- -

Photocatalytic Overall Water Splitting Activity of Templateless Structured Graphitic Nanoparticles Obtained from Cyclodextrins

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photocatalytic Overall Water Splitting Activity of Templateless Structured Graphitic Nanoparticles Obtained from Cyclodextrins

Mostrar el registro completo del ítem

Peng, Y.; Rendon-Patiño, A.; Franconetti, A.; Albero-Sancho, J.; Primo Arnau, AM.; García Gómez, H. (2020). Photocatalytic Overall Water Splitting Activity of Templateless Structured Graphitic Nanoparticles Obtained from Cyclodextrins. ACS Applied Energy Materials. 3(7):6623-6632. https://doi.org/10.1021/acsaem.0c00789

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166064

Ficheros en el ítem

Metadatos del ítem

Título: Photocatalytic Overall Water Splitting Activity of Templateless Structured Graphitic Nanoparticles Obtained from Cyclodextrins
Autor: Peng, Yong Rendon-Patiño, Alejandra Franconetti, Antonio Albero-Sancho, Josep Primo Arnau, Ana Maria García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Pyrolysis of alpha-, beta-, and gamma-cyclodextrins at 900 degrees C under Ar forms porous 3D graphitic carbon nanoparticles with remarkable crystallinity, in which the pore dimensions range from 0.74 to 1.1 nm in the ...[+]
Palabras clave: Porous carbon , Cyclodextrin pyrolysis , Metal-free photocatalysis , Photocatalytic hydrogen generation , Photocatalytic oxygen generation
Derechos de uso: Cerrado
Fuente:
ACS Applied Energy Materials. (eissn: 2574-0962 )
DOI: 10.1021/acsaem.0c00789
Editorial:
American Chemical Society
Versión del editor: https://doi.org/10.1021/acsaem.0c00789
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/
Agradecimientos:
Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and CTQ2018-98237-CO2-1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. We also thank the Center of Supercomputing ...[+]
Tipo: Artículo

References

Chua, C. K., & Pumera, M. (2015). Carbocatalysis: The State of «Metal-Free» Catalysis. Chemistry - A European Journal, 21(36), 12550-12562. doi:10.1002/chem.201501383

Ortiz‐Medina, J., Wang, Z., Cruz‐Silva, R., Morelos‐Gomez, A., Wang, F., Yao, X., … Endo, M. (2019). Catalytic Nanocarbons: Defect Engineering and Surface Functionalization of Nanocarbons for Metal‐Free Catalysis (Adv. Mater. 13/2019). Advanced Materials, 31(13), 1970096. doi:10.1002/adma.201970096

Esteve-Adell, I., He, J., Ramiro, F., Atienzar, P., Primo, A., & García, H. (2018). Catalyst-free one step synthesis of large area vertically stacked N-doped graphene-boron nitride heterostructures from biomass source. Nanoscale, 10(9), 4391-4397. doi:10.1039/c7nr08424b [+]
Chua, C. K., & Pumera, M. (2015). Carbocatalysis: The State of «Metal-Free» Catalysis. Chemistry - A European Journal, 21(36), 12550-12562. doi:10.1002/chem.201501383

Ortiz‐Medina, J., Wang, Z., Cruz‐Silva, R., Morelos‐Gomez, A., Wang, F., Yao, X., … Endo, M. (2019). Catalytic Nanocarbons: Defect Engineering and Surface Functionalization of Nanocarbons for Metal‐Free Catalysis (Adv. Mater. 13/2019). Advanced Materials, 31(13), 1970096. doi:10.1002/adma.201970096

Esteve-Adell, I., He, J., Ramiro, F., Atienzar, P., Primo, A., & García, H. (2018). Catalyst-free one step synthesis of large area vertically stacked N-doped graphene-boron nitride heterostructures from biomass source. Nanoscale, 10(9), 4391-4397. doi:10.1039/c7nr08424b

Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Antonietti, M., & García, H. (2017). Active sites on graphene-based materials as metal-free catalysts. Chemical Society Reviews, 46(15), 4501-4529. doi:10.1039/c7cs00156h

Melchionna, M., & Fornasiero, P. (2020). Updates on the Roadmap for Photocatalysis. ACS Catalysis, 10(10), 5493-5501. doi:10.1021/acscatal.0c01204

Li, C., Xu, Y., Tu, W., Chen, G., & Xu, R. (2017). Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green Chemistry, 19(4), 882-899. doi:10.1039/c6gc02856j

An, X., & Yu, J. C. (2011). Graphene-based photocatalytic composites. RSC Advances, 1(8), 1426. doi:10.1039/c1ra00382h

Morales-Torres, S., Pastrana-Martínez, L. M., Figueiredo, J. L., Faria, J. L., & Silva, A. M. T. (2012). Design of graphene-based TiO2 photocatalysts—a review. Environmental Science and Pollution Research, 19(9), 3676-3687. doi:10.1007/s11356-012-0939-4

Albero, J., Mateo, D., & García, H. (2019). Graphene-Based Materials as Efficient Photocatalysts for Water Splitting. Molecules, 24(5), 906. doi:10.3390/molecules24050906

Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505

Rendón-Patiño, A., Niu, J., Doménech-Carbó, A., García, H., & Primo, A. (2019). Polystyrene as Graphene Film and 3D Graphene Sponge Precursor. Nanomaterials, 9(1), 101. doi:10.3390/nano9010101

Trandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197

Bender, M. L., & Komiyama, M. (1978). Cyclodextrin Chemistry. Reactivity and Structure Concepts in Organic Chemistry. doi:10.1007/978-3-642-66842-5

Trotta, F., Zanetti, M., & Camino, G. (2000). Thermal degradation of cyclodextrins. Polymer Degradation and Stability, 69(3), 373-379. doi:10.1016/s0141-3910(00)00084-7

St. Dennis, J. E., Venkataraman, P., He, J., John, V. T., Obrey, S. J., Currier, R. P., … Meador, M. A. (2011). Rod-like carbon nanostructures produced by the direct pyrolysis of α-cyclodextrin. Carbon, 49(2), 718-722. doi:10.1016/j.carbon.2010.09.027

Tan, X., Ji, Y., Dong, H., Liu, M., Hou, T., & Li, Y. (2017). A novel metal-free two-dimensional material for photocatalytic water splitting – phosphorus nitride (γ-PN). RSC Adv., 7(79), 50239-50245. doi:10.1039/c7ra10305k

Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13), 6158-6170. doi:10.1063/1.478522

Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297. doi:10.1039/b508541a

Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. doi:10.1063/1.3382344

Husnah, M., Fakhri, H. A., Rohman, F., Aimon, A. H., & Iskandar, F. (2017). A modified Marcano method for improving electrical properties of reduced graphene oxide (rGO). Materials Research Express, 4(6), 064001. doi:10.1088/2053-1591/aa707f

Tang, L., Wang, Y., Li, Y., Feng, H., Lu, J., & Li, J. (2009). Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Advanced Functional Materials, 19(17), 2782-2789. doi:10.1002/adfm.200900377

Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., … Bieloshapka, I. (2014). Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena, 195, 145-154. doi:10.1016/j.elspec.2014.07.003

Lozinska, M. M., Mowat, J. P. S., Wright, P. A., Thompson, S. P., Jorda, J. L., Palomino, M., … Rey, F. (2014). Cation Gating and Relocation during the Highly Selective «Trapdoor» Adsorption of CO2 on Univalent Cation Forms of Zeolite Rho. Chemistry of Materials, 26(6), 2052-2061. doi:10.1021/cm404028f

Katnani, A. D., & Margaritondo, G. (1983). Microscopic study of semiconductor heterojunctions: Photoemission measurement of the valance-band discontinuity and of the potential barriers. Physical Review B, 28(4), 1944-1956. doi:10.1103/physrevb.28.1944

Kim, P., Odom, T. W., Huang, J.-L., & Lieber, C. M. (1999). Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States. Physical Review Letters, 82(6), 1225-1228. doi:10.1103/physrevlett.82.1225

Zou, J.-P., Wang, L.-C., Luo, J., Nie, Y.-C., Xing, Q.-J., Luo, X.-B., … Suib, S. L. (2016). Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst. Applied Catalysis B: Environmental, 193, 103-109. doi:10.1016/j.apcatb.2016.04.017

Zhao, D., Dong, C., Wang, B., Chen, C., Huang, Y., Diao, Z., … Shen, S. (2019). Synergy of Dopants and Defects in Graphitic Carbon Nitride with Exceptionally Modulated Band Structures for Efficient Photocatalytic Oxygen Evolution. Advanced Materials, 31(43), 1903545. doi:10.1002/adma.201903545

Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., & Lewis, N. S. (2010). Solar Water Splitting Cells. Chemical Reviews, 110(11), 6446-6473. doi:10.1021/cr1002326

Charlier, J.-C. (2002). Defects in Carbon Nanotubes. Accounts of Chemical Research, 35(12), 1063-1069. doi:10.1021/ar010166k

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem