007). Introduction: Organocatalysis. Chemical Reviews, 107(12), 5413-5415. doi:10.1021/cr078412e
Bertelsen, S., & Jørgensen, K. A. (2009). Organocatalysis—after the gold rush. Chemical Society Reviews, 38(8), 2178. doi:10.1039/b903816g
List, B. (2012). Organocatalysis. Beilstein Journal of Organic Chemistry, 8, 1358-1359. doi:10.3762/bjoc.8.156
Van der Helm, M. P., Klemm, B., & Eelkema, R. (2019). Organocatalysis in aqueous media. Nature Reviews Chemistry, 3(8), 491-508. doi:10.1038/s41570-019-0116-0
Brieke, C., Rohrbach, F., Gottschalk, A., Mayer, G., & Heckel, A. (2012). Light‐Controlled Tools. Angewandte Chemie International Edition, 51(34), 8446-8476. doi:10.1002/anie.201202134
Brieke, C., Rohrbach, F., Gottschalk, A., Mayer, G., & Heckel, A. (2012). Lichtgesteuerte Werkzeuge. Angewandte Chemie, 124(34), 8572-8604. doi:10.1002/ange.201202134
Klán, P., Šolomek, T., Bochet, C. G., Blanc, A., Givens, R., Rubina, M., … Wirz, J. (2012). Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy. Chemical Reviews, 113(1), 119-191. doi:10.1021/cr300177k
Nicewicz, D. A., & MacMillan, D. W. C. (2008). Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes. Science, 322(5898), 77-80. doi:10.1126/science.1161976
Silvi, M., & Melchiorre, P. (2018). Enhancing the potential of enantioselective organocatalysis with light. Nature, 554(7690), 41-49. doi:10.1038/nature25175
Hansen, M. J., Velema, W. A., Lerch, M. M., Szymanski, W., & Feringa, B. L. (2015). Wavelength-selective cleavage of photoprotecting groups: strategies and applications in dynamic systems. Chemical Society Reviews, 44(11), 3358-3377. doi:10.1039/c5cs00118h
Zayat, L., Calero, C., Alborés, P., Baraldo, L., & Etchenique, R. (2003). A New Strategy for Neurochemical Photodelivery: Metal−Ligand Heterolytic Cleavage. Journal of the American Chemical Society, 125(4), 882-883. doi:10.1021/ja0278943
Nikolenko, V., Yuste, R., Zayat, L., Baraldo, L. M., & Etchenique, R. (2005). Two-photon uncaging of neurochemicals using inorganic metal complexes. Chemical Communications, (13), 1752. doi:10.1039/b418572b
Zayat, L., Salierno, M., & Etchenique, R. (2006). Ruthenium(II) Bipyridyl Complexes as Photolabile Caging Groups for Amines. Inorganic Chemistry, 45(4), 1728-1731. doi:10.1021/ic0512983
Zayat, L., Noval, M. G., Campi, J., Calero, C. I., Calvo, D. J., & Etchenique, R. (2007). A New Inorganic Photolabile Protecting Group for Highly Efficient Visible Light GABA Uncaging. ChemBioChem, 8(17), 2035-2038. doi:10.1002/cbic.200700354
Salierno, M., Fameli, C., & Etchenique, R. (2008). Caged Amino Acids for Visible-Light Photodelivery. European Journal of Inorganic Chemistry, 2008(7), 1125-1128. doi:10.1002/ejic.200700963
Bonnet, S., Limburg, B., Meeldijk, J. D., Klein Gebbink, R. J. M., & Killian, J. A. (2010). Ruthenium-Decorated Lipid Vesicles: Light-Induced Release of [Ru(terpy)(bpy)(OH2)]2+ and Thermal Back Coordination. Journal of the American Chemical Society, 133(2), 252-261. doi:10.1021/ja105025m
Howerton, B. S., Heidary, D. K., & Glazer, E. C. (2012). Strained Ruthenium Complexes Are Potent Light-Activated Anticancer Agents. Journal of the American Chemical Society, 134(20), 8324-8327. doi:10.1021/ja3009677
Araya, R., Andino-Pavlovsky, V., Yuste, R., & Etchenique, R. (2013). Two-Photon Optical Interrogation of Individual Dendritic Spines with Caged Dopamine. ACS Chemical Neuroscience, 4(8), 1163-1167. doi:10.1021/cn4000692
Greenough, S. E., Roberts, G. M., Smith, N. A., Horbury, M. D., McKinlay, R. G., Żurek, J. M., … Stavros, V. G. (2014). Ultrafast photo-induced ligand solvolysis of cis-[Ru(bipyridine)2(nicotinamide)2]2+: experimental and theoretical insight into its photoactivation mechanism. Phys. Chem. Chem. Phys., 16(36), 19141-19155. doi:10.1039/c4cp02359e
Filevich, O., Zayat, L., Baraldo, L. M., & Etchenique, R. (2014). Long Wavelength Phototriggering: Ruthenium-Based Caged Compounds. Structure and Bonding, 47-68. doi:10.1007/430_2014_169
Knoll, J. D., Albani, B. A., & Turro, C. (2015). New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and 1O2 Generation. Accounts of Chemical Research, 48(8), 2280-2287. doi:10.1021/acs.accounts.5b00227
Chen, Z., Xiong, Y., Etchenique, R., & Wu, S. (2016). Manipulating pH using near-infrared light assisted by upconverting nanoparticles. Chemical Communications, 52(97), 13959-13962. doi:10.1039/c6cc05287h
Greenough, S. E., Horbury, M. D., Smith, N. A., Sadler, P. J., Paterson, M. J., & Stavros, V. G. (2016). Excited-State Dynamics of a Two-Photon-Activatable Ruthenium Prodrug. ChemPhysChem, 17(2), 221-224. doi:10.1002/cphc.201501075
Li, A., White, J. K., Arora, K., Herroon, M. K., Martin, P. D., Schlegel, H. B., … Kodanko, J. J. (2015). Selective Release of Aromatic Heterocycles from Ruthenium Tris(2-pyridylmethyl)amine with Visible Light. Inorganic Chemistry, 55(1), 10-12. doi:10.1021/acs.inorgchem.5b02600
Smith, N. A., Zhang, P., Greenough, S. E., Horbury, M. D., Clarkson, G. J., McFeely, D., … Sadler, P. J. (2017). Combatting AMR: photoactivatable ruthenium(ii)-isoniazid complex exhibits rapid selective antimycobacterial activity. Chemical Science, 8(1), 395-404. doi:10.1039/c6sc03028a
Rillema, D. P., Jones, D. S., Woods, C., & Levy, H. A. (1992). Comparison of the crystal structures of tris heterocyclic ligand complexes of ruthenium(II). Inorganic Chemistry, 31(13), 2935-2938. doi:10.1021/ic00039a049
Buzzetti, L., Crisenza, G. E. M., & Melchiorre, P. (2019). Mechanistic Studies in Photocatalysis. Angewandte Chemie International Edition, 58(12), 3730-3747. doi:10.1002/anie.201809984
Buzzetti, L., Crisenza, G. E. M., & Melchiorre, P. (2019). Mechanistische Studien in der Photokatalyse. Angewandte Chemie, 131(12), 3768-3786. doi:10.1002/ange.201809984
Pinnick, D. V., & Durham, B. (1984). Photosubstitution reactions of Ru(bpy)2XYn+ complexes. Inorganic Chemistry, 23(10), 1440-1445. doi:10.1021/ic00178a028
Fischer, A., Hardman, M. J., Hartshorn, M. P., & Wright, G. J. (1969). Acetylation of substituted benzyl alcohols with acetic anhydride catalysed by sulphuric acid. Tetrahedron, 25(24), 5915-5919. doi:10.1016/s0040-4020(01)83099-4
Micheroni, D., Lin, Z., Chen, Y.-S., & Lin, W. (2019). Luminescence Enhancement of cis-[Ru(bpy)2(py)2]2+ via Confinement within a Metal–Organic Framework. Inorganic Chemistry, 58(12), 7645-7648. doi:10.1021/acs.inorgchem.9b00396
Sheldrick, G. M. (2015). Crystal structure refinement withSHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1), 3-8. doi:10.1107/s2053229614024218
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. doi:10.1107/s0021889808042726
[-]