- -

Visible Light-Gated Organocatalysis Using a Ru-II-Photocage

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Visible Light-Gated Organocatalysis Using a Ru-II-Photocage

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Delgado, José A. es_ES
dc.contributor.author Romero, Miguel A. es_ES
dc.contributor.author Bosca Mayans, Francisco es_ES
dc.contributor.author Arteaga, Jesús F. es_ES
dc.contributor.author Pischel, Uwe es_ES
dc.date.accessioned 2021-05-07T03:32:26Z
dc.date.available 2021-05-07T03:32:26Z
dc.date.issued 2020-11-06 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166061
dc.description This is the peer reviewed version of the following article: J. A. González-Delgado, M. A. Romero, F. Boscá, J. F. Arteaga, U. Pischel, Chem. Eur. J. 2020, 26, 14229, which has been published in final form at https://doi.org/10.1002/chem.202001893. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] The light-gated organocatalysis via the release of 4-N,N-dimethylaminopyridine (DMAP) by irradiation of the [Ru(bpy)(2)(DMAP)(2)](2+)complex with visible light was investigated. As model reaction the acetylation of benzyl alcohols with acetic anhydride was chosen. The pre-catalyst releases one DMAP molecule on irradiation at wavelengths longer than 455 nm. The photochemical process was characterized by steady-state irradiation and ultrafast transient absorption spectroscopy. The latter enabled the observation of the(3)MLCT state and the spectral features of the penta-coordinated intermediate [Ru(bpy)(2)(DMAP)](2+). The released DMAP catalyzes the acetylation of a wide range of benzyl alcohols with chemical yields of up to 99 %. Control experiments revealed unequivocally that it is the released DMAP which takes the role of the catalyst. es_ES
dc.description.sponsorship We are grateful for the financial support by the Spanish Ministry of Science, Innovation, and Universities (grant CTQ2017- 89832-P for U.P.), the University of Huelva (grant UHU-9-542- 2019 for J.F.A.), and the Generalitat Valenciana (PROMETEO program, 2017-075 for P.B.). The experimental assistance of A. Morales and S. Abad in the early stages of the work, as well as the technical support by F. Molina in the determination of the single-crystal X-ray structure of 1-(PF6)2 is acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Organocatalysis es_ES
dc.subject Photochemistry es_ES
dc.subject Photorelease es_ES
dc.subject Ruthenium complexes es_ES
dc.subject Time-resolved spectroscopy es_ES
dc.title Visible Light-Gated Organocatalysis Using a Ru-II-Photocage es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.202001893 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-89832-P/ES/APLICACIONES DE LIBERACION DE HUESPEDES INDUCIDA POR LUZ EN SISTEMAS SUPRAMOLECULARES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UHU//UHU-9-542-2019/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation González-Delgado, JA.; Romero, MA.; Bosca Mayans, F.; Arteaga, JF.; Pischel, U. (2020). Visible Light-Gated Organocatalysis Using a Ru-II-Photocage. Chemistry - A European Journal. 26(62):14229-14235. https://doi.org/10.1002/chem.202001893 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.202001893 es_ES
dc.description.upvformatpinicio 14229 es_ES
dc.description.upvformatpfin 14235 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 62 es_ES
dc.identifier.pmid 32449554 es_ES
dc.relation.pasarela S\430610 es_ES
dc.contributor.funder Universidad de Huelva es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Hoffmann, N. (2008). Photochemical Reactions as Key Steps in Organic Synthesis. Chemical Reviews, 108(3), 1052-1103. doi:10.1021/cr0680336 es_ES
dc.description.references Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angewandte Chemie International Edition, 57(32), 10034-10072. doi:10.1002/anie.201709766 es_ES
dc.description.references Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Photokatalyse mit sichtbarem Licht: Welche Bedeutung hat sie für die organische Synthese? Angewandte Chemie, 130(32), 10188-10228. doi:10.1002/ange.201709766 es_ES
dc.description.references Michelin, C., & Hoffmann, N. (2018). Photosensitization and Photocatalysis—Perspectives in Organic Synthesis. ACS Catalysis, 8(12), 12046-12055. doi:10.1021/acscatal.8b03050 es_ES
dc.description.references Narayanam, J. M. R., & Stephenson, C. R. J. (2011). Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev., 40(1), 102-113. doi:10.1039/b913880n es_ES
dc.description.references Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r es_ES
dc.description.references Shaw, M. H., Twilton, J., & MacMillan, D. W. C. (2016). Photoredox Catalysis in Organic Chemistry. The Journal of Organic Chemistry, 81(16), 6898-6926. doi:10.1021/acs.joc.6b01449 es_ES
dc.description.references Zeitler, K. (2009). Photoredox Catalysis with Visible Light. Angewandte Chemie International Edition, 48(52), 9785-9789. doi:10.1002/anie.200904056 es_ES
dc.description.references Zeitler, K. (2009). Photoredoxkatalyse mit sichtbarem Licht. Angewandte Chemie, 121(52), 9969-9974. doi:10.1002/ange.200904056 es_ES
dc.description.references Hari, D. P., & König, B. (2014). Synthetic applications of eosin Y in photoredox catalysis. Chem. Commun., 50(51), 6688-6699. doi:10.1039/c4cc00751d es_ES
dc.description.references Romero, N. A., & Nicewicz, D. A. (2016). Organic Photoredox Catalysis. Chemical Reviews, 116(17), 10075-10166. doi:10.1021/acs.chemrev.6b00057 es_ES
dc.description.references Sun, X., Gao, J. P., & Wang, Z. Y. (2008). Bicyclic Guanidinium Tetraphenylborate: A Photobase Generator and A Photocatalyst for Living Anionic Ring-Opening Polymerization and Cross-Linking of Polymeric Materials Containing Ester and Hydroxy Groups. Journal of the American Chemical Society, 130(26), 8130-8131. doi:10.1021/ja802816g es_ES
dc.description.references Xi, W., Krieger, M., Kloxin, C. J., & Bowman, C. N. (2013). A new photoclick reaction strategy: photo-induced catalysis of the thiol-Michael addition via a caged primary amine. Chem. Commun., 49(40), 4504-4506. doi:10.1039/c3cc41123k es_ES
dc.description.references Deo, C., Bogliotti, N., Retailleau, P., & Xie, J. (2016). Triphenylphosphine Photorelease and Induction of Catalytic Activity from Ruthenium-Arene Complexes Bearing a Photoswitchable o-Tosylamide Azobenzene Ligand. Organometallics, 35(16), 2694-2700. doi:10.1021/acs.organomet.6b00431 es_ES
dc.description.references Maity, C., Trausel, F., & Eelkema, R. (2018). Selective activation of organocatalysts by specific signals. Chemical Science, 9(27), 5999-6005. doi:10.1039/c8sc02019a es_ES
dc.description.references Guruge, C., Rfaish, S. Y., Byrd, C., Yang, S., Starrett, A. K., Guisbert, E., & Nesnas, N. (2019). Caged Proline in Photoinitiated Organocatalysis. The Journal of Organic Chemistry, 84(9), 5236-5244. doi:10.1021/acs.joc.9b00220 es_ES
dc.description.references Schroeder, M. A., & Wrighton, M. S. (1976). Pentacarbonyliron(0) photocatalyzed hydrogenation and isomerization of olefins. Journal of the American Chemical Society, 98(2), 551-558. doi:10.1021/ja00418a039 es_ES
dc.description.references Vollhardt, K. P. C. (1984). Cobalt-Mediated [2 + 2 + 2]-Cycloadditions: A Maturing Synthetic Strategy [New Synthetic Methods (43)]. Angewandte Chemie International Edition in English, 23(8), 539-556. doi:10.1002/anie.198405393 es_ES
dc.description.references Vollhardt, K. P. C. (1984). Cobalt-vermittelte [2+2+2]-Cycloadditionen: eine ausgereifte Synthesestrategie. Angewandte Chemie, 96(8), 525-541. doi:10.1002/ange.19840960804 es_ES
dc.description.references Stumpf, A. W., Saive, E., Demonceau, A., & Noels, A. F. (1995). Ruthenium-based catalysts for the ring opening metathesis polymerisation of low-strain cyclic olefins and of functionalised derivatives of norbornene and cyclooctene. Journal of the Chemical Society, Chemical Communications, (11), 1127. doi:10.1039/c39950001127 es_ES
dc.description.references Hafner, A., Mühlebach, A., & van der Schaaf, P. A. (1997). One-Component Catalysts for Thermal and Photoinduced Ring Opening Metathesis Polymerization. Angewandte Chemie International Edition in English, 36(19), 2121-2124. doi:10.1002/anie.199721211 es_ES
dc.description.references Hafner, A., Mühlebach, A., & Van Der Schaaf, P. A. (1997). Einkomponentige Katalysatoren für die thermische und photoinduzierte Ringöffnungs-Metathese-Polymerisation. Angewandte Chemie, 109(19), 2213-2216. doi:10.1002/ange.19971091927 es_ES
dc.description.references Picquet, M., Bruneau, C., & Dixneuf, P. H. (1998). Catalytic synthesis of 3-vinyl-2,5-dihydrofurans from yne-enes promoted by photochemically activated metal–allenylidene LnRuCCCR2 complex. Chemical Communications, (20), 2249-2250. doi:10.1039/a806005c es_ES
dc.description.references Fürstner, A., & Ackermann, L. (1999). A most user-friendly protocol for ring closing metathesis reactions. Chemical Communications, (1), 95-96. doi:10.1039/a808810a es_ES
dc.description.references Delaude, L., Demonceau, A., & Noels, A. F. (2001). Visible light induced ring-opening metathesis polymerisation of cyclooctene. Chemical Communications, (11), 986-987. doi:10.1039/b101699g es_ES
dc.description.references Wang, D., Wurst, K., Knolle, W., Decker, U., Prager, L., Naumov, S., & Buchmeiser, M. R. (2008). Cationic RuII Complexes with N-Heterocyclic Carbene Ligands for UV-Induced Ring-Opening Metathesis Polymerization. Angewandte Chemie International Edition, 47(17), 3267-3270. doi:10.1002/anie.200705220 es_ES
dc.description.references Wang, D., Wurst, K., Knolle, W., Decker, U., Prager, L., Naumov, S., & Buchmeiser, M. R. (2008). Kationische RuII-Komplexe mit N-heterocyclischem Carbenliganden für die UV-induzierte ringöffnende Metathesepolymerisation. Angewandte Chemie, 120(17), 3311-3314. doi:10.1002/ange.200705220 es_ES
dc.description.references Ueno, A., Takahashi, K., & Osa, T. (1980). Photoregulation of catalytic activity of β-cyclodextrin by an azo inhibitor. J. Chem. Soc., Chem. Commun., (17), 837-838. doi:10.1039/c39800000837 es_ES
dc.description.references Würthner, F., & Rebek, J. (1995). Light-Switchable Catalysis in Synthetic Receptors. Angewandte Chemie International Edition in English, 34(4), 446-448. doi:10.1002/anie.199504461 es_ES
dc.description.references Würthner, F., & Rebek, J. (1995). Photoschaltbare Katalyse mit synthetischen Rezeptoren. Angewandte Chemie, 107(4), 503-505. doi:10.1002/ange.19951070417 es_ES
dc.description.references Sud, D., Norsten, T. B., & Branda, N. R. (2005). Photoswitching of Stereoselectivity in Catalysis Using a Copper Dithienylethene Complex. Angewandte Chemie International Edition, 44(13), 2019-2021. doi:10.1002/anie.200462538 es_ES
dc.description.references Sud, D., Norsten, T. B., & Branda, N. R. (2005). Photoswitching of Stereoselectivity in Catalysis Using a Copper Dithienylethene Complex. Angewandte Chemie, 117(13), 2055-2057. doi:10.1002/ange.200462538 es_ES
dc.description.references Peters, M. V., Stoll, R. S., Kühn, A., & Hecht, S. (2008). Photoswitching of Basicity. Angewandte Chemie International Edition, 47(32), 5968-5972. doi:10.1002/anie.200802050 es_ES
dc.description.references Peters, M. V., Stoll, R. S., Kühn, A., & Hecht, S. (2008). Photoschalten von Basizität. Angewandte Chemie, 120(32), 6056-6060. doi:10.1002/ange.200802050 es_ES
dc.description.references Stoll, R. S., Peters, M. V., Kuhn, A., Heiles, S., Goddard, R., Bühl, M., … Hecht, S. (2008). Photoswitchable Catalysts: Correlating Structure and Conformational Dynamics with Reactivity by a Combined Experimental and Computational Approach. Journal of the American Chemical Society, 131(1), 357-367. doi:10.1021/ja807694s es_ES
dc.description.references Neilson, B. M., & Bielawski, C. W. (2013). Photoswitchable NHC-promoted ring-opening polymerizations. Chemical Communications, 49(48), 5453. doi:10.1039/c3cc42424c es_ES
dc.description.references Vlatković, M., Bernardi, L., Otten, E., & Feringa, B. L. (2014). Dual stereocontrol over the Henry reaction using a light- and heat-triggered organocatalyst. Chemical Communications, 50(58), 7773. doi:10.1039/c4cc00794h es_ES
dc.description.references Neri, S., Garcia Martin, S., Pezzato, C., & Prins, L. J. (2017). Photoswitchable Catalysis by a Nanozyme Mediated by a Light-Sensitive Cofactor. Journal of the American Chemical Society, 139(5), 1794-1797. doi:10.1021/jacs.6b12932 es_ES
dc.description.references Stoll, R. S., & Hecht, S. (2010). Artificial Light-Gated Catalyst Systems. Angewandte Chemie International Edition, 49(30), 5054-5075. doi:10.1002/anie.201000146 es_ES
dc.description.references Stoll, R. S., & Hecht, S. (2010). Künstliche lichtgesteuerte Katalysatorsysteme. Angewandte Chemie, 122(30), 5176-5200. doi:10.1002/ange.201000146 es_ES
dc.description.references List, B. (2007). Introduction:  Organocatalysis. Chemical Reviews, 107(12), 5413-5415. doi:10.1021/cr078412e es_ES
dc.description.references Bertelsen, S., & Jørgensen, K. A. (2009). Organocatalysis—after the gold rush. Chemical Society Reviews, 38(8), 2178. doi:10.1039/b903816g es_ES
dc.description.references List, B. (2012). Organocatalysis. Beilstein Journal of Organic Chemistry, 8, 1358-1359. doi:10.3762/bjoc.8.156 es_ES
dc.description.references Van der Helm, M. P., Klemm, B., & Eelkema, R. (2019). Organocatalysis in aqueous media. Nature Reviews Chemistry, 3(8), 491-508. doi:10.1038/s41570-019-0116-0 es_ES
dc.description.references Brieke, C., Rohrbach, F., Gottschalk, A., Mayer, G., & Heckel, A. (2012). Light‐Controlled Tools. Angewandte Chemie International Edition, 51(34), 8446-8476. doi:10.1002/anie.201202134 es_ES
dc.description.references Brieke, C., Rohrbach, F., Gottschalk, A., Mayer, G., & Heckel, A. (2012). Lichtgesteuerte Werkzeuge. Angewandte Chemie, 124(34), 8572-8604. doi:10.1002/ange.201202134 es_ES
dc.description.references Klán, P., Šolomek, T., Bochet, C. G., Blanc, A., Givens, R., Rubina, M., … Wirz, J. (2012). Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy. Chemical Reviews, 113(1), 119-191. doi:10.1021/cr300177k es_ES
dc.description.references Nicewicz, D. A., & MacMillan, D. W. C. (2008). Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes. Science, 322(5898), 77-80. doi:10.1126/science.1161976 es_ES
dc.description.references Silvi, M., & Melchiorre, P. (2018). Enhancing the potential of enantioselective organocatalysis with light. Nature, 554(7690), 41-49. doi:10.1038/nature25175 es_ES
dc.description.references Hansen, M. J., Velema, W. A., Lerch, M. M., Szymanski, W., & Feringa, B. L. (2015). Wavelength-selective cleavage of photoprotecting groups: strategies and applications in dynamic systems. Chemical Society Reviews, 44(11), 3358-3377. doi:10.1039/c5cs00118h es_ES
dc.description.references Zayat, L., Calero, C., Alborés, P., Baraldo, L., & Etchenique, R. (2003). A New Strategy for Neurochemical Photodelivery:  Metal−Ligand Heterolytic Cleavage. Journal of the American Chemical Society, 125(4), 882-883. doi:10.1021/ja0278943 es_ES
dc.description.references Nikolenko, V., Yuste, R., Zayat, L., Baraldo, L. M., & Etchenique, R. (2005). Two-photon uncaging of neurochemicals using inorganic metal complexes. Chemical Communications, (13), 1752. doi:10.1039/b418572b es_ES
dc.description.references Zayat, L., Salierno, M., & Etchenique, R. (2006). Ruthenium(II) Bipyridyl Complexes as Photolabile Caging Groups for Amines. Inorganic Chemistry, 45(4), 1728-1731. doi:10.1021/ic0512983 es_ES
dc.description.references Zayat, L., Noval, M. G., Campi, J., Calero, C. I., Calvo, D. J., & Etchenique, R. (2007). A New Inorganic Photolabile Protecting Group for Highly Efficient Visible Light GABA Uncaging. ChemBioChem, 8(17), 2035-2038. doi:10.1002/cbic.200700354 es_ES
dc.description.references Salierno, M., Fameli, C., & Etchenique, R. (2008). Caged Amino Acids for Visible-Light Photodelivery. European Journal of Inorganic Chemistry, 2008(7), 1125-1128. doi:10.1002/ejic.200700963 es_ES
dc.description.references Bonnet, S., Limburg, B., Meeldijk, J. D., Klein Gebbink, R. J. M., & Killian, J. A. (2010). Ruthenium-Decorated Lipid Vesicles: Light-Induced Release of [Ru(terpy)(bpy)(OH2)]2+ and Thermal Back Coordination. Journal of the American Chemical Society, 133(2), 252-261. doi:10.1021/ja105025m es_ES
dc.description.references Howerton, B. S., Heidary, D. K., & Glazer, E. C. (2012). Strained Ruthenium Complexes Are Potent Light-Activated Anticancer Agents. Journal of the American Chemical Society, 134(20), 8324-8327. doi:10.1021/ja3009677 es_ES
dc.description.references Araya, R., Andino-Pavlovsky, V., Yuste, R., & Etchenique, R. (2013). Two-Photon Optical Interrogation of Individual Dendritic Spines with Caged Dopamine. ACS Chemical Neuroscience, 4(8), 1163-1167. doi:10.1021/cn4000692 es_ES
dc.description.references Greenough, S. E., Roberts, G. M., Smith, N. A., Horbury, M. D., McKinlay, R. G., Żurek, J. M., … Stavros, V. G. (2014). Ultrafast photo-induced ligand solvolysis of cis-[Ru(bipyridine)2(nicotinamide)2]2+: experimental and theoretical insight into its photoactivation mechanism. Phys. Chem. Chem. Phys., 16(36), 19141-19155. doi:10.1039/c4cp02359e es_ES
dc.description.references Filevich, O., Zayat, L., Baraldo, L. M., & Etchenique, R. (2014). Long Wavelength Phototriggering: Ruthenium-Based Caged Compounds. Structure and Bonding, 47-68. doi:10.1007/430_2014_169 es_ES
dc.description.references Knoll, J. D., Albani, B. A., & Turro, C. (2015). New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and 1O2 Generation. Accounts of Chemical Research, 48(8), 2280-2287. doi:10.1021/acs.accounts.5b00227 es_ES
dc.description.references Chen, Z., Xiong, Y., Etchenique, R., & Wu, S. (2016). Manipulating pH using near-infrared light assisted by upconverting nanoparticles. Chemical Communications, 52(97), 13959-13962. doi:10.1039/c6cc05287h es_ES
dc.description.references Greenough, S. E., Horbury, M. D., Smith, N. A., Sadler, P. J., Paterson, M. J., & Stavros, V. G. (2016). Excited-State Dynamics of a Two-Photon-Activatable Ruthenium Prodrug. ChemPhysChem, 17(2), 221-224. doi:10.1002/cphc.201501075 es_ES
dc.description.references Li, A., White, J. K., Arora, K., Herroon, M. K., Martin, P. D., Schlegel, H. B., … Kodanko, J. J. (2015). Selective Release of Aromatic Heterocycles from Ruthenium Tris(2-pyridylmethyl)amine with Visible Light. Inorganic Chemistry, 55(1), 10-12. doi:10.1021/acs.inorgchem.5b02600 es_ES
dc.description.references Smith, N. A., Zhang, P., Greenough, S. E., Horbury, M. D., Clarkson, G. J., McFeely, D., … Sadler, P. J. (2017). Combatting AMR: photoactivatable ruthenium(ii)-isoniazid complex exhibits rapid selective antimycobacterial activity. Chemical Science, 8(1), 395-404. doi:10.1039/c6sc03028a es_ES
dc.description.references Rillema, D. P., Jones, D. S., Woods, C., & Levy, H. A. (1992). Comparison of the crystal structures of tris heterocyclic ligand complexes of ruthenium(II). Inorganic Chemistry, 31(13), 2935-2938. doi:10.1021/ic00039a049 es_ES
dc.description.references Buzzetti, L., Crisenza, G. E. M., & Melchiorre, P. (2019). Mechanistic Studies in Photocatalysis. Angewandte Chemie International Edition, 58(12), 3730-3747. doi:10.1002/anie.201809984 es_ES
dc.description.references Buzzetti, L., Crisenza, G. E. M., & Melchiorre, P. (2019). Mechanistische Studien in der Photokatalyse. Angewandte Chemie, 131(12), 3768-3786. doi:10.1002/ange.201809984 es_ES
dc.description.references Pinnick, D. V., & Durham, B. (1984). Photosubstitution reactions of Ru(bpy)2XYn+ complexes. Inorganic Chemistry, 23(10), 1440-1445. doi:10.1021/ic00178a028 es_ES
dc.description.references Fischer, A., Hardman, M. J., Hartshorn, M. P., & Wright, G. J. (1969). Acetylation of substituted benzyl alcohols with acetic anhydride catalysed by sulphuric acid. Tetrahedron, 25(24), 5915-5919. doi:10.1016/s0040-4020(01)83099-4 es_ES
dc.description.references Micheroni, D., Lin, Z., Chen, Y.-S., & Lin, W. (2019). Luminescence Enhancement of cis-[Ru(bpy)2(py)2]2+ via Confinement within a Metal–Organic Framework. Inorganic Chemistry, 58(12), 7645-7648. doi:10.1021/acs.inorgchem.9b00396 es_ES
dc.description.references Sheldrick, G. M. (2015). Crystal structure refinement withSHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1), 3-8. doi:10.1107/s2053229614024218 es_ES
dc.description.references Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. doi:10.1107/s0021889808042726 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem