Mostrar el registro sencillo del ítem
dc.contributor.author | Peng, Yong | es_ES |
dc.contributor.author | Rendon-Patiño, Alejandra | es_ES |
dc.contributor.author | Franconetti, Antonio | es_ES |
dc.contributor.author | Albero-Sancho, Josep | es_ES |
dc.contributor.author | Primo Arnau, Ana Maria | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2021-05-07T03:32:35Z | |
dc.date.available | 2021-05-07T03:32:35Z | |
dc.date.issued | 2020-07-27 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166064 | |
dc.description.abstract | [EN] Pyrolysis of alpha-, beta-, and gamma-cyclodextrins at 900 degrees C under Ar forms porous 3D graphitic carbon nanoparticles with remarkable crystallinity, in which the pore dimensions range from 0.74 to 1.1 nm in the ultra/micropore range as determined by N-2, Ar, and CO2 adsorption. These materials behave as semiconductors with the potential energy of the conduction and valence bands being remarkably dependent in as much as 0.57 eV on the dimensions of the micropores. The photogeneration of electrons and holes was confirmed by photodeposition of Pt (electrons) and PbO2 (holes) nanoparticles by reduction and oxidation, respectively. Importantly, these 3D porous graphitic carbons generate H-2 and O-2 from H2O in the absence of any metal cocatalyst. Theoretical calculations at the DFT level confirm in models the influence of the dimensions of the pores, the presence of defects, and residual oxygen on the band energy and that the occurrence of H2O dissociation is favored inside the pores by a confinement effect. Considering the interest in developing metal-free photocatalyst, the present results show the possibility to tune the band alignment of porous carbon semiconductors by appropriate selection of precursors and the convenient generation of defects. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and CTQ2018-98237-CO2-1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. We also thank the Center of Supercomputing of Galicia (CESGA) for the computational facilities. A.P. thanks the Spanish Ministry of Science and Innovation for a Ramon y Cajal research associate contract. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.relation.ispartof | ACS Applied Energy Materials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Porous carbon | es_ES |
dc.subject | Cyclodextrin pyrolysis | es_ES |
dc.subject | Metal-free photocatalysis | es_ES |
dc.subject | Photocatalytic hydrogen generation | es_ES |
dc.subject | Photocatalytic oxygen generation | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Photocatalytic Overall Water Splitting Activity of Templateless Structured Graphitic Nanoparticles Obtained from Cyclodextrins | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1021/acsaem.0c00789 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Peng, Y.; Rendon-Patiño, A.; Franconetti, A.; Albero-Sancho, J.; Primo Arnau, AM.; García Gómez, H. (2020). Photocatalytic Overall Water Splitting Activity of Templateless Structured Graphitic Nanoparticles Obtained from Cyclodextrins. ACS Applied Energy Materials. 3(7):6623-6632. https://doi.org/10.1021/acsaem.0c00789 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1021/acsaem.0c00789 | es_ES |
dc.description.upvformatpinicio | 6623 | es_ES |
dc.description.upvformatpfin | 6632 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.eissn | 2574-0962 | es_ES |
dc.relation.pasarela | S\430128 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.description.references | Chua, C. K., & Pumera, M. (2015). Carbocatalysis: The State of «Metal-Free» Catalysis. Chemistry - A European Journal, 21(36), 12550-12562. doi:10.1002/chem.201501383 | es_ES |
dc.description.references | Ortiz‐Medina, J., Wang, Z., Cruz‐Silva, R., Morelos‐Gomez, A., Wang, F., Yao, X., … Endo, M. (2019). Catalytic Nanocarbons: Defect Engineering and Surface Functionalization of Nanocarbons for Metal‐Free Catalysis (Adv. Mater. 13/2019). Advanced Materials, 31(13), 1970096. doi:10.1002/adma.201970096 | es_ES |
dc.description.references | Esteve-Adell, I., He, J., Ramiro, F., Atienzar, P., Primo, A., & García, H. (2018). Catalyst-free one step synthesis of large area vertically stacked N-doped graphene-boron nitride heterostructures from biomass source. Nanoscale, 10(9), 4391-4397. doi:10.1039/c7nr08424b | es_ES |
dc.description.references | Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Antonietti, M., & García, H. (2017). Active sites on graphene-based materials as metal-free catalysts. Chemical Society Reviews, 46(15), 4501-4529. doi:10.1039/c7cs00156h | es_ES |
dc.description.references | Melchionna, M., & Fornasiero, P. (2020). Updates on the Roadmap for Photocatalysis. ACS Catalysis, 10(10), 5493-5501. doi:10.1021/acscatal.0c01204 | es_ES |
dc.description.references | Li, C., Xu, Y., Tu, W., Chen, G., & Xu, R. (2017). Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green Chemistry, 19(4), 882-899. doi:10.1039/c6gc02856j | es_ES |
dc.description.references | An, X., & Yu, J. C. (2011). Graphene-based photocatalytic composites. RSC Advances, 1(8), 1426. doi:10.1039/c1ra00382h | es_ES |
dc.description.references | Morales-Torres, S., Pastrana-Martínez, L. M., Figueiredo, J. L., Faria, J. L., & Silva, A. M. T. (2012). Design of graphene-based TiO2 photocatalysts—a review. Environmental Science and Pollution Research, 19(9), 3676-3687. doi:10.1007/s11356-012-0939-4 | es_ES |
dc.description.references | Albero, J., Mateo, D., & García, H. (2019). Graphene-Based Materials as Efficient Photocatalysts for Water Splitting. Molecules, 24(5), 906. doi:10.3390/molecules24050906 | es_ES |
dc.description.references | Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505 | es_ES |
dc.description.references | Rendón-Patiño, A., Niu, J., Doménech-Carbó, A., García, H., & Primo, A. (2019). Polystyrene as Graphene Film and 3D Graphene Sponge Precursor. Nanomaterials, 9(1), 101. doi:10.3390/nano9010101 | es_ES |
dc.description.references | Trandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197 | es_ES |
dc.description.references | Bender, M. L., & Komiyama, M. (1978). Cyclodextrin Chemistry. Reactivity and Structure Concepts in Organic Chemistry. doi:10.1007/978-3-642-66842-5 | es_ES |
dc.description.references | Trotta, F., Zanetti, M., & Camino, G. (2000). Thermal degradation of cyclodextrins. Polymer Degradation and Stability, 69(3), 373-379. doi:10.1016/s0141-3910(00)00084-7 | es_ES |
dc.description.references | St. Dennis, J. E., Venkataraman, P., He, J., John, V. T., Obrey, S. J., Currier, R. P., … Meador, M. A. (2011). Rod-like carbon nanostructures produced by the direct pyrolysis of α-cyclodextrin. Carbon, 49(2), 718-722. doi:10.1016/j.carbon.2010.09.027 | es_ES |
dc.description.references | Tan, X., Ji, Y., Dong, H., Liu, M., Hou, T., & Li, Y. (2017). A novel metal-free two-dimensional material for photocatalytic water splitting – phosphorus nitride (γ-PN). RSC Adv., 7(79), 50239-50245. doi:10.1039/c7ra10305k | es_ES |
dc.description.references | Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13), 6158-6170. doi:10.1063/1.478522 | es_ES |
dc.description.references | Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297. doi:10.1039/b508541a | es_ES |
dc.description.references | Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. doi:10.1063/1.3382344 | es_ES |
dc.description.references | Husnah, M., Fakhri, H. A., Rohman, F., Aimon, A. H., & Iskandar, F. (2017). A modified Marcano method for improving electrical properties of reduced graphene oxide (rGO). Materials Research Express, 4(6), 064001. doi:10.1088/2053-1591/aa707f | es_ES |
dc.description.references | Tang, L., Wang, Y., Li, Y., Feng, H., Lu, J., & Li, J. (2009). Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Advanced Functional Materials, 19(17), 2782-2789. doi:10.1002/adfm.200900377 | es_ES |
dc.description.references | Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., … Bieloshapka, I. (2014). Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena, 195, 145-154. doi:10.1016/j.elspec.2014.07.003 | es_ES |
dc.description.references | Lozinska, M. M., Mowat, J. P. S., Wright, P. A., Thompson, S. P., Jorda, J. L., Palomino, M., … Rey, F. (2014). Cation Gating and Relocation during the Highly Selective «Trapdoor» Adsorption of CO2 on Univalent Cation Forms of Zeolite Rho. Chemistry of Materials, 26(6), 2052-2061. doi:10.1021/cm404028f | es_ES |
dc.description.references | Katnani, A. D., & Margaritondo, G. (1983). Microscopic study of semiconductor heterojunctions: Photoemission measurement of the valance-band discontinuity and of the potential barriers. Physical Review B, 28(4), 1944-1956. doi:10.1103/physrevb.28.1944 | es_ES |
dc.description.references | Kim, P., Odom, T. W., Huang, J.-L., & Lieber, C. M. (1999). Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States. Physical Review Letters, 82(6), 1225-1228. doi:10.1103/physrevlett.82.1225 | es_ES |
dc.description.references | Zou, J.-P., Wang, L.-C., Luo, J., Nie, Y.-C., Xing, Q.-J., Luo, X.-B., … Suib, S. L. (2016). Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst. Applied Catalysis B: Environmental, 193, 103-109. doi:10.1016/j.apcatb.2016.04.017 | es_ES |
dc.description.references | Zhao, D., Dong, C., Wang, B., Chen, C., Huang, Y., Diao, Z., … Shen, S. (2019). Synergy of Dopants and Defects in Graphitic Carbon Nitride with Exceptionally Modulated Band Structures for Efficient Photocatalytic Oxygen Evolution. Advanced Materials, 31(43), 1903545. doi:10.1002/adma.201903545 | es_ES |
dc.description.references | Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., & Lewis, N. S. (2010). Solar Water Splitting Cells. Chemical Reviews, 110(11), 6446-6473. doi:10.1021/cr1002326 | es_ES |
dc.description.references | Charlier, J.-C. (2002). Defects in Carbon Nanotubes. Accounts of Chemical Research, 35(12), 1063-1069. doi:10.1021/ar010166k | es_ES |