- -

Impacts of Weather Types on Soil Erosion Rates in Vineyards at "Celler Del Roure" Experimental Research in Eastern Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Impacts of Weather Types on Soil Erosion Rates in Vineyards at "Celler Del Roure" Experimental Research in Eastern Spain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodrigo-Comino, Jesús es_ES
dc.contributor.author Senciales-González, José María es_ES
dc.contributor.author Terol, Enric es_ES
dc.contributor.author Mora Navarro, Joaquin Gaspar es_ES
dc.contributor.author Gyasi-Agyei, Yeboah es_ES
dc.contributor.author Cerdà, Artemi es_ES
dc.date.accessioned 2021-05-08T03:31:16Z
dc.date.available 2021-05-08T03:31:16Z
dc.date.issued 2020-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166078
dc.description.abstract [EN] To understand soil erosion processes, it is vital to know how the weather types and atmospheric situations, and their distribution throughout the year, affect the soil erosion rates. This will allow for the development of efficient land management practices to mitigate water-induced soil losses. Vineyards are one of the cultivated areas susceptible to high soil erosion rates. However, there is a lack of studies that link weather types and atmospheric conditions to soil erosion responses in viticultural areas. Thus, the main aim of this research is to assess the impacts of weather types and atmospheric conditions on soil erosion processes in a conventional vineyard with tillage in eastern Spain. To achieve this goal, rainfall events from 2006 to 2017 were monitored and the associated runoff and soil loss were collected from experimental plots. Our results showed that the highest volume of runoff and soil erosion is linked to rainfall associated with the eastern winds that accounted for 59.7% of runoff and 63.9% of soil loss, while cold drops in the atmospheric situation classifications emerged as the highest contributor of 40.9% in runoff and 44.1% in soil loss. This paper provides new insights into the development of soil erosion control measures that help to mitigate the negative impact of extreme rainfall and runoff considering atmospheric conditions. es_ES
dc.description.sponsorship This research was funded by the European Union Seventh Framework Program (FP7/2007-2013) under grant No. 603498 (RECARE Project). es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Atmosphere es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Soil loss es_ES
dc.subject Runoff es_ES
dc.subject Weather types es_ES
dc.subject Vineyards es_ES
dc.subject Cold drops es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title Impacts of Weather Types on Soil Erosion Rates in Vineyards at "Celler Del Roure" Experimental Research in Eastern Spain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/atmos11060551 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/603498/EU/Preventing and Remediating degradation of soils in Europe through Land Care/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Rodrigo-Comino, J.; Senciales-González, JM.; Terol, E.; Mora Navarro, JG.; Gyasi-Agyei, Y.; Cerdà, A. (2020). Impacts of Weather Types on Soil Erosion Rates in Vineyards at "Celler Del Roure" Experimental Research in Eastern Spain. Atmosphere. 11(6):1-14. https://doi.org/10.3390/atmos11060551 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/atmos11060551 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 2073-4433 es_ES
dc.relation.pasarela S\413438 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Panagos, P., Borrelli, P., Meusburger, K., van der Zanden, E. H., Poesen, J., & Alewell, C. (2015). Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environmental Science & Policy, 51, 23-34. doi:10.1016/j.envsci.2015.03.012 es_ES
dc.description.references Stewart, B. A. (1994). Soil Erosion: A Threat to Mankind. Ecology, 75(4), 1193-1193. doi:10.2307/1939447 es_ES
dc.description.references Ghafari, H., Gorji, M., Arabkhedri, M., Roshani, G. A., Heidari, A., & Akhavan, S. (2017). Identification and prioritization of critical erosion areas based on onsite and offsite effects. CATENA, 156, 1-9. doi:10.1016/j.catena.2017.03.014 es_ES
dc.description.references Chehlafi, A., Kchikach, A., Derradji, A., & Mequedade, N. (2019). Highway cutting slopes with high rainfall erosion in Morocco: Evaluation of soil losses and erosion control using concrete arches. Engineering Geology, 260, 105200. doi:10.1016/j.enggeo.2019.105200 es_ES
dc.description.references Streeter, M. T., & Schilling, K. E. (2019). Assessing and mitigating the effects of agricultural soil erosion on roadside ditches. Journal of Soils and Sediments, 20(1), 524-534. doi:10.1007/s11368-019-02379-3 es_ES
dc.description.references García‐Ruiz, J. M., Beguería, S., Lana‐Renault, N., Nadal‐Romero, E., & Cerdà, A. (2016). Ongoing and Emerging Questions in Water Erosion Studies. Land Degradation & Development, 28(1), 5-21. doi:10.1002/ldr.2641 es_ES
dc.description.references Brevik, E. C., Steffan, J. J., Rodrigo‐Comino, J., Neubert, D., Burgess, L. C., & Cerdà, A. (2019). Connecting the public with soil to improve human health. European Journal of Soil Science, 70(4), 898-910. doi:10.1111/ejss.12764 es_ES
dc.description.references Rubio‐Delgado, J., Schnabel, S., Gómez‐Gutiérrez, Á., & Lavado‐Contador, J. F. (2019). Temporal and spatial variation of soil erosion in wooded rangelands of southwest Spain. Earth Surface Processes and Landforms, 44(11), 2141-2155. doi:10.1002/esp.4636 es_ES
dc.description.references Benda, L., James, C., Miller, D., & Andras, K. (2019). Road Erosion and Delivery Index (READI): A Model for Evaluating Unpaved Road Erosion and Stream Sediment Delivery. JAWRA Journal of the American Water Resources Association, 55(2), 459-484. doi:10.1111/1752-1688.12729 es_ES
dc.description.references García-Ruiz, J. M., Beguería, S., Nadal-Romero, E., González-Hidalgo, J. C., Lana-Renault, N., & Sanjuán, Y. (2015). A meta-analysis of soil erosion rates across the world. Geomorphology, 239, 160-173. doi:10.1016/j.geomorph.2015.03.008 es_ES
dc.description.references Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., & Alewell, C. (2014). Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Science of The Total Environment, 479-480, 189-200. doi:10.1016/j.scitotenv.2014.02.010 es_ES
dc.description.references Jie, C., Jing-zhang, C., Man-zhi, T., & Zi-tong, G. (2002). Soil degradation: a global problem endangering sustainable development. Journal of Geographical Sciences, 12(2), 243-252. doi:10.1007/bf02837480 es_ES
dc.description.references Ricci, G. F., Jeong, J., De Girolamo, A. M., & Gentile, F. (2020). Effectiveness and feasibility of different management practices to reduce soil erosion in an agricultural watershed. Land Use Policy, 90, 104306. doi:10.1016/j.landusepol.2019.104306 es_ES
dc.description.references Novara, A., Gristina, L., Guaitoli, F., Santoro, A., & Cerdà, A. (2013). Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards. Solid Earth, 4(2), 255-262. doi:10.5194/se-4-255-2013 es_ES
dc.description.references Guadie, M., Molla, E., Mekonnen, M., & Cerdà, A. (2020). Effects of Soil Bund and Stone-Faced Soil Bund on Soil Physicochemical Properties and Crop Yield Under Rain-Fed Conditions of Northwest Ethiopia. Land, 9(1), 13. doi:10.3390/land9010013 es_ES
dc.description.references Chevigny, E., Quiquerez, A., Petit, C., & Curmi, P. (2014). Lithology, landscape structure and management practice changes: Key factors patterning vineyard soil erosion at metre-scale spatial resolution. CATENA, 121, 354-364. doi:10.1016/j.catena.2014.05.022 es_ES
dc.description.references Blavet, D., De Noni, G., Le Bissonnais, Y., Leonard, M., Maillo, L., Laurent, J. Y., … Roose, E. (2009). Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards. Soil and Tillage Research, 106(1), 124-136. doi:10.1016/j.still.2009.04.010 es_ES
dc.description.references Nunes, J. P., Seixas, J., & Pacheco, N. R. (2008). Vulnerability of water resources, vegetation productivity and soil erosion to climate change in Mediterranean watersheds. Hydrological Processes, 22(16), 3115-3134. doi:10.1002/hyp.6897 es_ES
dc.description.references Nearing, M. A., Yin, S., Borrelli, P., & Polyakov, V. O. (2017). Rainfall erosivity: An historical review. CATENA, 157, 357-362. doi:10.1016/j.catena.2017.06.004 es_ES
dc.description.references Nadal-Romero, E., Cortesi, N., & González-Hidalgo, J. C. (2013). Weather types, runoff and sediment yield in a Mediterranean mountain landscape. Earth Surface Processes and Landforms, 39(4), 427-437. doi:10.1002/esp.3451 es_ES
dc.description.references Fernández-Raga, M., Palencia, C., Keesstra, S., Jordán, A., Fraile, R., Angulo-Martínez, M., & Cerdà, A. (2017). Splash erosion: A review with unanswered questions. Earth-Science Reviews, 171, 463-477. doi:10.1016/j.earscirev.2017.06.009 es_ES
dc.description.references Marzen, M., Iserloh, T., Casper, M. C., & Ries, J. B. (2015). Quantification of particle detachment by rain splash and wind-driven rain splash. CATENA, 127, 135-141. doi:10.1016/j.catena.2014.12.023 es_ES
dc.description.references Minea, G., Ioana-Toroimac, G., & Moroşanu, G. (2019). The dominant runoff processes on grassland versus bare soil hillslopes in a temperate environment - An experimental study. Journal of Hydrology and Hydromechanics, 67(4), 297-304. doi:10.2478/johh-2019-0018 es_ES
dc.description.references Senciales González, J. M., & Ruiz Sinoga, J. D. (2013). Análisis espacio-temporal de las lluvias torrenciales en la ciudad de Málaga. Boletín de la Asociación de Geógrafos Españoles, (61). doi:10.21138/bage.1533 es_ES
dc.description.references Mineo, C., Ridolfi, E., Moccia, B., Russo, F., & Napolitano, F. (2019). Assessment of Rainfall Kinetic-Energy–Intensity Relationships. Water, 11(10), 1994. doi:10.3390/w11101994 es_ES
dc.description.references Choo, Jo, Yun, & Lee. (2019). A Study on the Improvement of Flood Forecasting Techniques in Urban Areas by Considering Rainfall Intensity and Duration. Water, 11(9), 1883. doi:10.3390/w11091883 es_ES
dc.description.references Bryan, R. B. (2000). Soil erodibility and processes of water erosion on hillslope. Geomorphology, 32(3-4), 385-415. doi:10.1016/s0169-555x(99)00105-1 es_ES
dc.description.references Angulo-Martínez, M., & Beguería, S. (2009). Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain). Journal of Hydrology, 379(1-2), 111-121. doi:10.1016/j.jhydrol.2009.09.051 es_ES
dc.description.references Ruiz Sinoga, J. D., Garcia Marin, R., Martinez Murillo, J. F., & Gabarron Galeote, M. A. (2010). Precipitation dynamics in southern Spain: trends and cycles. International Journal of Climatology, 31(15), 2281-2289. doi:10.1002/joc.2235 es_ES
dc.description.references Gholami, H., Telfer, M. W., Blake, W. H., & Fathabadi, A. (2017). Aeolian sediment fingerprinting using a Bayesian mixing model. Earth Surface Processes and Landforms, 42(14), 2365-2376. doi:10.1002/esp.4189 es_ES
dc.description.references Cerdà, A. (1998). Relationships between climate and soil hydrological and erosional characteristics along climatic gradients in Mediterranean limestone areas. Geomorphology, 25(1-2), 123-134. doi:10.1016/s0169-555x(98)00033-6 es_ES
dc.description.references Peña-Angulo, D., Nadal-Romero, E., González-Hidalgo, J. C., Albaladejo, J., Andreu, V., Bagarello, V., … Bienes, R. (2019). Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin. Journal of Hydrology, 571, 390-405. doi:10.1016/j.jhydrol.2019.01.059 es_ES
dc.description.references Nadal-Romero, E., González-Hidalgo, J. C., Cortesi, N., Desir, G., Gómez, J. A., Lasanta, T., … Zabaleta, A. (2015). Relationship of runoff, erosion and sediment yield to weather types in the Iberian Peninsula. Geomorphology, 228, 372-381. doi:10.1016/j.geomorph.2014.09.011 es_ES
dc.description.references Gonzalez-Hidalgo, J. C., Batalla, R. J., Cerda, A., & de Luis, M. (2012). A regional analysis of the effects of largest events on soil erosion. CATENA, 95, 85-90. doi:10.1016/j.catena.2012.03.006 es_ES
dc.description.references Martínez-Valderrama, J., Ibáñez, J., Del Barrio, G., Sanjuán, M. E., Alcalá, F. J., Martínez-Vicente, S., … Puigdefábregas, J. (2016). Present and future of desertification in Spain: Implementation of a surveillance system to prevent land degradation. Science of The Total Environment, 563-564, 169-178. doi:10.1016/j.scitotenv.2016.04.065 es_ES
dc.description.references Rodrigo-Comino, J., Senciales, J. M., Sillero-Medina, J. A., Gyasi-Agyei, Y., Ruiz-Sinoga, J. D., & Ries, J. B. (2019). Analysis of Weather-Type-Induced Soil Erosion in Cultivated and Poorly Managed Abandoned Sloping Vineyards in the Axarquía Region (Málaga, Spain). Air, Soil and Water Research, 12, 117862211983940. doi:10.1177/1178622119839403 es_ES
dc.description.references Cerdà, A., Rodrigo-Comino, J., Novara, A., Brevik, E. C., Vaezi, A. R., Pulido, M., … Keesstra, S. D. (2018). Long-term impact of rainfed agricultural land abandonment on soil erosion in the Western Mediterranean basin. Progress in Physical Geography: Earth and Environment, 42(2), 202-219. doi:10.1177/0309133318758521 es_ES
dc.description.references Agata, N., Artemi, C., Carmelo, D., Giuseppe, L. P., Antonino, S., & Luciano, G. (2015). Effectiveness of carbon isotopic signature for estimating soil erosion and deposition rates in Sicilian vineyards. Soil and Tillage Research, 152, 1-7. doi:10.1016/j.still.2015.03.010 es_ES
dc.description.references Rodrigo-Comino, J. (2018). Five decades of soil erosion research in «terroir». The State-of-the-Art. Earth-Science Reviews, 179, 436-447. doi:10.1016/j.earscirev.2018.02.014 es_ES
dc.description.references Rodrigo-Comino, J., Keesstra, S., & Cerdà, A. (2018). Soil Erosion as an Environmental Concern in Vineyards. The Case Study of Celler del Roure, Eastern Spain, by Means of Rainfall Simulation Experiments. Beverages, 4(2), 31. doi:10.3390/beverages4020031 es_ES
dc.description.references Rodrigo-Comino, J., Novara, A., Gyasi-Agyei, Y., Terol, E., & Cerdà, A. (2018). Effects of parent material on soil erosion within Mediterranean new vineyard plantations. Engineering Geology, 246, 255-261. doi:10.1016/j.enggeo.2018.10.006 es_ES
dc.description.references Rodrigo-Comino, J., García-Díaz, A., Brevik, E. C., Keestra, S. D., Pereira, P., Novara, A., … Cerdà, A. (2017). Role of rock fragment cover on runoff generation and sediment yield in tilled vineyards. European Journal of Soil Science, 68(6), 864-872. doi:10.1111/ejss.12483 es_ES
dc.description.references Rodrigo Comino, J., Keesstra, S. D., & Cerdà, A. (2018). Connectivity assessment in Mediterranean vineyards using improved stock unearthing method, LiDAR and soil erosion field surveys. Earth Surface Processes and Landforms, 43(10), 2193-2206. doi:10.1002/esp.4385 es_ES
dc.description.references Haurwitz, B. (1945). INSOLATION IN RELATION TO CLOUDINESS AND CLOUD DENSITY. Journal of Meteorology, 2(3), 154-166. doi:10.1175/1520-0469(1945)002<0154:iirtca>2.0.co;2 es_ES
dc.description.references Haurwitz, B. (1946). INSOLATION IN RELATION TO CLOUD TYPE. Journal of Meteorology, 3(4), 123-124. doi:10.1175/1520-0469(1946)003<0123:iirtct>2.0.co;2 es_ES
dc.description.references Haurwitz, B., & Collaborators. (1945). ADVECTION OF AIR AND THE FORECASTING OF PRESSURE CHANGES. Journal of Meteorology, 2(2), 83-93. doi:10.1175/1520-0469(1945)002<0083:aoaatf>2.0.co;2 es_ES
dc.description.references Giambelluca, T., & Nullet, D. (1991). Influence of the trade-wind inversion on the climate of a leeward mountain slope in Hawaii. Climate Research, 1, 207-216. doi:10.3354/cr001207 es_ES
dc.description.references HARRISON, M. S. J. (1993). ELEVATED INVERSIONS OVER SOUTHERN AFRICA: CLIMATOLOGICAL PROPERTIES AND RELATIONSHIPS WITH RAINFALL. South African Geographical Journal, 75(1), 1-8. doi:10.1080/03736245.1993.9713555 es_ES
dc.description.references Li, Z., Zuidema, P., & Zhu, P. (2014). Simulated Convective Invigoration Processes at Trade Wind Cumulus Cold Pool Boundaries. Journal of the Atmospheric Sciences, 71(8), 2823-2841. doi:10.1175/jas-d-13-0184.1 es_ES
dc.description.references Tompkins, A. M. (2001). Organization of Tropical Convection in Low Vertical Wind Shears: The Role of Cold Pools. Journal of the Atmospheric Sciences, 58(13), 1650-1672. doi:10.1175/1520-0469(2001)058<1650:ootcil>2.0.co;2 es_ES
dc.description.references Xoplaki, E., González-Rouco, J. F., Luterbacher, J., & Wanner, H. (2004). Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Climate Dynamics, 23(1), 63-78. doi:10.1007/s00382-004-0422-0 es_ES
dc.description.references Engelbrecht, F. A., McGregor, J. L., & Engelbrecht, C. J. (2009). Dynamics of the Conformal-Cubic Atmospheric Model projected climate-change signal over southern Africa. International Journal of Climatology, 29(7), 1013-1033. doi:10.1002/joc.1742 es_ES
dc.description.references Barros, A. P., & Lettenmaier, D. P. (1994). Dynamic modeling of orographically induced precipitation. Reviews of Geophysics, 32(3), 265. doi:10.1029/94rg00625 es_ES
dc.description.references McCabe Jr., G. J., & Muller, R. A. (1987). SYNOPTIC WEATHER TYPES: AN INDEX OF EVAPORATION IN SOUTHERN LOUISIANA. Physical Geography, 8(2), 99-112. doi:10.1080/02723646.1987.10642314 es_ES
dc.description.references Chu, P.-S., & Chen, H. (2005). Interannual and Interdecadal Rainfall Variations in the Hawaiian Islands*. Journal of Climate, 18(22), 4796-4813. doi:10.1175/jcli3578.1 es_ES
dc.description.references Yeh, H.-C., & Chen, Y.-L. (1998). Characteristics of Rainfall Distributions over Taiwan during the Taiwan Area Mesoscale Experiment (TAMEX). Journal of Applied Meteorology, 37(11), 1457-1469. doi:10.1175/1520-0450(1998)037<1457:cordot>2.0.co;2 es_ES
dc.description.references Romero, R., Sumner, G., Ramis, C., & Genovés, A. (1999). A classification of the atmospheric circulation patterns producing significant daily rainfall in the Spanish Mediterranean area. International Journal of Climatology, 19(7), 765-785. doi:10.1002/(sici)1097-0088(19990615)19:7<765::aid-joc388>3.0.co;2-t es_ES
dc.description.references Wallis, T. W. R., & Griffiths, J. F. (1995). An assessment of the weather generator (WXGEN) used in the erosion/productivity impact calculator (EPIC). Agricultural and Forest Meteorology, 73(1-2), 115-133. doi:10.1016/0168-1923(94)02172-g es_ES
dc.description.references Fernández-Raga, M., Fraile, R., Keizer, J. J., Varela Teijeiro, M. E., Castro, A., Palencia, C., … Da Costa Marques, R. L. (2010). The kinetic energy of rain measured with an optical disdrometer: An application to splash erosion. Atmospheric Research, 96(2-3), 225-240. doi:10.1016/j.atmosres.2009.07.013 es_ES
dc.description.references Sadeghi, S. H., Nouri, H., & Faramarzi, M. (2017). Assessing the Spatial Distribution of Rainfall and the Effect of Altitude in Iran (Hamadan Province). Air, Soil and Water Research, 10, 117862211668606. doi:10.1177/1178622116686066 es_ES
dc.description.references Wilby, R. L., Dalgleish, H. Y., & Foster, I. D. L. (1997). The impact of weather patterns on historic and contemporary catchment sediment yields. Earth Surface Processes and Landforms, 22(4), 353-363. doi:10.1002/(sici)1096-9837(199704)22:4<353::aid-esp692>3.0.co;2-g es_ES
dc.description.references Pattison, I., & Lane, S. N. (2011). The relationship between Lamb weather types and long-term changes in flood frequency, River Eden, UK. International Journal of Climatology, 32(13), 1971-1989. doi:10.1002/joc.2415 es_ES
dc.description.references Jones, P. G., & Thornton, P. K. (2013). Generating downscaled weather data from a suite of climate models for agricultural modelling applications. Agricultural Systems, 114, 1-5. doi:10.1016/j.agsy.2012.08.002 es_ES
dc.description.references McNew, K. P., Mapp, H. P., Duchon, C. E., & Merritt, E. S. (1991). Sources and Uses of Weather Information for Agricultural Decision Makers. Bulletin of the American Meteorological Society, 72(4), 491-498. doi:10.1175/1520-0477(1991)072<0491:sauowi>2.0.co;2 es_ES
dc.description.references Ramos, A. M., Barriopedro, D., & Dutra, E. (2015). Circulation weather types as a tool in atmospheric, climate, and environmental research. Frontiers in Environmental Science, 3. doi:10.3389/fenvs.2015.00044 es_ES
dc.description.references Philipp, A., Bartholy, J., Beck, C., Erpicum, M., Esteban, P., Fettweis, X., … Tymvios, F. S. (2010). Cost733cat – A database of weather and circulation type classifications. Physics and Chemistry of the Earth, Parts A/B/C, 35(9-12), 360-373. doi:10.1016/j.pce.2009.12.010 es_ES
dc.description.references Fleig, A. K., Tallaksen, L. M., Hisdal, H., Stahl, K., & Hannah, D. M. (2010). Inter-comparison of weather and circulation type classifications for hydrological drought development. Physics and Chemistry of the Earth, Parts A/B/C, 35(9-12), 507-515. doi:10.1016/j.pce.2009.11.005 es_ES
dc.description.references Gu, C., Mu, X., Gao, P., Zhao, G., Sun, W., & Tan, X. (2019). Distinguishing the effects of vegetation restoration on runoff and sediment generation on simulated rainfall on the hillslopes of the loess plateau of China. Plant and Soil, 447(1-2), 393-412. doi:10.1007/s11104-019-04392-4 es_ES
dc.description.references Zhang, X., Wu, K., Fullen, M. A., & Wu, B. (2020). Synergistic effects of vegetation layers of maize and potato intercropping on soil erosion on sloping land in Yunnan Province, China. Journal of Mountain Science, 17(2), 423-434. doi:10.1007/s11629-019-5392-0 es_ES
dc.description.references Luo, J., Zhou, X., Rubinato, M., Li, G., Tian, Y., & Zhou, J. (2020). Impact of Multiple Vegetation Covers on Surface Runoff and Sediment Yield in the Small Basin of Nverzhai, Hunan Province, China. Forests, 11(3), 329. doi:10.3390/f11030329 es_ES
dc.description.references Amare, T., Zegeye, A. D., Yitaferu, B., Steenhuis, T. S., Hurni, H., & Zeleke, G. (2014). Combined effect of soil bund with biological soil and water conservation measures in the northwestern Ethiopian highlands. Ecohydrology & Hydrobiology, 14(3), 192-199. doi:10.1016/j.ecohyd.2014.07.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem