- -

The Tomato SlVIPP1 Gene Is Required for Plant Survival Through the Proper Development of Chloroplast Thylakoid Membrane

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

The Tomato SlVIPP1 Gene Is Required for Plant Survival Through the Proper Development of Chloroplast Thylakoid Membrane

Show full item record

Micol-Ponce, R.; García-Alcázar, M.; Capel, C.; Yuste-Lisbona, FJ.; Pineda Chaza, BJ.; Atarés Huerta, A.; García Sogo, B.... (2020). The Tomato SlVIPP1 Gene Is Required for Plant Survival Through the Proper Development of Chloroplast Thylakoid Membrane. Frontiers in Plant Science. 11:1-14. https://doi.org/10.3389/fpls.2020.01305

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166079

Files in this item

Item Metadata

Title: The Tomato SlVIPP1 Gene Is Required for Plant Survival Through the Proper Development of Chloroplast Thylakoid Membrane
Author: Micol-Ponce, Rosa García-Alcázar, Manuel Capel, Carmen Yuste-Lisbona, Fernando Juan Pineda Chaza, Benito José Atarés Huerta, Alejandro García Sogo, Begoña Capel, Juan Moreno Ferrero, Vicente Lozano, Rafael
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Since membranes play essential roles in all living beings, all cells have developed mechanisms for efficient and fast repair of membrane damage. InEscherichia coli, the Phage shock stress A (PspA) protein is involved ...[+]
Subjects: SlVIPP1 , Tomato , Chloroplast , Thylakoid membrane , PspA , Albinism , Lethality
Copyrigths: Reconocimiento (by)
Source:
Frontiers in Plant Science. (eissn: 1664-462X )
DOI: 10.3389/fpls.2020.01305
Publisher:
Frontiers Media SA
Publisher version: https://doi.org/10.3389/fpls.2020.01305
Project ID:
info:eu-repo/grantAgreement/EC/H2020/774244/EU/Breeding for Resilient, Efficient and Sustainable Organic Vegetable production/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110833RB-C31/ES/REGULACION GENETICA DE LA ACTIVIDAD DE LOS MERISTEMOS REPRODUCTIVOS Y SU PAPEL EN LA MEJORA DE LA PRODUCTIVIDAD DE TOMATE/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110833RB-C32/ES/EDICION DE PROMOTORES DE GENES QUE REGULAN EL DESARROLLO REPRODUCTIVO EN TOMATE COMO ESTRATEGIA PARA MANTENER LA PRODUCCION EN CONDICIONES DE ESTRES ABIOTICO/
Thanks:
This work was supported by research grants from the Spanish Ministry of Science and Innovation and the UE-European Regional Development Fund (grants PID2019-110833RB-C31 and PID2019-110833RB-C32) and the Research and ...[+]
Type: Artículo

References

Adikusuma, F., Piltz, S., Corbett, M. A., Turvey, M., McColl, S. R., Helbig, K. J., … Thomas, P. Q. (2018). Large deletions induced by Cas9 cleavage. Nature, 560(7717), E8-E9. doi:10.1038/s41586-018-0380-z

Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389

Aseeva, E., Ossenbühl, F., Sippel, C., Cho, W. K., Stein, B., Eichacker, L. A., … Vothknecht, U. C. (2007). Vipp1 is required for basic thylakoid membrane formation but not for the assembly of thylakoid protein complexes. Plant Physiology and Biochemistry, 45(2), 119-128. doi:10.1016/j.plaphy.2007.01.005 [+]
Adikusuma, F., Piltz, S., Corbett, M. A., Turvey, M., McColl, S. R., Helbig, K. J., … Thomas, P. Q. (2018). Large deletions induced by Cas9 cleavage. Nature, 560(7717), E8-E9. doi:10.1038/s41586-018-0380-z

Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389

Aseeva, E., Ossenbühl, F., Sippel, C., Cho, W. K., Stein, B., Eichacker, L. A., … Vothknecht, U. C. (2007). Vipp1 is required for basic thylakoid membrane formation but not for the assembly of thylakoid protein complexes. Plant Physiology and Biochemistry, 45(2), 119-128. doi:10.1016/j.plaphy.2007.01.005

Babu, M. M. (2016). The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochemical Society Transactions, 44(5), 1185-1200. doi:10.1042/bst20160172

Brinkman, E. K., Chen, T., Amendola, M., & van Steensel, B. (2014). Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Research, 42(22), e168-e168. doi:10.1093/nar/gku936

Brissette, J. L., Russel, M., Weiner, L., & Model, P. (1990). Phage shock protein, a stress protein of Escherichia coli. Proceedings of the National Academy of Sciences, 87(3), 862-866. doi:10.1073/pnas.87.3.862

Ellul, P., Garcia-Sogo, B., Pineda, B., Ríos, G., Roig, L., & Moreno, V. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L.Mill.) is genotype and procedure dependent. Theoretical and Applied Genetics, 106(2), 231-238. doi:10.1007/s00122-002-0928-y

Flores-Kim, J., & Darwin, A. J. (2016). The Phage Shock Protein Response. Annual Review of Microbiology, 70(1), 83-101. doi:10.1146/annurev-micro-102215-095359

Fuhrmann, E., Bultema, J. B., Kahmann, U., Rupprecht, E., Boekema, E. J., & Schneider, D. (2009). The Vesicle-inducing Protein 1 from Synechocystis sp. PCC 6803 Organizes into Diverse Higher-Ordered Ring Structures. Molecular Biology of the Cell, 20(21), 4620-4628. doi:10.1091/mbc.e09-04-0319

Gao, H., & Xu, X. (2009). Depletion of Vipp1 inSynechocystissp. PCC 6803 affects photosynthetic activity before the loss of thylakoid membranes. FEMS Microbiology Letters, 292(1), 63-70. doi:10.1111/j.1574-6968.2008.01470.x

Gao, F., Chen, B., Jiao, J., Jia, L., & Liu, C. (2017). Two Novel Vesicle-Inducing Proteins in Plastids 1 Genes Cloned and Characterized in Triticum urartu. PLOS ONE, 12(1), e0170439. doi:10.1371/journal.pone.0170439

García-Alcázar, M., Giménez, E., Pineda, B., Capel, C., García-Sogo, B., Sánchez, S., … Lozano, R. (2017). Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival. Scientific Reports, 7(1). doi:10.1038/srep45333

Gerdes, L., Bals, T., Klostermann, E., Karl, M., Philippar, K., Hünken, M., … Schünemann, D. (2006). A Second Thylakoid Membrane-localized Alb3/OxaI/YidC Homologue Is Involved in Proper Chloroplast Biogenesis in Arabidopsis thaliana. Journal of Biological Chemistry, 281(24), 16632-16642. doi:10.1074/jbc.m513623200

Giménez, E., Pineda, B., Capel, J., Antón, M. T., Atarés, A., Pérez-Martín, F., … Lozano, R. (2010). Functional Analysis of the Arlequin Mutant Corroborates the Essential Role of the ARLEQUIN/TAGL1 Gene during Reproductive Development of Tomato. PLoS ONE, 5(12), e14427. doi:10.1371/journal.pone.0014427

Gleave, A. P. (1992). A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Molecular Biology, 20(6), 1203-1207. doi:10.1007/bf00028910

Heidrich, J., Thurotte, A., & Schneider, D. (2017). Specific interaction of IM30/Vipp1 with cyanobacterial and chloroplast membranes results in membrane remodeling and eventually in membrane fusion. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1859(4), 537-549. doi:10.1016/j.bbamem.2016.09.025

Hennig, R., Heidrich, J., Saur, M., Schmüser, L., Roeters, S. J., Hellmann, N., … Schneider, D. (2015). IM30 triggers membrane fusion in cyanobacteria and chloroplasts. Nature Communications, 6(1). doi:10.1038/ncomms8018

Hennig, R., West, A., Debus, M., Saur, M., Markl, J., Sachs, J. N., & Schneider, D. (2017). The IM30/Vipp1 C-terminus associates with the lipid bilayer and modulates membrane fusion. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1858(2), 126-136. doi:10.1016/j.bbabio.2016.11.004

Ishida, T., & Kinoshita, K. (2007). PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Research, 35(Web Server), W460-W464. doi:10.1093/nar/gkm363

Jarvis, P., & Robinson, C. (2004). Mechanisms of Protein Import and Routing in Chloroplasts. Current Biology, 14(24), R1064-R1077. doi:10.1016/j.cub.2004.11.049

Joly, N., Engl, C., Jovanovic, G., Huvet, M., Toni, T., Sheng, X., … Buck, M. (2010). Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiology Reviews, 34(5), 797-827. doi:10.1111/j.1574-6976.2010.00240.x

Jovanovic, G., Weiner, L., & Model, P. (1996). Identification, nucleotide sequence, and characterization of PspF, the transcriptional activator of the Escherichia coli stress-induced psp operon. Journal of Bacteriology, 178(7), 1936-1945. doi:10.1128/jb.178.7.1936-1945.1996

Junglas, B., Siebenaller, C., Schlösser, L., Hellmann, N., & Schneider, D. (2020). GTP hydrolysis by Synechocystis IM30 does not decisively affect its membrane remodeling activity. Scientific Reports, 10(1). doi:10.1038/s41598-020-66818-9

Kroll, D., Meierhoff, K., Bechtold, N., Kinoshita, M., Westphal, S., Vothknecht, U. C., … Westhoff, P. (2001). VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proceedings of the National Academy of Sciences, 98(7), 4238-4242. doi:10.1073/pnas.061500998

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870-1874. doi:10.1093/molbev/msw054

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. doi:10.1093/bioinformatics/btm404

Li, H., Kaneko, Y., & Keegstra, K. (1994). Molecular cloning of a chloroplastic proteinassociated with both the envelope and thylakoid membranes. Plant Molecular Biology, 25(4), 619-632. doi:10.1007/bf00029601

LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591

Mechela, A., Schwenkert, S., & Soll, J. (2019). A brief history of thylakoid biogenesis. Open Biology, 9(1), 180237. doi:10.1098/rsob.180237

Myburg, A. A., Grattapaglia, D., Tuskan, G. A., Hellsten, U., Hayes, R. D., Grimwood, J., … Bauer, D. (2014). The genome of Eucalyptus grandis. Nature, 510(7505), 356-362. doi:10.1038/nature13308

Myouga, F., Akiyama, K., Tomonaga, Y., Kato, A., Sato, Y., Kobayashi, M., … Shinozaki, K. (2013). The Chloroplast Function Database II: A Comprehensive Collection of Homozygous Mutants and Their Phenotypic/Genotypic Traits for Nuclear-Encoded Chloroplast Proteins. Plant and Cell Physiology, 54(2), e2-e2. doi:10.1093/pcp/pcs171

Nordhues, A., Schöttler, M. A., Unger, A.-K., Geimer, S., Schönfelder, S., Schmollinger, S., … Schroda, M. (2012). Evidence for a Role of VIPP1 in the Structural Organization of the Photosynthetic Apparatus in Chlamydomonas. The Plant Cell, 24(2), 637-659. doi:10.1105/tpc.111.092692

Ohnishi, N., Zhang, L., & Sakamoto, W. (2018). VIPP1 Involved in Chloroplast Membrane Integrity Has GTPase Activity in Vitro. Plant Physiology, 177(1), 328-338. doi:10.1104/pp.18.00145

Oliveros, J. C., Franch, M., Tabas-Madrid, D., San-León, D., Montoliu, L., Cubas, P., & Pazos, F. (2016). Breaking-Cas—interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes. Nucleic Acids Research, 44(W1), W267-W271. doi:10.1093/nar/gkw407

Pérez-Martín, F., Yuste-Lisbona, F. J., Pineda, B., Angarita-Díaz, M. P., García-Sogo, B., Antón, T., … Lozano, R. (2017). A collection of enhancer trap insertional mutants for functional genomics in tomato. Plant Biotechnology Journal, 15(11), 1439-1452. doi:10.1111/pbi.12728

Pérez-Martín, F., Yuste-Lisbona, F. J., Pineda, B., García-Sogo, B., Olmo, I. del, de Dios Alché, J., … Lozano, R. (2018). Developmental role of the tomato Mediator complex subunit MED18 in pollen ontogeny. The Plant Journal, 96(2), 300-315. doi:10.1111/tpj.14031

Rodríguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E., & Lippman, Z. B. (2017). Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing. Cell, 171(2), 470-480.e8. doi:10.1016/j.cell.2017.08.030

Shin, H. Y., Wang, C., Lee, H. K., Yoo, K. H., Zeng, X., Kuhns, T., … Hennighausen, L. (2017). CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nature Communications, 8(1). doi:10.1038/ncomms15464

Srivastava, R., Pisareva, T., & Norling, B. (2005). Proteomic studies of the thylakoid membrane ofSynechocystis sp. PCC 6803. PROTEOMICS, 5(18), 4905-4916. doi:10.1002/pmic.200500111

Srivastava, R., Battchikova, N., Norling, B., & Aro, E.-M. (2006). Plasma membrane of Synechocystis PCC 6803: a heterogeneous distribution of membrane proteins. Archives of Microbiology, 185(3), 238-243. doi:10.1007/s00203-006-0086-8

Teng, Y.-S., Su, Y., Chen, L.-J., Lee, Y. J., Hwang, I., & Li, H. (2006). Tic21 Is an Essential Translocon Component for Protein Translocation across the Chloroplast Inner Envelope Membrane. The Plant Cell, 18(9), 2247-2257. doi:10.1105/tpc.106.044305

Vothknecht, U. C., Otters, S., Hennig, R., & Schneider, D. (2011). Vipp1: a very important protein in plastids?! Journal of Experimental Botany, 63(4), 1699-1712. doi:10.1093/jxb/err357

Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M., Rouse, D. T., Liu, Q., … Waterhouse, P. M. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal, 27(6), 581-590. doi:10.1046/j.1365-313x.2001.01105.x

Westphal, S., Heins, L., Soll, J., & Vothknecht, U. C. (2001). Vipp1 deletion mutant of Synechocystis: A connection between bacterial phage shock and thylakoid biogenesis? Proceedings of the National Academy of Sciences, 98(7), 4243-4248. doi:10.1073/pnas.061501198

Yuste-Lisbona, F. J., Fernández-Lozano, A., Pineda, B., Bretones, S., Ortíz-Atienza, A., García-Sogo, B., … Lozano, R. (2020). ENOregulates tomato fruit size through the floral meristem development network. Proceedings of the National Academy of Sciences, 117(14), 8187-8195. doi:10.1073/pnas.1913688117

Zhang, L., & Sakamoto, W. (2013). Possible function of VIPP1 in thylakoids. Plant Signaling & Behavior, 8(2), e22860. doi:10.4161/psb.22860

Zhang, L., & Sakamoto, W. (2015). Possible function of VIPP1 in maintaining chloroplast membranes. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1847(9), 831-837. doi:10.1016/j.bbabio.2015.02.013

Zhang, L., Kato, Y., Otters, S., Vothknecht, U. C., & Sakamoto, W. (2012). Essential Role of VIPP1 in Chloroplast Envelope Maintenance in Arabidopsis  . The Plant Cell, 24(9), 3695-3707. doi:10.1105/tpc.112.103606

Zhang, S., Shen, G., Li, Z., Golbeck, J. H., & Bryant, D. A. (2014). Vipp1 Is Essential for the Biogenesis of Photosystem I but Not Thylakoid Membranes in Synechococcus sp. PCC 7002. Journal of Biological Chemistry, 289(23), 15904-15914. doi:10.1074/jbc.m114.555631

Zhang, L., Kondo, H., Kamikubo, H., Kataoka, M., & Sakamoto, W. (2016). VIPP1 Has a Disordered C-Terminal Tail Necessary for Protecting Photosynthetic Membranes against Stress. Plant Physiology, 171(3), 1983-1995. doi:10.1104/pp.16.00532

Zouine, M., Maza, E., Djari, A., Lauvernier, M., Frasse, P., Smouni, A., … Bouzayen, M. (2017). TomExpress, a unified tomato RNA-Seq platform for visualization of expression data, clustering and correlation networks. The Plant Journal, 92(4), 727-735. doi:10.1111/tpj.13711

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record