- -

Impacts of Weather Types on Soil Erosion Rates in Vineyards at "Celler Del Roure" Experimental Research in Eastern Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Impacts of Weather Types on Soil Erosion Rates in Vineyards at "Celler Del Roure" Experimental Research in Eastern Spain

Mostrar el registro completo del ítem

Rodrigo-Comino, J.; Senciales-González, JM.; Terol, E.; Mora Navarro, JG.; Gyasi-Agyei, Y.; Cerdà, A. (2020). Impacts of Weather Types on Soil Erosion Rates in Vineyards at "Celler Del Roure" Experimental Research in Eastern Spain. Atmosphere. 11(6):1-14. https://doi.org/10.3390/atmos11060551

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166078

Ficheros en el ítem

Metadatos del ítem

Título: Impacts of Weather Types on Soil Erosion Rates in Vineyards at "Celler Del Roure" Experimental Research in Eastern Spain
Autor: Rodrigo-Comino, Jesús Senciales-González, José María Terol, Enric Mora Navarro, Joaquin Gaspar Gyasi-Agyei, Yeboah Cerdà, Artemi
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria
Fecha difusión:
Resumen:
[EN] To understand soil erosion processes, it is vital to know how the weather types and atmospheric situations, and their distribution throughout the year, affect the soil erosion rates. This will allow for the development ...[+]
Palabras clave: Soil loss , Runoff , Weather types , Vineyards , Cold drops
Derechos de uso: Reconocimiento (by)
Fuente:
Atmosphere. (eissn: 2073-4433 )
DOI: 10.3390/atmos11060551
Editorial:
MDPI
Versión del editor: https://doi.org/10.3390/atmos11060551
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/603498/EU/Preventing and Remediating degradation of soils in Europe through Land Care/
Agradecimientos:
This research was funded by the European Union Seventh Framework Program (FP7/2007-2013) under grant No. 603498 (RECARE Project).
Tipo: Artículo

References

Panagos, P., Borrelli, P., Meusburger, K., van der Zanden, E. H., Poesen, J., & Alewell, C. (2015). Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environmental Science & Policy, 51, 23-34. doi:10.1016/j.envsci.2015.03.012

Stewart, B. A. (1994). Soil Erosion: A Threat to Mankind. Ecology, 75(4), 1193-1193. doi:10.2307/1939447

Ghafari, H., Gorji, M., Arabkhedri, M., Roshani, G. A., Heidari, A., & Akhavan, S. (2017). Identification and prioritization of critical erosion areas based on onsite and offsite effects. CATENA, 156, 1-9. doi:10.1016/j.catena.2017.03.014 [+]
Panagos, P., Borrelli, P., Meusburger, K., van der Zanden, E. H., Poesen, J., & Alewell, C. (2015). Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environmental Science & Policy, 51, 23-34. doi:10.1016/j.envsci.2015.03.012

Stewart, B. A. (1994). Soil Erosion: A Threat to Mankind. Ecology, 75(4), 1193-1193. doi:10.2307/1939447

Ghafari, H., Gorji, M., Arabkhedri, M., Roshani, G. A., Heidari, A., & Akhavan, S. (2017). Identification and prioritization of critical erosion areas based on onsite and offsite effects. CATENA, 156, 1-9. doi:10.1016/j.catena.2017.03.014

Chehlafi, A., Kchikach, A., Derradji, A., & Mequedade, N. (2019). Highway cutting slopes with high rainfall erosion in Morocco: Evaluation of soil losses and erosion control using concrete arches. Engineering Geology, 260, 105200. doi:10.1016/j.enggeo.2019.105200

Streeter, M. T., & Schilling, K. E. (2019). Assessing and mitigating the effects of agricultural soil erosion on roadside ditches. Journal of Soils and Sediments, 20(1), 524-534. doi:10.1007/s11368-019-02379-3

García‐Ruiz, J. M., Beguería, S., Lana‐Renault, N., Nadal‐Romero, E., & Cerdà, A. (2016). Ongoing and Emerging Questions in Water Erosion Studies. Land Degradation & Development, 28(1), 5-21. doi:10.1002/ldr.2641

Brevik, E. C., Steffan, J. J., Rodrigo‐Comino, J., Neubert, D., Burgess, L. C., & Cerdà, A. (2019). Connecting the public with soil to improve human health. European Journal of Soil Science, 70(4), 898-910. doi:10.1111/ejss.12764

Rubio‐Delgado, J., Schnabel, S., Gómez‐Gutiérrez, Á., & Lavado‐Contador, J. F. (2019). Temporal and spatial variation of soil erosion in wooded rangelands of southwest Spain. Earth Surface Processes and Landforms, 44(11), 2141-2155. doi:10.1002/esp.4636

Benda, L., James, C., Miller, D., & Andras, K. (2019). Road Erosion and Delivery Index (READI): A Model for Evaluating Unpaved Road Erosion and Stream Sediment Delivery. JAWRA Journal of the American Water Resources Association, 55(2), 459-484. doi:10.1111/1752-1688.12729

García-Ruiz, J. M., Beguería, S., Nadal-Romero, E., González-Hidalgo, J. C., Lana-Renault, N., & Sanjuán, Y. (2015). A meta-analysis of soil erosion rates across the world. Geomorphology, 239, 160-173. doi:10.1016/j.geomorph.2015.03.008

Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., & Alewell, C. (2014). Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Science of The Total Environment, 479-480, 189-200. doi:10.1016/j.scitotenv.2014.02.010

Jie, C., Jing-zhang, C., Man-zhi, T., & Zi-tong, G. (2002). Soil degradation: a global problem endangering sustainable development. Journal of Geographical Sciences, 12(2), 243-252. doi:10.1007/bf02837480

Ricci, G. F., Jeong, J., De Girolamo, A. M., & Gentile, F. (2020). Effectiveness and feasibility of different management practices to reduce soil erosion in an agricultural watershed. Land Use Policy, 90, 104306. doi:10.1016/j.landusepol.2019.104306

Novara, A., Gristina, L., Guaitoli, F., Santoro, A., & Cerdà, A. (2013). Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards. Solid Earth, 4(2), 255-262. doi:10.5194/se-4-255-2013

Guadie, M., Molla, E., Mekonnen, M., & Cerdà, A. (2020). Effects of Soil Bund and Stone-Faced Soil Bund on Soil Physicochemical Properties and Crop Yield Under Rain-Fed Conditions of Northwest Ethiopia. Land, 9(1), 13. doi:10.3390/land9010013

Chevigny, E., Quiquerez, A., Petit, C., & Curmi, P. (2014). Lithology, landscape structure and management practice changes: Key factors patterning vineyard soil erosion at metre-scale spatial resolution. CATENA, 121, 354-364. doi:10.1016/j.catena.2014.05.022

Blavet, D., De Noni, G., Le Bissonnais, Y., Leonard, M., Maillo, L., Laurent, J. Y., … Roose, E. (2009). Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards. Soil and Tillage Research, 106(1), 124-136. doi:10.1016/j.still.2009.04.010

Nunes, J. P., Seixas, J., & Pacheco, N. R. (2008). Vulnerability of water resources, vegetation productivity and soil erosion to climate change in Mediterranean watersheds. Hydrological Processes, 22(16), 3115-3134. doi:10.1002/hyp.6897

Nearing, M. A., Yin, S., Borrelli, P., & Polyakov, V. O. (2017). Rainfall erosivity: An historical review. CATENA, 157, 357-362. doi:10.1016/j.catena.2017.06.004

Nadal-Romero, E., Cortesi, N., & González-Hidalgo, J. C. (2013). Weather types, runoff and sediment yield in a Mediterranean mountain landscape. Earth Surface Processes and Landforms, 39(4), 427-437. doi:10.1002/esp.3451

Fernández-Raga, M., Palencia, C., Keesstra, S., Jordán, A., Fraile, R., Angulo-Martínez, M., & Cerdà, A. (2017). Splash erosion: A review with unanswered questions. Earth-Science Reviews, 171, 463-477. doi:10.1016/j.earscirev.2017.06.009

Marzen, M., Iserloh, T., Casper, M. C., & Ries, J. B. (2015). Quantification of particle detachment by rain splash and wind-driven rain splash. CATENA, 127, 135-141. doi:10.1016/j.catena.2014.12.023

Minea, G., Ioana-Toroimac, G., & Moroşanu, G. (2019). The dominant runoff processes on grassland versus bare soil hillslopes in a temperate environment - An experimental study. Journal of Hydrology and Hydromechanics, 67(4), 297-304. doi:10.2478/johh-2019-0018

Senciales González, J. M., & Ruiz Sinoga, J. D. (2013). Análisis espacio-temporal de las lluvias torrenciales en la ciudad de Málaga. Boletín de la Asociación de Geógrafos Españoles, (61). doi:10.21138/bage.1533

Mineo, C., Ridolfi, E., Moccia, B., Russo, F., & Napolitano, F. (2019). Assessment of Rainfall Kinetic-Energy–Intensity Relationships. Water, 11(10), 1994. doi:10.3390/w11101994

Choo, Jo, Yun, & Lee. (2019). A Study on the Improvement of Flood Forecasting Techniques in Urban Areas by Considering Rainfall Intensity and Duration. Water, 11(9), 1883. doi:10.3390/w11091883

Bryan, R. B. (2000). Soil erodibility and processes of water erosion on hillslope. Geomorphology, 32(3-4), 385-415. doi:10.1016/s0169-555x(99)00105-1

Angulo-Martínez, M., & Beguería, S. (2009). Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain). Journal of Hydrology, 379(1-2), 111-121. doi:10.1016/j.jhydrol.2009.09.051

Ruiz Sinoga, J. D., Garcia Marin, R., Martinez Murillo, J. F., & Gabarron Galeote, M. A. (2010). Precipitation dynamics in southern Spain: trends and cycles. International Journal of Climatology, 31(15), 2281-2289. doi:10.1002/joc.2235

Gholami, H., Telfer, M. W., Blake, W. H., & Fathabadi, A. (2017). Aeolian sediment fingerprinting using a Bayesian mixing model. Earth Surface Processes and Landforms, 42(14), 2365-2376. doi:10.1002/esp.4189

Cerdà, A. (1998). Relationships between climate and soil hydrological and erosional characteristics along climatic gradients in Mediterranean limestone areas. Geomorphology, 25(1-2), 123-134. doi:10.1016/s0169-555x(98)00033-6

Peña-Angulo, D., Nadal-Romero, E., González-Hidalgo, J. C., Albaladejo, J., Andreu, V., Bagarello, V., … Bienes, R. (2019). Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin. Journal of Hydrology, 571, 390-405. doi:10.1016/j.jhydrol.2019.01.059

Nadal-Romero, E., González-Hidalgo, J. C., Cortesi, N., Desir, G., Gómez, J. A., Lasanta, T., … Zabaleta, A. (2015). Relationship of runoff, erosion and sediment yield to weather types in the Iberian Peninsula. Geomorphology, 228, 372-381. doi:10.1016/j.geomorph.2014.09.011

Gonzalez-Hidalgo, J. C., Batalla, R. J., Cerda, A., & de Luis, M. (2012). A regional analysis of the effects of largest events on soil erosion. CATENA, 95, 85-90. doi:10.1016/j.catena.2012.03.006

Martínez-Valderrama, J., Ibáñez, J., Del Barrio, G., Sanjuán, M. E., Alcalá, F. J., Martínez-Vicente, S., … Puigdefábregas, J. (2016). Present and future of desertification in Spain: Implementation of a surveillance system to prevent land degradation. Science of The Total Environment, 563-564, 169-178. doi:10.1016/j.scitotenv.2016.04.065

Rodrigo-Comino, J., Senciales, J. M., Sillero-Medina, J. A., Gyasi-Agyei, Y., Ruiz-Sinoga, J. D., & Ries, J. B. (2019). Analysis of Weather-Type-Induced Soil Erosion in Cultivated and Poorly Managed Abandoned Sloping Vineyards in the Axarquía Region (Málaga, Spain). Air, Soil and Water Research, 12, 117862211983940. doi:10.1177/1178622119839403

Cerdà, A., Rodrigo-Comino, J., Novara, A., Brevik, E. C., Vaezi, A. R., Pulido, M., … Keesstra, S. D. (2018). Long-term impact of rainfed agricultural land abandonment on soil erosion in the Western Mediterranean basin. Progress in Physical Geography: Earth and Environment, 42(2), 202-219. doi:10.1177/0309133318758521

Agata, N., Artemi, C., Carmelo, D., Giuseppe, L. P., Antonino, S., & Luciano, G. (2015). Effectiveness of carbon isotopic signature for estimating soil erosion and deposition rates in Sicilian vineyards. Soil and Tillage Research, 152, 1-7. doi:10.1016/j.still.2015.03.010

Rodrigo-Comino, J. (2018). Five decades of soil erosion research in «terroir». The State-of-the-Art. Earth-Science Reviews, 179, 436-447. doi:10.1016/j.earscirev.2018.02.014

Rodrigo-Comino, J., Keesstra, S., & Cerdà, A. (2018). Soil Erosion as an Environmental Concern in Vineyards. The Case Study of Celler del Roure, Eastern Spain, by Means of Rainfall Simulation Experiments. Beverages, 4(2), 31. doi:10.3390/beverages4020031

Rodrigo-Comino, J., Novara, A., Gyasi-Agyei, Y., Terol, E., & Cerdà, A. (2018). Effects of parent material on soil erosion within Mediterranean new vineyard plantations. Engineering Geology, 246, 255-261. doi:10.1016/j.enggeo.2018.10.006

Rodrigo-Comino, J., García-Díaz, A., Brevik, E. C., Keestra, S. D., Pereira, P., Novara, A., … Cerdà, A. (2017). Role of rock fragment cover on runoff generation and sediment yield in tilled vineyards. European Journal of Soil Science, 68(6), 864-872. doi:10.1111/ejss.12483

Rodrigo Comino, J., Keesstra, S. D., & Cerdà, A. (2018). Connectivity assessment in Mediterranean vineyards using improved stock unearthing method, LiDAR and soil erosion field surveys. Earth Surface Processes and Landforms, 43(10), 2193-2206. doi:10.1002/esp.4385

Haurwitz, B. (1945). INSOLATION IN RELATION TO CLOUDINESS AND CLOUD DENSITY. Journal of Meteorology, 2(3), 154-166. doi:10.1175/1520-0469(1945)002<0154:iirtca>2.0.co;2

Haurwitz, B. (1946). INSOLATION IN RELATION TO CLOUD TYPE. Journal of Meteorology, 3(4), 123-124. doi:10.1175/1520-0469(1946)003<0123:iirtct>2.0.co;2

Haurwitz, B., & Collaborators. (1945). ADVECTION OF AIR AND THE FORECASTING OF PRESSURE CHANGES. Journal of Meteorology, 2(2), 83-93. doi:10.1175/1520-0469(1945)002<0083:aoaatf>2.0.co;2

Giambelluca, T., & Nullet, D. (1991). Influence of the trade-wind inversion on the climate of a leeward mountain slope in Hawaii. Climate Research, 1, 207-216. doi:10.3354/cr001207

HARRISON, M. S. J. (1993). ELEVATED INVERSIONS OVER SOUTHERN AFRICA: CLIMATOLOGICAL PROPERTIES AND RELATIONSHIPS WITH RAINFALL. South African Geographical Journal, 75(1), 1-8. doi:10.1080/03736245.1993.9713555

Li, Z., Zuidema, P., & Zhu, P. (2014). Simulated Convective Invigoration Processes at Trade Wind Cumulus Cold Pool Boundaries. Journal of the Atmospheric Sciences, 71(8), 2823-2841. doi:10.1175/jas-d-13-0184.1

Tompkins, A. M. (2001). Organization of Tropical Convection in Low Vertical Wind Shears: The Role of Cold Pools. Journal of the Atmospheric Sciences, 58(13), 1650-1672. doi:10.1175/1520-0469(2001)058<1650:ootcil>2.0.co;2

Xoplaki, E., González-Rouco, J. F., Luterbacher, J., & Wanner, H. (2004). Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Climate Dynamics, 23(1), 63-78. doi:10.1007/s00382-004-0422-0

Engelbrecht, F. A., McGregor, J. L., & Engelbrecht, C. J. (2009). Dynamics of the Conformal-Cubic Atmospheric Model projected climate-change signal over southern Africa. International Journal of Climatology, 29(7), 1013-1033. doi:10.1002/joc.1742

Barros, A. P., & Lettenmaier, D. P. (1994). Dynamic modeling of orographically induced precipitation. Reviews of Geophysics, 32(3), 265. doi:10.1029/94rg00625

McCabe Jr., G. J., & Muller, R. A. (1987). SYNOPTIC WEATHER TYPES: AN INDEX OF EVAPORATION IN SOUTHERN LOUISIANA. Physical Geography, 8(2), 99-112. doi:10.1080/02723646.1987.10642314

Chu, P.-S., & Chen, H. (2005). Interannual and Interdecadal Rainfall Variations in the Hawaiian Islands*. Journal of Climate, 18(22), 4796-4813. doi:10.1175/jcli3578.1

Yeh, H.-C., & Chen, Y.-L. (1998). Characteristics of Rainfall Distributions over Taiwan during the Taiwan Area Mesoscale Experiment (TAMEX). Journal of Applied Meteorology, 37(11), 1457-1469. doi:10.1175/1520-0450(1998)037<1457:cordot>2.0.co;2

Romero, R., Sumner, G., Ramis, C., & Genovés, A. (1999). A classification of the atmospheric circulation patterns producing significant daily rainfall in the Spanish Mediterranean area. International Journal of Climatology, 19(7), 765-785. doi:10.1002/(sici)1097-0088(19990615)19:7<765::aid-joc388>3.0.co;2-t

Wallis, T. W. R., & Griffiths, J. F. (1995). An assessment of the weather generator (WXGEN) used in the erosion/productivity impact calculator (EPIC). Agricultural and Forest Meteorology, 73(1-2), 115-133. doi:10.1016/0168-1923(94)02172-g

Fernández-Raga, M., Fraile, R., Keizer, J. J., Varela Teijeiro, M. E., Castro, A., Palencia, C., … Da Costa Marques, R. L. (2010). The kinetic energy of rain measured with an optical disdrometer: An application to splash erosion. Atmospheric Research, 96(2-3), 225-240. doi:10.1016/j.atmosres.2009.07.013

Sadeghi, S. H., Nouri, H., & Faramarzi, M. (2017). Assessing the Spatial Distribution of Rainfall and the Effect of Altitude in Iran (Hamadan Province). Air, Soil and Water Research, 10, 117862211668606. doi:10.1177/1178622116686066

Wilby, R. L., Dalgleish, H. Y., & Foster, I. D. L. (1997). The impact of weather patterns on historic and contemporary catchment sediment yields. Earth Surface Processes and Landforms, 22(4), 353-363. doi:10.1002/(sici)1096-9837(199704)22:4<353::aid-esp692>3.0.co;2-g

Pattison, I., & Lane, S. N. (2011). The relationship between Lamb weather types and long-term changes in flood frequency, River Eden, UK. International Journal of Climatology, 32(13), 1971-1989. doi:10.1002/joc.2415

Jones, P. G., & Thornton, P. K. (2013). Generating downscaled weather data from a suite of climate models for agricultural modelling applications. Agricultural Systems, 114, 1-5. doi:10.1016/j.agsy.2012.08.002

McNew, K. P., Mapp, H. P., Duchon, C. E., & Merritt, E. S. (1991). Sources and Uses of Weather Information for Agricultural Decision Makers. Bulletin of the American Meteorological Society, 72(4), 491-498. doi:10.1175/1520-0477(1991)072<0491:sauowi>2.0.co;2

Ramos, A. M., Barriopedro, D., & Dutra, E. (2015). Circulation weather types as a tool in atmospheric, climate, and environmental research. Frontiers in Environmental Science, 3. doi:10.3389/fenvs.2015.00044

Philipp, A., Bartholy, J., Beck, C., Erpicum, M., Esteban, P., Fettweis, X., … Tymvios, F. S. (2010). Cost733cat – A database of weather and circulation type classifications. Physics and Chemistry of the Earth, Parts A/B/C, 35(9-12), 360-373. doi:10.1016/j.pce.2009.12.010

Fleig, A. K., Tallaksen, L. M., Hisdal, H., Stahl, K., & Hannah, D. M. (2010). Inter-comparison of weather and circulation type classifications for hydrological drought development. Physics and Chemistry of the Earth, Parts A/B/C, 35(9-12), 507-515. doi:10.1016/j.pce.2009.11.005

Gu, C., Mu, X., Gao, P., Zhao, G., Sun, W., & Tan, X. (2019). Distinguishing the effects of vegetation restoration on runoff and sediment generation on simulated rainfall on the hillslopes of the loess plateau of China. Plant and Soil, 447(1-2), 393-412. doi:10.1007/s11104-019-04392-4

Zhang, X., Wu, K., Fullen, M. A., & Wu, B. (2020). Synergistic effects of vegetation layers of maize and potato intercropping on soil erosion on sloping land in Yunnan Province, China. Journal of Mountain Science, 17(2), 423-434. doi:10.1007/s11629-019-5392-0

Luo, J., Zhou, X., Rubinato, M., Li, G., Tian, Y., & Zhou, J. (2020). Impact of Multiple Vegetation Covers on Surface Runoff and Sediment Yield in the Small Basin of Nverzhai, Hunan Province, China. Forests, 11(3), 329. doi:10.3390/f11030329

Amare, T., Zegeye, A. D., Yitaferu, B., Steenhuis, T. S., Hurni, H., & Zeleke, G. (2014). Combined effect of soil bund with biological soil and water conservation measures in the northwestern Ethiopian highlands. Ecohydrology & Hydrobiology, 14(3), 192-199. doi:10.1016/j.ecohyd.2014.07.002

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem