- -

(Z)-3-Hexenyl Butyrate induces stomata closure and ripening in Vitis vinifera

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

(Z)-3-Hexenyl Butyrate induces stomata closure and ripening in Vitis vinifera

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Payá Montes, Celia es_ES
dc.contributor.author López-Gresa, María Pilar es_ES
dc.contributor.author Intrigliolo, Diego S. es_ES
dc.contributor.author Rodrigo Bravo, Ismael es_ES
dc.contributor.author Belles Albert, José Mª es_ES
dc.contributor.author Lisón, Purificación es_ES
dc.date.accessioned 2021-05-08T03:31:26Z
dc.date.available 2021-05-08T03:31:26Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166080
dc.description.abstract [EN] Agronomy solutions for modifying pre-harvest grape ripening are needed for a more sustainable viticulture. Field experiments were performed inVitis viniferaL. vines to study the effect of the previously described stomata-closing compound (Z)-3-hexenyl butyrate (HB). Exogenous treatments at different doses were periodically carried out using a randomized block design. Firstly, we observed that HB was able to induce stomatal closure in grapevine plants. Under field conditions, the application of HB around veraison induced a higher color intensity in berries, and vines treated at higher doses reached this stage earlier than the un-treated controls. There was also a clear increase in both grape anthocyanin concentration and total soluble solids without having a negative impact on total yield. We therefore, confirm the role of HB as a universal natural stomatal closure compound and propose a new use for HB in viticulture as a ripening inducer, by accelerating anthocyanin accumulation. es_ES
dc.description.sponsorship This research was funded by Grant INNVAL10/18/005 from the Agencia Valenciana de la Innovacio (Spain). C.P. was a recipient of a predoctoral contract of the Generalitat Valenciana (ACIF/2019/187). D.S.I. is supported by AEI-FEDER grant AGL2017-83738-C3-3-R. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Agronomy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject (Z)-3-hexenyl butyrate es_ES
dc.subject Stomata es_ES
dc.subject Ripening es_ES
dc.subject Vitis vinifera es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title (Z)-3-Hexenyl Butyrate induces stomata closure and ripening in Vitis vinifera es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/agronomy10081122 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2019%2F187/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-83738-C3-3-R/ES/OPTIMIZACION DE LA EFICIENCIA EN EL USO DEL NITROGENO EN LA VID BAJO DEFICIT HIDRICO Y ESTRES SALINO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNVA10%2F18%2F005/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Payá Montes, C.; López-Gresa, MP.; Intrigliolo, DS.; Rodrigo Bravo, I.; Belles Albert, JM.; Lisón, P. (2020). (Z)-3-Hexenyl Butyrate induces stomata closure and ripening in Vitis vinifera. Agronomy. 10(8):1-12. https://doi.org/10.3390/agronomy10081122 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/agronomy10081122 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2073-4395 es_ES
dc.relation.pasarela S\423080 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agència Valenciana de la Innovació es_ES
dc.description.references Zoccatelli, G., Zenoni, S., Savoi, S., Dal Santo, S., Tononi, P., Zandonà, V., … Tornielli, G. B. (2013). Skin pectin metabolism during the postharvest dehydration of berries from three distinct grapevine cultivars. Australian Journal of Grape and Wine Research, 19(2), 171-179. doi:10.1111/ajgw.12014 es_ES
dc.description.references Lund, S. T., & Bohlmann, J. (2006). The Molecular Basis for Wine Grape Quality-A Volatile Subject. Science, 311(5762), 804-805. doi:10.1126/science.1118962 es_ES
dc.description.references Kuhn, N., Guan, L., Dai, Z. W., Wu, B.-H., Lauvergeat, V., Gomès, E., … Delrot, S. (2013). Berry ripening: recently heard through the grapevine. Journal of Experimental Botany, 65(16), 4543-4559. doi:10.1093/jxb/ert395 es_ES
dc.description.references Gerós, H., Chaves, M. M., Gil, H. M., & Delrot, S. (Eds.). (2015). Grapevine in a Changing Environment. doi:10.1002/9781118735985 es_ES
dc.description.references Palliotti, A., Tombesi, S., Silvestroni, O., Lanari, V., Gatti, M., & Poni, S. (2014). Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: A review. Scientia Horticulturae, 178, 43-54. doi:10.1016/j.scienta.2014.07.039 es_ES
dc.description.references van Leeuwen, Destrac-Irvine, Dubernet, Duchêne, Gowdy, Marguerit, … Ollat. (2019). An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy, 9(9), 514. doi:10.3390/agronomy9090514 es_ES
dc.description.references Schultz, H. R. (2010). Climate Change and Viticulture: Research Needs for Facing the Future. Journal of Wine Research, 21(2-3), 113-116. doi:10.1080/09571264.2010.530093 es_ES
dc.description.references Fraga, H., Malheiro, A. C., Moutinho‐Pereira, J., & Santos, J. A. (2012). An overview of climate change impacts on European viticulture. Food and Energy Security, 1(2), 94-110. doi:10.1002/fes3.14 es_ES
dc.description.references Zhang, Y., Mechlin, T., & Dami, I. (2011). Foliar Application of Abscisic Acid Induces Dormancy Responses in Greenhouse-grown Grapevines. HortScience, 46(9), 1271-1277. doi:10.21273/hortsci.46.9.1271 es_ES
dc.description.references Jung, C. J., Hur, Y. Y., Yu, H.-J., Noh, J.-H., Park, K.-S., & Lee, H. J. (2014). Gibberellin Application at Pre-Bloom in Grapevines Down-Regulates the Expressions of VvIAA9 and VvARF7, Negative Regulators of Fruit Set Initiation, during Parthenocarpic Fruit Development. PLoS ONE, 9(4), e95634. doi:10.1371/journal.pone.0095634 es_ES
dc.description.references Deytieux-Belleau, C., Gagne, S., L’Hyvernay, A., Donèche, B., & Geny, L. (2007). Possible roles of both abscisic acid and indol-acetic acid in controlling grape berry ripening process. OENO One, 41(3), 141. doi:10.20870/oeno-one.2007.41.3.844 es_ES
dc.description.references El-kenawy, M. (2017). Effect of Chitosan, Salicylic Acid and Fulvic Acid on Vegetative Growth, Yield and Fruit Quality of Thompson Seedless Grapevines. Egyptian Journal of Horticulture, 44(1), 45-59. doi:10.21608/ejoh.2017.1104.1007 es_ES
dc.description.references Becatti, E., Genova, G., Ranieri, A., & Tonutti, P. (2014). Postharvest treatments with ethylene on Vitis vinifera (cv Sangiovese) grapes affect berry metabolism and wine composition. Food Chemistry, 159, 257-266. doi:10.1016/j.foodchem.2014.02.169 es_ES
dc.description.references MENG, J.-F., YU, Y., SHI, T.-C., FU, Y.-S., ZHAO, T., & ZHANG, Z.-W. (2019). Melatonin treatment of pre-veraison grape berries modifies phenolic components and antioxidant activity of grapes and wine. Food Science and Technology, 39(1), 35-42. doi:10.1590/1678-457x.24517 es_ES
dc.description.references Mirdehghan, S. H., & Rahimi, S. (2016). Pre-harvest application of polyamines enhances antioxidants and table grape ( Vitis vinifera L.) quality during postharvest period. Food Chemistry, 196, 1040-1047. doi:10.1016/j.foodchem.2015.10.038 es_ES
dc.description.references Mencarelli, F., & Bellincontro, A. (2018). Recent advances in postharvest technology of the wine grape to improve the wine aroma. Journal of the Science of Food and Agriculture, 100(14), 5046-5055. doi:10.1002/jsfa.8910 es_ES
dc.description.references BELLINCONTRO, A., FARDELLI, A., SANTIS, D. D., BOTONDI, R., & MENCARELLI, F. (2006). Postharvest ethylene and 1-MCP treatments both affect phenols, anthocyanins, and aromatic quality of Aleatico grapes and wine. Australian Journal of Grape and Wine Research, 12(2), 141-149. doi:10.1111/j.1755-0238.2006.tb00054.x es_ES
dc.description.references Botondi, R., Lodola, L., & Mencarelli, F. (2011). Postharvest ethylene treatment affects berry dehydration, polyphenol and anthocyanin content by increasing the activity of cell wall enzymes in Aleatico wine grape. European Food Research and Technology, 232(4), 679-685. doi:10.1007/s00217-011-1437-5 es_ES
dc.description.references Lovisolo, C., Hartung, W., & Schubert, A. (2002). Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines. Functional Plant Biology, 29(11), 1349. doi:10.1071/fp02079 es_ES
dc.description.references Flexas, J., Barón, M., Bota, J., Ducruet, J.-M., Gallé, A., Galmés, J., … Medrano, H. (2009). Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri×V. rupestris). Journal of Experimental Botany, 60(8), 2361-2377. doi:10.1093/jxb/erp069 es_ES
dc.description.references Yu, D. J., Kim, S. J., & Lee, H. J. (2009). Stomatal and non-stomatal limitations to photosynthesis in field-grown grapevine cultivars. Biologia plantarum, 53(1), 133-137. doi:10.1007/s10535-009-0019-x es_ES
dc.description.references Wong, S. C., Cowan, I. R., & Farquhar, G. D. (1979). Stomatal conductance correlates with photosynthetic capacity. Nature, 282(5737), 424-426. doi:10.1038/282424a0 es_ES
dc.description.references Franks, P. J., & Farquhar, G. D. (2006). The Mechanical Diversity of Stomata and Its Significance in Gas-Exchange Control. Plant Physiology, 143(1), 78-87. doi:10.1104/pp.106.089367 es_ES
dc.description.references López-Gresa, M. P., Lisón, P., Campos, L., Rodrigo, I., Rambla, J. L., Granell, A., … Bellés, J. M. (2017). A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01188 es_ES
dc.description.references López-Gresa, M. P., Payá, C., Ozáez, M., Rodrigo, I., Conejero, V., Klee, H., … Lisón, P. (2018). A New Role For Green Leaf Volatile Esters in Tomato Stomatal Defense Against Pseudomonas syringe pv. tomato. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01855 es_ES
dc.description.references Meyers, K. J., Watkins, C. B., Pritts, M. P., & Liu, R. H. (2003). Antioxidant and Antiproliferative Activities of Strawberries. Journal of Agricultural and Food Chemistry, 51(23), 6887-6892. doi:10.1021/jf034506n es_ES
dc.description.references García-Hurtado, N., Carrera, E., Ruiz-Rivero, O., López-Gresa, M. P., Hedden, P., Gong, F., & García-Martínez, J. L. (2012). The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. Journal of Experimental Botany, 63(16), 5803-5813. doi:10.1093/jxb/ers229 es_ES
dc.description.references Fernández-López, J. A., Almela, L., Muñoz, J. A., Hidalgo, V., & Carreño, J. (1998). Dependence between colour and individual anthocyanin content in ripening grapes. Food Research International, 31(9), 667-672. doi:10.1016/s0963-9969(99)00043-5 es_ES
dc.description.references KENNEDY, J. A., TROUP, G. J., PILBROW, J. R., HUTTON, D. R., HEWITT, D., HUNTER, C. R., … JONES, G. P. (2000). Development of seed polyphenols in berries from Vitis vinifera L. cv. Shiraz. Australian Journal of Grape and Wine Research, 6(3), 244-254. doi:10.1111/j.1755-0238.2000.tb00185.x es_ES
dc.description.references Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266-269. doi:10.1126/science.aaz7614 es_ES
dc.description.references Jordan, W. R., Brown, K. W., & Thomas, J. C. (1975). Leaf Age as a Determinant in Stomatal Control of Water Loss from Cotton during Water Stress. Plant Physiology, 56(5), 595-599. doi:10.1104/pp.56.5.595 es_ES
dc.description.references Whitehead, D., Barbour, M. M., Griffin, K. L., Turnbull, M. H., & Tissue, D. T. (2011). Effects of leaf age and tree size on stomatal and mesophyll limitations to photosynthesis in mountain beech (Nothofagus solandrii var. cliffortiodes). Tree Physiology, 31(9), 985-996. doi:10.1093/treephys/tpr021 es_ES
dc.description.references Tombesi, S., Nardini, A., Frioni, T., Soccolini, M., Zadra, C., Farinelli, D., … Palliotti, A. (2015). Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Scientific Reports, 5(1). doi:10.1038/srep12449 es_ES
dc.description.references Gamm, M., Héloir, M.-C., & Adrian, M. (2015). Trehalose and trehalose-6-phosphate induce stomatal movements and interfere with ABA-induced stomatal closure in grapevine. OENO One, 49(3), 165. doi:10.20870/oeno-one.2015.49.3.84 es_ES
dc.description.references Di Vaio, C., Marallo, N., Di Lorenzo, R., & Pisciotta, A. (2019). Anti-Transpirant Effects on Vine Physiology, Berry and Wine Composition of cv. Aglianico (Vitis vinifera L.) Grown in South Italy. Agronomy, 9(5), 244. doi:10.3390/agronomy9050244 es_ES
dc.description.references Di Vaio, C., Villano, C., Lisanti, M. T., Marallo, N., Cirillo, A., Di Lorenzo, R., & Pisciotta, A. (2020). Application of Anti-Transpirant to Control Sugar Accumulation in Grape Berries and Alcohol Degree in Wines Obtained from Thinned and Unthinned Vines of cv. Falanghina (Vitis vinifera L.). Agronomy, 10(3), 345. doi:10.3390/agronomy10030345 es_ES
dc.description.references Medrano, H., Tomás, M., Martorell, S., Escalona, J.-M., Pou, A., Fuentes, S., … Bota, J. (2014). Improving water use efficiency of vineyards in semi-arid regions. A review. Agronomy for Sustainable Development, 35(2), 499-517. doi:10.1007/s13593-014-0280-z es_ES
dc.description.references KALLITHRAKA, S., BAKKER, J., & CLIFFORD, M. N. (1997). EVALUATION OF BITTERNESS AND ASTRINGENCY OF (+)-CATECHIN AND (-)-EPICATECHIN IN RED WINE AND IN MODEL SOLUTION. Journal of Sensory Studies, 12(1), 25-37. doi:10.1111/j.1745-459x.1997.tb00051.x es_ES
dc.description.references Brillante, L., Belfiore, N., Gaiotti, F., Lovat, L., Sansone, L., Poni, S., & Tomasi, D. (2016). Comparing Kaolin and Pinolene to Improve Sustainable Grapevine Production during Drought. PLOS ONE, 11(6), e0156631. doi:10.1371/journal.pone.0156631 es_ES
dc.description.references Palliotti, A., Panara, F., Famiani, F., Sabbatini, P., Howell, G. S., Silvestroni, O., & Poni, S. (2013). Postveraison Application of Antitranspirant Di-1- p -Menthene to Control Sugar Accumulation in Sangiovese Grapevines. American Journal of Enology and Viticulture, 64(3), 378-385. doi:10.5344/ajev.2013.13015 es_ES
dc.description.references Fahey, D. J., & Rogiers, S. Y. (2018). Di-1-p -menthene reduces grape leaf and bunch transpiration. Australian Journal of Grape and Wine Research, 25(1), 134-141. doi:10.1111/ajgw.12371 es_ES
dc.description.references Martín, P., Delgado, R., González, M. R., & Gallegos, J. I. (2004). COLOUR OF «TEMPRANILLO» GRAPES AS AFFECTED BY DIFFERENT NITROGEN AND POTASSIUM FERTILIZATION RATES. Acta Horticulturae, (652), 153-160. doi:10.17660/actahortic.2004.652.18 es_ES
dc.description.references Fortes, A., Teixeira, R., & Agudelo-Romero, P. (2015). Complex Interplay of Hormonal Signals during Grape Berry Ripening. Molecules, 20(5), 9326-9343. doi:10.3390/molecules20059326 es_ES
dc.description.references Griesser, M., Savoi, S., Supapvanich, S., Dobrev, P., Vankova, R., & Forneck, A. (2020). Phytohormone profiles are strongly altered during induction and symptom development of the physiological ripening disorder berry shrivel in grapevine. Plant Molecular Biology, 103(1-2), 141-157. doi:10.1007/s11103-020-00980-6 es_ES
dc.description.references Portu, J., López, R., Baroja, E., Santamaría, P., & Garde-Cerdán, T. (2016). Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract. Food Chemistry, 201, 213-221. doi:10.1016/j.foodchem.2016.01.086 es_ES
dc.description.references Gómez-Plaza, E., Bautista-Ortín, A. B., Ruiz-García, Y., Fernández-Fernández, J. I., & Gil-Muñoz, R. (2016). Effect of elicitors on the evolution of grape phenolic compounds during the ripening period. Journal of the Science of Food and Agriculture, 97(3), 977-983. doi:10.1002/jsfa.7823 es_ES
dc.description.references Silva, V., Singh, R. K., Gomes, N., Soares, B. G., Silva, A., Falco, V., … Poeta, P. (2020). Comparative Insight upon Chitosan Solution and Chitosan Nanoparticles Application on the Phenolic Content, Antioxidant and Antimicrobial Activities of Individual Grape Components of Sousão Variety. Antioxidants, 9(2), 178. doi:10.3390/antiox9020178 es_ES
dc.description.references El-Kereamy, A., Chervin, C., Roustan, J.-P., Cheynier, V., Souquet, J.-M., Moutounet, M., … Bouzayen, M. (2003). Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiologia Plantarum, 119(2), 175-182. doi:10.1034/j.1399-3054.2003.00165.x es_ES
dc.description.references Allègre, M., Héloir, M.-C., Trouvelot, S., Daire, X., Pugin, A., Wendehenne, D., & Adrian, M. (2009). Are Grapevine Stomata Involved in the Elicitor-Induced Protection Against Downy Mildew? Molecular Plant-Microbe Interactions®, 22(8), 977-986. doi:10.1094/mpmi-22-8-0977 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem