Mostrar el registro sencillo del ítem
dc.contributor.author | González-Delgado, José A. | es_ES |
dc.contributor.author | Romero, Miguel A. | es_ES |
dc.contributor.author | Bosca Mayans, Francisco | es_ES |
dc.contributor.author | Arteaga, Jesús F. | es_ES |
dc.contributor.author | Pischel, Uwe | es_ES |
dc.date.accessioned | 2021-05-07T03:32:26Z | |
dc.date.available | 2021-05-07T03:32:26Z | |
dc.date.issued | 2020-11-06 | es_ES |
dc.identifier.issn | 0947-6539 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166061 | |
dc.description | This is the peer reviewed version of the following article: J. A. González-Delgado, M. A. Romero, F. Boscá, J. F. Arteaga, U. Pischel, Chem. Eur. J. 2020, 26, 14229, which has been published in final form at https://doi.org/10.1002/chem.202001893. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] The light-gated organocatalysis via the release of 4-N,N-dimethylaminopyridine (DMAP) by irradiation of the [Ru(bpy)(2)(DMAP)(2)](2+)complex with visible light was investigated. As model reaction the acetylation of benzyl alcohols with acetic anhydride was chosen. The pre-catalyst releases one DMAP molecule on irradiation at wavelengths longer than 455 nm. The photochemical process was characterized by steady-state irradiation and ultrafast transient absorption spectroscopy. The latter enabled the observation of the(3)MLCT state and the spectral features of the penta-coordinated intermediate [Ru(bpy)(2)(DMAP)](2+). The released DMAP catalyzes the acetylation of a wide range of benzyl alcohols with chemical yields of up to 99 %. Control experiments revealed unequivocally that it is the released DMAP which takes the role of the catalyst. | es_ES |
dc.description.sponsorship | We are grateful for the financial support by the Spanish Ministry of Science, Innovation, and Universities (grant CTQ2017- 89832-P for U.P.), the University of Huelva (grant UHU-9-542- 2019 for J.F.A.), and the Generalitat Valenciana (PROMETEO program, 2017-075 for P.B.). The experimental assistance of A. Morales and S. Abad in the early stages of the work, as well as the technical support by F. Molina in the determination of the single-crystal X-ray structure of 1-(PF6)2 is acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Organocatalysis | es_ES |
dc.subject | Photochemistry | es_ES |
dc.subject | Photorelease | es_ES |
dc.subject | Ruthenium complexes | es_ES |
dc.subject | Time-resolved spectroscopy | es_ES |
dc.title | Visible Light-Gated Organocatalysis Using a Ru-II-Photocage | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/chem.202001893 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-89832-P/ES/APLICACIONES DE LIBERACION DE HUESPEDES INDUCIDA POR LUZ EN SISTEMAS SUPRAMOLECULARES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UHU//UHU-9-542-2019/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | González-Delgado, JA.; Romero, MA.; Bosca Mayans, F.; Arteaga, JF.; Pischel, U. (2020). Visible Light-Gated Organocatalysis Using a Ru-II-Photocage. Chemistry - A European Journal. 26(62):14229-14235. https://doi.org/10.1002/chem.202001893 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/chem.202001893 | es_ES |
dc.description.upvformatpinicio | 14229 | es_ES |
dc.description.upvformatpfin | 14235 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 62 | es_ES |
dc.identifier.pmid | 32449554 | es_ES |
dc.relation.pasarela | S\430610 | es_ES |
dc.contributor.funder | Universidad de Huelva | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Hoffmann, N. (2008). Photochemical Reactions as Key Steps in Organic Synthesis. Chemical Reviews, 108(3), 1052-1103. doi:10.1021/cr0680336 | es_ES |
dc.description.references | Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angewandte Chemie International Edition, 57(32), 10034-10072. doi:10.1002/anie.201709766 | es_ES |
dc.description.references | Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Photokatalyse mit sichtbarem Licht: Welche Bedeutung hat sie für die organische Synthese? Angewandte Chemie, 130(32), 10188-10228. doi:10.1002/ange.201709766 | es_ES |
dc.description.references | Michelin, C., & Hoffmann, N. (2018). Photosensitization and Photocatalysis—Perspectives in Organic Synthesis. ACS Catalysis, 8(12), 12046-12055. doi:10.1021/acscatal.8b03050 | es_ES |
dc.description.references | Narayanam, J. M. R., & Stephenson, C. R. J. (2011). Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev., 40(1), 102-113. doi:10.1039/b913880n | es_ES |
dc.description.references | Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r | es_ES |
dc.description.references | Shaw, M. H., Twilton, J., & MacMillan, D. W. C. (2016). Photoredox Catalysis in Organic Chemistry. The Journal of Organic Chemistry, 81(16), 6898-6926. doi:10.1021/acs.joc.6b01449 | es_ES |
dc.description.references | Zeitler, K. (2009). Photoredox Catalysis with Visible Light. Angewandte Chemie International Edition, 48(52), 9785-9789. doi:10.1002/anie.200904056 | es_ES |
dc.description.references | Zeitler, K. (2009). Photoredoxkatalyse mit sichtbarem Licht. Angewandte Chemie, 121(52), 9969-9974. doi:10.1002/ange.200904056 | es_ES |
dc.description.references | Hari, D. P., & König, B. (2014). Synthetic applications of eosin Y in photoredox catalysis. Chem. Commun., 50(51), 6688-6699. doi:10.1039/c4cc00751d | es_ES |
dc.description.references | Romero, N. A., & Nicewicz, D. A. (2016). Organic Photoredox Catalysis. Chemical Reviews, 116(17), 10075-10166. doi:10.1021/acs.chemrev.6b00057 | es_ES |
dc.description.references | Sun, X., Gao, J. P., & Wang, Z. Y. (2008). Bicyclic Guanidinium Tetraphenylborate: A Photobase Generator and A Photocatalyst for Living Anionic Ring-Opening Polymerization and Cross-Linking of Polymeric Materials Containing Ester and Hydroxy Groups. Journal of the American Chemical Society, 130(26), 8130-8131. doi:10.1021/ja802816g | es_ES |
dc.description.references | Xi, W., Krieger, M., Kloxin, C. J., & Bowman, C. N. (2013). A new photoclick reaction strategy: photo-induced catalysis of the thiol-Michael addition via a caged primary amine. Chem. Commun., 49(40), 4504-4506. doi:10.1039/c3cc41123k | es_ES |
dc.description.references | Deo, C., Bogliotti, N., Retailleau, P., & Xie, J. (2016). Triphenylphosphine Photorelease and Induction of Catalytic Activity from Ruthenium-Arene Complexes Bearing a Photoswitchable o-Tosylamide Azobenzene Ligand. Organometallics, 35(16), 2694-2700. doi:10.1021/acs.organomet.6b00431 | es_ES |
dc.description.references | Maity, C., Trausel, F., & Eelkema, R. (2018). Selective activation of organocatalysts by specific signals. Chemical Science, 9(27), 5999-6005. doi:10.1039/c8sc02019a | es_ES |
dc.description.references | Guruge, C., Rfaish, S. Y., Byrd, C., Yang, S., Starrett, A. K., Guisbert, E., & Nesnas, N. (2019). Caged Proline in Photoinitiated Organocatalysis. The Journal of Organic Chemistry, 84(9), 5236-5244. doi:10.1021/acs.joc.9b00220 | es_ES |
dc.description.references | Schroeder, M. A., & Wrighton, M. S. (1976). Pentacarbonyliron(0) photocatalyzed hydrogenation and isomerization of olefins. Journal of the American Chemical Society, 98(2), 551-558. doi:10.1021/ja00418a039 | es_ES |
dc.description.references | Vollhardt, K. P. C. (1984). Cobalt-Mediated [2 + 2 + 2]-Cycloadditions: A Maturing Synthetic Strategy [New Synthetic Methods (43)]. Angewandte Chemie International Edition in English, 23(8), 539-556. doi:10.1002/anie.198405393 | es_ES |
dc.description.references | Vollhardt, K. P. C. (1984). Cobalt-vermittelte [2+2+2]-Cycloadditionen: eine ausgereifte Synthesestrategie. Angewandte Chemie, 96(8), 525-541. doi:10.1002/ange.19840960804 | es_ES |
dc.description.references | Stumpf, A. W., Saive, E., Demonceau, A., & Noels, A. F. (1995). Ruthenium-based catalysts for the ring opening metathesis polymerisation of low-strain cyclic olefins and of functionalised derivatives of norbornene and cyclooctene. Journal of the Chemical Society, Chemical Communications, (11), 1127. doi:10.1039/c39950001127 | es_ES |
dc.description.references | Hafner, A., Mühlebach, A., & van der Schaaf, P. A. (1997). One-Component Catalysts for Thermal and Photoinduced Ring Opening Metathesis Polymerization. Angewandte Chemie International Edition in English, 36(19), 2121-2124. doi:10.1002/anie.199721211 | es_ES |
dc.description.references | Hafner, A., Mühlebach, A., & Van Der Schaaf, P. A. (1997). Einkomponentige Katalysatoren für die thermische und photoinduzierte Ringöffnungs-Metathese-Polymerisation. Angewandte Chemie, 109(19), 2213-2216. doi:10.1002/ange.19971091927 | es_ES |
dc.description.references | Picquet, M., Bruneau, C., & Dixneuf, P. H. (1998). Catalytic synthesis of 3-vinyl-2,5-dihydrofurans from yne-enes promoted by photochemically activated metal–allenylidene LnRuCCCR2 complex. Chemical Communications, (20), 2249-2250. doi:10.1039/a806005c | es_ES |
dc.description.references | Fürstner, A., & Ackermann, L. (1999). A most user-friendly protocol for ring closing metathesis reactions. Chemical Communications, (1), 95-96. doi:10.1039/a808810a | es_ES |
dc.description.references | Delaude, L., Demonceau, A., & Noels, A. F. (2001). Visible light induced ring-opening metathesis polymerisation of cyclooctene. Chemical Communications, (11), 986-987. doi:10.1039/b101699g | es_ES |
dc.description.references | Wang, D., Wurst, K., Knolle, W., Decker, U., Prager, L., Naumov, S., & Buchmeiser, M. R. (2008). Cationic RuII Complexes with N-Heterocyclic Carbene Ligands for UV-Induced Ring-Opening Metathesis Polymerization. Angewandte Chemie International Edition, 47(17), 3267-3270. doi:10.1002/anie.200705220 | es_ES |
dc.description.references | Wang, D., Wurst, K., Knolle, W., Decker, U., Prager, L., Naumov, S., & Buchmeiser, M. R. (2008). Kationische RuII-Komplexe mit N-heterocyclischem Carbenliganden für die UV-induzierte ringöffnende Metathesepolymerisation. Angewandte Chemie, 120(17), 3311-3314. doi:10.1002/ange.200705220 | es_ES |
dc.description.references | Ueno, A., Takahashi, K., & Osa, T. (1980). Photoregulation of catalytic activity of β-cyclodextrin by an azo inhibitor. J. Chem. Soc., Chem. Commun., (17), 837-838. doi:10.1039/c39800000837 | es_ES |
dc.description.references | Würthner, F., & Rebek, J. (1995). Light-Switchable Catalysis in Synthetic Receptors. Angewandte Chemie International Edition in English, 34(4), 446-448. doi:10.1002/anie.199504461 | es_ES |
dc.description.references | Würthner, F., & Rebek, J. (1995). Photoschaltbare Katalyse mit synthetischen Rezeptoren. Angewandte Chemie, 107(4), 503-505. doi:10.1002/ange.19951070417 | es_ES |
dc.description.references | Sud, D., Norsten, T. B., & Branda, N. R. (2005). Photoswitching of Stereoselectivity in Catalysis Using a Copper Dithienylethene Complex. Angewandte Chemie International Edition, 44(13), 2019-2021. doi:10.1002/anie.200462538 | es_ES |
dc.description.references | Sud, D., Norsten, T. B., & Branda, N. R. (2005). Photoswitching of Stereoselectivity in Catalysis Using a Copper Dithienylethene Complex. Angewandte Chemie, 117(13), 2055-2057. doi:10.1002/ange.200462538 | es_ES |
dc.description.references | Peters, M. V., Stoll, R. S., Kühn, A., & Hecht, S. (2008). Photoswitching of Basicity. Angewandte Chemie International Edition, 47(32), 5968-5972. doi:10.1002/anie.200802050 | es_ES |
dc.description.references | Peters, M. V., Stoll, R. S., Kühn, A., & Hecht, S. (2008). Photoschalten von Basizität. Angewandte Chemie, 120(32), 6056-6060. doi:10.1002/ange.200802050 | es_ES |
dc.description.references | Stoll, R. S., Peters, M. V., Kuhn, A., Heiles, S., Goddard, R., Bühl, M., … Hecht, S. (2008). Photoswitchable Catalysts: Correlating Structure and Conformational Dynamics with Reactivity by a Combined Experimental and Computational Approach. Journal of the American Chemical Society, 131(1), 357-367. doi:10.1021/ja807694s | es_ES |
dc.description.references | Neilson, B. M., & Bielawski, C. W. (2013). Photoswitchable NHC-promoted ring-opening polymerizations. Chemical Communications, 49(48), 5453. doi:10.1039/c3cc42424c | es_ES |
dc.description.references | Vlatković, M., Bernardi, L., Otten, E., & Feringa, B. L. (2014). Dual stereocontrol over the Henry reaction using a light- and heat-triggered organocatalyst. Chemical Communications, 50(58), 7773. doi:10.1039/c4cc00794h | es_ES |
dc.description.references | Neri, S., Garcia Martin, S., Pezzato, C., & Prins, L. J. (2017). Photoswitchable Catalysis by a Nanozyme Mediated by a Light-Sensitive Cofactor. Journal of the American Chemical Society, 139(5), 1794-1797. doi:10.1021/jacs.6b12932 | es_ES |
dc.description.references | Stoll, R. S., & Hecht, S. (2010). Artificial Light-Gated Catalyst Systems. Angewandte Chemie International Edition, 49(30), 5054-5075. doi:10.1002/anie.201000146 | es_ES |
dc.description.references | Stoll, R. S., & Hecht, S. (2010). Künstliche lichtgesteuerte Katalysatorsysteme. Angewandte Chemie, 122(30), 5176-5200. doi:10.1002/ange.201000146 | es_ES |
dc.description.references | List, B. (2007). Introduction: Organocatalysis. Chemical Reviews, 107(12), 5413-5415. doi:10.1021/cr078412e | es_ES |
dc.description.references | Bertelsen, S., & Jørgensen, K. A. (2009). Organocatalysis—after the gold rush. Chemical Society Reviews, 38(8), 2178. doi:10.1039/b903816g | es_ES |
dc.description.references | List, B. (2012). Organocatalysis. Beilstein Journal of Organic Chemistry, 8, 1358-1359. doi:10.3762/bjoc.8.156 | es_ES |
dc.description.references | Van der Helm, M. P., Klemm, B., & Eelkema, R. (2019). Organocatalysis in aqueous media. Nature Reviews Chemistry, 3(8), 491-508. doi:10.1038/s41570-019-0116-0 | es_ES |
dc.description.references | Brieke, C., Rohrbach, F., Gottschalk, A., Mayer, G., & Heckel, A. (2012). Light‐Controlled Tools. Angewandte Chemie International Edition, 51(34), 8446-8476. doi:10.1002/anie.201202134 | es_ES |
dc.description.references | Brieke, C., Rohrbach, F., Gottschalk, A., Mayer, G., & Heckel, A. (2012). Lichtgesteuerte Werkzeuge. Angewandte Chemie, 124(34), 8572-8604. doi:10.1002/ange.201202134 | es_ES |
dc.description.references | Klán, P., Šolomek, T., Bochet, C. G., Blanc, A., Givens, R., Rubina, M., … Wirz, J. (2012). Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy. Chemical Reviews, 113(1), 119-191. doi:10.1021/cr300177k | es_ES |
dc.description.references | Nicewicz, D. A., & MacMillan, D. W. C. (2008). Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes. Science, 322(5898), 77-80. doi:10.1126/science.1161976 | es_ES |
dc.description.references | Silvi, M., & Melchiorre, P. (2018). Enhancing the potential of enantioselective organocatalysis with light. Nature, 554(7690), 41-49. doi:10.1038/nature25175 | es_ES |
dc.description.references | Hansen, M. J., Velema, W. A., Lerch, M. M., Szymanski, W., & Feringa, B. L. (2015). Wavelength-selective cleavage of photoprotecting groups: strategies and applications in dynamic systems. Chemical Society Reviews, 44(11), 3358-3377. doi:10.1039/c5cs00118h | es_ES |
dc.description.references | Zayat, L., Calero, C., Alborés, P., Baraldo, L., & Etchenique, R. (2003). A New Strategy for Neurochemical Photodelivery: Metal−Ligand Heterolytic Cleavage. Journal of the American Chemical Society, 125(4), 882-883. doi:10.1021/ja0278943 | es_ES |
dc.description.references | Nikolenko, V., Yuste, R., Zayat, L., Baraldo, L. M., & Etchenique, R. (2005). Two-photon uncaging of neurochemicals using inorganic metal complexes. Chemical Communications, (13), 1752. doi:10.1039/b418572b | es_ES |
dc.description.references | Zayat, L., Salierno, M., & Etchenique, R. (2006). Ruthenium(II) Bipyridyl Complexes as Photolabile Caging Groups for Amines. Inorganic Chemistry, 45(4), 1728-1731. doi:10.1021/ic0512983 | es_ES |
dc.description.references | Zayat, L., Noval, M. G., Campi, J., Calero, C. I., Calvo, D. J., & Etchenique, R. (2007). A New Inorganic Photolabile Protecting Group for Highly Efficient Visible Light GABA Uncaging. ChemBioChem, 8(17), 2035-2038. doi:10.1002/cbic.200700354 | es_ES |
dc.description.references | Salierno, M., Fameli, C., & Etchenique, R. (2008). Caged Amino Acids for Visible-Light Photodelivery. European Journal of Inorganic Chemistry, 2008(7), 1125-1128. doi:10.1002/ejic.200700963 | es_ES |
dc.description.references | Bonnet, S., Limburg, B., Meeldijk, J. D., Klein Gebbink, R. J. M., & Killian, J. A. (2010). Ruthenium-Decorated Lipid Vesicles: Light-Induced Release of [Ru(terpy)(bpy)(OH2)]2+ and Thermal Back Coordination. Journal of the American Chemical Society, 133(2), 252-261. doi:10.1021/ja105025m | es_ES |
dc.description.references | Howerton, B. S., Heidary, D. K., & Glazer, E. C. (2012). Strained Ruthenium Complexes Are Potent Light-Activated Anticancer Agents. Journal of the American Chemical Society, 134(20), 8324-8327. doi:10.1021/ja3009677 | es_ES |
dc.description.references | Araya, R., Andino-Pavlovsky, V., Yuste, R., & Etchenique, R. (2013). Two-Photon Optical Interrogation of Individual Dendritic Spines with Caged Dopamine. ACS Chemical Neuroscience, 4(8), 1163-1167. doi:10.1021/cn4000692 | es_ES |
dc.description.references | Greenough, S. E., Roberts, G. M., Smith, N. A., Horbury, M. D., McKinlay, R. G., Żurek, J. M., … Stavros, V. G. (2014). Ultrafast photo-induced ligand solvolysis of cis-[Ru(bipyridine)2(nicotinamide)2]2+: experimental and theoretical insight into its photoactivation mechanism. Phys. Chem. Chem. Phys., 16(36), 19141-19155. doi:10.1039/c4cp02359e | es_ES |
dc.description.references | Filevich, O., Zayat, L., Baraldo, L. M., & Etchenique, R. (2014). Long Wavelength Phototriggering: Ruthenium-Based Caged Compounds. Structure and Bonding, 47-68. doi:10.1007/430_2014_169 | es_ES |
dc.description.references | Knoll, J. D., Albani, B. A., & Turro, C. (2015). New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and 1O2 Generation. Accounts of Chemical Research, 48(8), 2280-2287. doi:10.1021/acs.accounts.5b00227 | es_ES |
dc.description.references | Chen, Z., Xiong, Y., Etchenique, R., & Wu, S. (2016). Manipulating pH using near-infrared light assisted by upconverting nanoparticles. Chemical Communications, 52(97), 13959-13962. doi:10.1039/c6cc05287h | es_ES |
dc.description.references | Greenough, S. E., Horbury, M. D., Smith, N. A., Sadler, P. J., Paterson, M. J., & Stavros, V. G. (2016). Excited-State Dynamics of a Two-Photon-Activatable Ruthenium Prodrug. ChemPhysChem, 17(2), 221-224. doi:10.1002/cphc.201501075 | es_ES |
dc.description.references | Li, A., White, J. K., Arora, K., Herroon, M. K., Martin, P. D., Schlegel, H. B., … Kodanko, J. J. (2015). Selective Release of Aromatic Heterocycles from Ruthenium Tris(2-pyridylmethyl)amine with Visible Light. Inorganic Chemistry, 55(1), 10-12. doi:10.1021/acs.inorgchem.5b02600 | es_ES |
dc.description.references | Smith, N. A., Zhang, P., Greenough, S. E., Horbury, M. D., Clarkson, G. J., McFeely, D., … Sadler, P. J. (2017). Combatting AMR: photoactivatable ruthenium(ii)-isoniazid complex exhibits rapid selective antimycobacterial activity. Chemical Science, 8(1), 395-404. doi:10.1039/c6sc03028a | es_ES |
dc.description.references | Rillema, D. P., Jones, D. S., Woods, C., & Levy, H. A. (1992). Comparison of the crystal structures of tris heterocyclic ligand complexes of ruthenium(II). Inorganic Chemistry, 31(13), 2935-2938. doi:10.1021/ic00039a049 | es_ES |
dc.description.references | Buzzetti, L., Crisenza, G. E. M., & Melchiorre, P. (2019). Mechanistic Studies in Photocatalysis. Angewandte Chemie International Edition, 58(12), 3730-3747. doi:10.1002/anie.201809984 | es_ES |
dc.description.references | Buzzetti, L., Crisenza, G. E. M., & Melchiorre, P. (2019). Mechanistische Studien in der Photokatalyse. Angewandte Chemie, 131(12), 3768-3786. doi:10.1002/ange.201809984 | es_ES |
dc.description.references | Pinnick, D. V., & Durham, B. (1984). Photosubstitution reactions of Ru(bpy)2XYn+ complexes. Inorganic Chemistry, 23(10), 1440-1445. doi:10.1021/ic00178a028 | es_ES |
dc.description.references | Fischer, A., Hardman, M. J., Hartshorn, M. P., & Wright, G. J. (1969). Acetylation of substituted benzyl alcohols with acetic anhydride catalysed by sulphuric acid. Tetrahedron, 25(24), 5915-5919. doi:10.1016/s0040-4020(01)83099-4 | es_ES |
dc.description.references | Micheroni, D., Lin, Z., Chen, Y.-S., & Lin, W. (2019). Luminescence Enhancement of cis-[Ru(bpy)2(py)2]2+ via Confinement within a Metal–Organic Framework. Inorganic Chemistry, 58(12), 7645-7648. doi:10.1021/acs.inorgchem.9b00396 | es_ES |
dc.description.references | Sheldrick, G. M. (2015). Crystal structure refinement withSHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1), 3-8. doi:10.1107/s2053229614024218 | es_ES |
dc.description.references | Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. doi:10.1107/s0021889808042726 | es_ES |