- -

Genetic Control of Reproductive Traits in Tomatoes Under High Temperature

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

Genetic Control of Reproductive Traits in Tomatoes Under High Temperature

Show full item record

Gonzalo, MJ.; Li, Y.; Chen, K.; Gil, D.; Montoro, T.; Nájera, I.; Baixauli, C.... (2020). Genetic Control of Reproductive Traits in Tomatoes Under High Temperature. Frontiers in Plant Science. 11:1-15. https://doi.org/10.3389/fpls.2020.00326

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166075

Files in this item

Item Metadata

Title: Genetic Control of Reproductive Traits in Tomatoes Under High Temperature
Author: Gonzalo, Maria José Li, Yi-Cheng Chen, Kai-Yi Gil, David Montoro, Teresa Nájera, Inmaculada Baixauli, Carlos GRANELL RICHART, ANTONIO Monforte Gilabert, Antonio José
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
[EN] Global climate change is increasing the range of temperatures that crop plants must face during their life cycle, giving negative effects to yields. In this changing scenario, understanding the genetic control of plant ...[+]
Subjects: Pollen viability , Fruit set , QTL , Introgression line , Tipburn , Abiotic stress
Copyrigths: Reconocimiento (by)
Frontiers in Plant Science. (eissn: 1664-462X )
DOI: 10.3389/fpls.2020.00326
Frontiers Media SA
Publisher version: https://doi.org/10.3389/fpls.2020.00326
Project ID:
info:eu-repo/grantAgreement/EC/H2020/679796/EU/A holistic multi-actor approach towards the design of new tomato varieties and management practices to improve yield and quality in the face of climate change/
Sara Gimeno was supported by the program "Youth Employment Initiative" from the European Union and the Spanish Ministry of Economy and Competitiveness. This work was supported by the European Commission H2020 research and ...[+]
Type: Artículo


Abdul-Baki, A. A. (1991). Tolerance of Tomato Cultivars and Selected Germplasm to Heat Stress. Journal of the American Society for Horticultural Science, 116(6), 1113-1116. doi:10.21273/jashs.116.6.1113

Abdul-Baki, A. A., & Stommel, J. R. (1995). Pollen Viability and Fruit Set of Tomato Genotypes under Optimumand High-temperature Regimes. HortScience, 30(1), 115-117. doi:10.21273/hortsci.30.1.115

Adams, S. (2001). Effect of Temperature on the Growth and Development of Tomato Fruits. Annals of Botany, 88(5), 869-877. doi:10.1006/anbo.2001.1524 [+]
Abdul-Baki, A. A. (1991). Tolerance of Tomato Cultivars and Selected Germplasm to Heat Stress. Journal of the American Society for Horticultural Science, 116(6), 1113-1116. doi:10.21273/jashs.116.6.1113

Abdul-Baki, A. A., & Stommel, J. R. (1995). Pollen Viability and Fruit Set of Tomato Genotypes under Optimumand High-temperature Regimes. HortScience, 30(1), 115-117. doi:10.21273/hortsci.30.1.115

Adams, S. (2001). Effect of Temperature on the Growth and Development of Tomato Fruits. Annals of Botany, 88(5), 869-877. doi:10.1006/anbo.2001.1524

Alam, M., Sultana, N., Ahmad, S., Hossain, M., & Islam, A. (1970). Performance of heat tolerant tomato hybrid lines under hot, humid conditions. Bangladesh Journal of Agricultural Research, 35(3), 367-373. doi:10.3329/bjar.v35i3.6442

Alba, J. M., Montserrat, M., & Fernández-Muñoz, R. (2008). Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Experimental and Applied Acarology, 47(1), 35-47. doi:10.1007/s10493-008-9192-4

Alsamir, M., Ahmad, N., Arief, V., Mahmood, T., & Trethowan, R. (2019). Phenotypic diversity and marker-trait association studies under heat stress in tomato (Solanum lycopersicum L.). Australian Journal of Crop Science, 13((04) 2019), 578-587. doi:10.21475/ajcs.19.13.04.p1581

Ayenan, M. A. T., Danquah, A., Hanson, P., Ampomah-Dwamena, C., Sodedji, F. A. K., Asante, I. K., & Danquah, E. Y. (2019). Accelerating Breeding for Heat Tolerance in Tomato (Solanum lycopersicum L.): An Integrated Approach. Agronomy, 9(11), 720. doi:10.3390/agronomy9110720

Barrantes, W., Fernández-del-Carmen, A., López-Casado, G., González-Sánchez, M. Á., Fernández-Muñoz, R., Granell, A., & Monforte, A. J. (2014). Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium. Molecular Breeding, 34(4), 1817-1831. doi:10.1007/s11032-014-0141-0

Barrantes, W., López-Casado, G., García-Martínez, S., Alonso, A., Rubio, F., Ruiz, J. J., … Monforte, A. J. (2016). Exploring New Alleles Involved in Tomato Fruit Quality in an Introgression Line Library of Solanum pimpinellifolium. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01172

Bita, C. E., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00273

Capel, C., Fernández del Carmen, A., Alba, J. M., Lima-Silva, V., Hernández-Gras, F., Salinas, M., … Lozano, R. (2015). Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theoretical and Applied Genetics, 128(10), 2019-2035. doi:10.1007/s00122-015-2563-4

Capel, C., Yuste-Lisbona, F. J., López-Casado, G., Angosto, T., Cuartero, J., Lozano, R., & Capel, J. (2016). Multi-environment QTL mapping reveals genetic architecture of fruit cracking in a tomato RIL Solanum lycopersicum × S. pimpinellifolium population. Theoretical and Applied Genetics, 130(1), 213-222. doi:10.1007/s00122-016-2809-9

Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4), 287-291. doi:10.1038/nclimate2153

CHARLES, W. B., & HARRIS, R. E. (1972). TOMATO FRUIT-SET AT HIGH AND LOW TEMPERATURES. Canadian Journal of Plant Science, 52(4), 497-506. doi:10.4141/cjps72-080

Chen, K.-Y., & Tanksley, S. D. (2004). High-Resolution Mapping and Functional Analysis of se2.1. Genetics, 168(3), 1563-1573. doi:10.1534/genetics.103.022558

Chung, M.-Y., Vrebalov, J., Alba, R., Lee, J., McQuinn, R., Chung, J.-D., … Giovannoni, J. (2010). A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. The Plant Journal, 64(6), 936-947. doi:10.1111/j.1365-313x.2010.04384.x

Dane, F., Hunter, A. G., & Chambliss, O. L. (1991). Fruit Set, Pollen Fertility, and Combining Ability of Selected Tomato Genotypes under High-temperature Field Conditions. Journal of the American Society for Horticultural Science, 116(5), 906-910. doi:10.21273/jashs.116.5.906

deVicente, M. C., & Tanksley, S. D. (1993). QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics, 134(2), 585-596. doi:10.1093/genetics/134.2.585

Díaz, A., Zarouri, B., Fergany, M., Eduardo, I., Álvarez, J. M., Picó, B., & Monforte, A. J. (2014). Mapping and Introgression of QTL Involved in Fruit Shape Transgressive Segregation into ‘Piel de Sapo’ Melon (Cucucumis melo L.). PLoS ONE, 9(8), e104188. doi:10.1371/journal.pone.0104188

Geisenberg, C., & Stewart, K. (1986). Field crop management. The Tomato Crop, 511-557. doi:10.1007/978-94-009-3137-4_13

Grilli, G. V. G., Braz, L. T., & Lemos, E. G. M. (2007). identification for tolerance to fruit set in tomato by fAFLP markers. Cropp Breeding and Applied Biotechnology, 7(3), 234-241. doi:10.12702/1984-7033.v07n03a02

Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M. (2013). Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. International Journal of Molecular Sciences, 14(5), 9643-9684. doi:10.3390/ijms14059643

Jenni, S., Truco, M. J., & Michelmore, R. W. (2013). Quantitative trait loci associated with tipburn, heat stress-induced physiological disorders, and maturity traits in crisphead lettuce. Theoretical and Applied Genetics, 126(12), 3065-3079. doi:10.1007/s00122-013-2193-7

Kugblenu, Y. O., Oppong Danso, E., Ofori, K., Andersen, M. N., Abenney-Mickson, S., Sabi, E. B., … Jørgensen, S. T. (2013). Screening tomato genotypes for adaptation to high temperature in West Africa. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 63(6), 516-522. doi:10.1080/09064710.2013.813062

Levy, A., Rabinowitch, H. D., & Kedar, N. (1978). Morphological and physiological characters affecting flower drop and fruit set of tomatoes at high temperatures. Euphytica, 27(1), 211-218. doi:10.1007/bf00039137

Lin, K.-H., Yeh, W.-L., Chen, H.-M., & Lo, H.-F. (2010). Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature conditions. Euphytica, 174(1), 119-135. doi:10.1007/s10681-010-0147-6

Lohar, D. ., & Peat, W. . (1998). Floral characteristics of heat-tolerant and heat-sensitive tomato (Lycopersicon esculentum Mill.) cultivars at high temperature. Scientia Horticulturae, 73(1), 53-60. doi:10.1016/s0304-4238(97)00056-3

Macias-González, M., Truco, M. J., Bertier, L. D., Jenni, S., Simko, I., Hayes, R. J., & Michelmore, R. W. (2019). Genetic architecture of tipburn resistance in lettuce. Theoretical and Applied Genetics, 132(8), 2209-2222. doi:10.1007/s00122-019-03349-6

Meng, L., Li, H., Zhang, L., & Wang, J. (2015). QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 3(3), 269-283. doi:10.1016/j.cj.2015.01.001

Monforte, A. J., Friedman, E., Zamir, D., & Tanksley, S. D. (2001). Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: Deductions about natural variation and implications for germplasm utilization. Theoretical and Applied Genetics, 102(4), 572-590. doi:10.1007/s001220051684

Nahar, K., & Ullah, S. M. (2011). Effect of Water Stress on Moisture Content Distribution in Soil and Morphological Characters of Two Tomato (Lycopersicon esculentum Mill) Cultivars. Journal of Scientific Research, 3(3), 677-682. doi:10.3329/jsr.v3i3.7000

Nahar, K., & Ullah, S. (2012). Morphological and Physiological Characters of Tomato (Lycopersicon esculentum Mill) Cultivars under Water Stress. Bangladesh Journal of Agricultural Research, 37(2), 355-360. doi:10.3329/bjar.v37i2.11240

Paupière, M. J., van Haperen, P., Rieu, I., Visser, R. G. F., Tikunov, Y. M., & Bovy, A. G. (2017). Screening for pollen tolerance to high temperatures in tomato. Euphytica, 213(6). doi:10.1007/s10681-017-1927-z

Peet, M. M., Sato, S., & Gardner, R. G. (1998). Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant, Cell and Environment, 21(2), 225-231. doi:10.1046/j.1365-3040.1998.00281.x

Powell, A. L. T., Nguyen, C. V., Hill, T., Cheng, K. L., Figueroa-Balderas, R., Aktas, H., … Bennett, A. B. (2012). Uniform ripening Encodes a Golden 2-like Transcription Factor Regulating Tomato Fruit Chloroplast Development. Science, 336(6089), 1711-1715. doi:10.1126/science.1222218

Pressman, E., Harel, D., Zamski, E., Shaked, R., Althan, L., Rosenfeld, K., & Firon, N. (2006). The effect of high temperatures on the expression and activity of sucrose-cleaving enzymes during tomato (Lycopersicon esculentum) anther development. The Journal of Horticultural Science and Biotechnology, 81(3), 341-348. doi:10.1080/14620316.2006.11512071

PRESSMAN, E. (2002). The Effect of Heat Stress on Tomato Pollen Characteristics is Associated with Changes in Carbohydrate Concentration in the Developing Anthers. Annals of Botany, 90(5), 631-636. doi:10.1093/aob/mcf240

Rambla, J. L., Medina, A., Fernández-del-Carmen, A., Barrantes, W., Grandillo, S., Cammareri, M., … Granell, A. (2016). Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species. Journal of Experimental Botany, erw455. doi:10.1093/jxb/erw455

Rick, C. M., & Dempsey, W. H. (1969). Position of the Stigma in Relation to Fruit Setting of the Tomato. Botanical Gazette, 130(3), 180-186. doi:10.1086/336488

Ruggieri, V., Calafiore, R., Schettini, C., Rigano, M. M., Olivieri, F., Frusciante, L., & Barone, A. (2019). Exploiting Genetic and Genomic Resources to Enhance Heat-Tolerance in Tomatoes. Agronomy, 9(1), 22. doi:10.3390/agronomy9010022

Salinas, M., Capel, C., Alba, J. M., Mora, B., Cuartero, J., Fernández-Muñoz, R., … Capel, J. (2012). Genetic mapping of two QTL from the wild tomato Solanum pimpinellifolium L. controlling resistance against two-spotted spider mite (Tetranychus urticae Koch). Theoretical and Applied Genetics, 126(1), 83-92. doi:10.1007/s00122-012-1961-0

SATO, S., KAMIYAMA, M., IWATA, T., MAKITA, N., FURUKAWA, H., & IKEDA, H. (2006). Moderate Increase of Mean Daily Temperature Adversely Affects Fruit Set of Lycopersicon esculentum by Disrupting Specific Physiological Processes in Male Reproductive Development. Annals of Botany, 97(5), 731-738. doi:10.1093/aob/mcl037

Shivaprasad, P. V., Dunn, R. M., Santos, B. A., Bassett, A., & Baulcombe, D. C. (2011). Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. The EMBO Journal, 31(2), 257-266. doi:10.1038/emboj.2011.458

Sim, S.-C., Durstewitz, G., Plieske, J., Wieseke, R., Ganal, M. W., Van Deynze, A., … Francis, D. M. (2012). Development of a Large SNP Genotyping Array and Generation of High-Density Genetic Maps in Tomato. PLoS ONE, 7(7), e40563. doi:10.1371/journal.pone.0040563

Starck, Z., Siwiec, A., & Chotuj, D. (1994). Distribution of calcium in tomato plants in response to heat stress and plant growth regulators. Plant and Soil, 167(1), 143-148. doi:10.1007/bf01587609

Vegas, J., Garcia-Mas, J., & Monforte, A. J. (2013). Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theoretical and Applied Genetics, 126(6), 1531-1544. doi:10.1007/s00122-013-2071-3

Voss-Fels, K. P., Cooper, M., & Hayes, B. J. (2018). Accelerating crop genetic gains with genomic selection. Theoretical and Applied Genetics, 132(3), 669-686. doi:10.1007/s00122-018-3270-8

WAHID, A., GELANI, S., ASHRAF, M., & FOOLAD, M. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199-223. doi:10.1016/j.envexpbot.2007.05.011

Wen, J., Jiang, F., Weng, Y., Sun, M., Shi, X., Zhou, Y., … Wu, Z. (2019). Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biology, 19(1). doi:10.1186/s12870-019-2008-3

Xu, J., Driedonks, N., Rutten, M. J. M., Vriezen, W. H., de Boer, G.-J., & Rieu, I. (2017). Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding, 37(5). doi:10.1007/s11032-017-0664-2

Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics, 136(4), 1457-1468. doi:10.1093/genetics/136.4.1457




This item appears in the following Collection(s)

Show full item record