- -

Dichorhaviruses Movement Protein and Nucleoprotein Form a Protein Complex That May Be Required for Virus Spread and Interacts in vivo With Viral Movement-Related Cilevirus Proteins

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Dichorhaviruses Movement Protein and Nucleoprotein Form a Protein Complex That May Be Required for Virus Spread and Interacts in vivo With Viral Movement-Related Cilevirus Proteins

Show full item record

Leastro, MO.; Freitas-Astúa, J.; Kitajima, EW.; Pallás Benet, V.; Sanchez Navarro, JA. (2020). Dichorhaviruses Movement Protein and Nucleoprotein Form a Protein Complex That May Be Required for Virus Spread and Interacts in vivo With Viral Movement-Related Cilevirus Proteins. Frontiers in Microbiology. 11:1-22. https://doi.org/10.3389/fmicb.2020.571807

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166081

Files in this item

Item Metadata

Title: Dichorhaviruses Movement Protein and Nucleoprotein Form a Protein Complex That May Be Required for Virus Spread and Interacts in vivo With Viral Movement-Related Cilevirus Proteins
Author: Leastro, Mikhail Oliveira Freitas-Astúa, Juliana Kitajima, Elliot Watanabe Pallás Benet, Vicente SANCHEZ NAVARRO, JESUS ANGEL
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Brevipalpus-transmitted viruses (BTVs) belong to the genera Dichorhavirus and Cilevirus and are the main causal agents of the citrus leprosis (CL) disease. In this report, we explored aspects related to the movement ...[+]
Subjects: Dichorhaviruses , Cileviruses , Citrus leprosis pathosystem , Virus movement , In vivo protein-protein interaction , Protein membrane association and topology , Mixed infection
Copyrigths: Reconocimiento (by)
Source:
Frontiers in Microbiology. (issn: 1664-302X )
DOI: 10.3389/fmicb.2020.571807
Publisher:
Frontiers Media SA
Publisher version: https://doi.org/10.3389/fmicb.2020.571807
Project ID:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2015%2F010/ES/Interacciones RNA-proteína y proteína-proteína en procesos de desarrollo y patogénesis mediados por virus y agentes subvirales en cultivos de interés Agronómico (RNAPROT)/
...[+]
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2015%2F010/ES/Interacciones RNA-proteína y proteína-proteína en procesos de desarrollo y patogénesis mediados por virus y agentes subvirales en cultivos de interés Agronómico (RNAPROT)/
info:eu-repo/grantAgreement/FAPESP//2017%2F50222-0/
info:eu-repo/grantAgreement/FAPESP//2017%2F19898-8/
info:eu-repo/grantAgreement/FAPESP//2015%2F10249-1/
info:eu-repo/grantAgreement/FAPESP//2014%2F08459/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-88321-R/ES/DESCRIFRANDO INTERACCIONES VIRUS-PLANTA ESENCIALES PARA LA SUSCEPTIBILIDAD Y%2FO RESISTENCIA EN DOS PATOSISTEMAS AGRONOMICAMENTE RELEVANTES/
[-]
Thanks:
This work was supported by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), proc. 2014/08459, 2015/10249-1, 2017/50222-0, and 2017/19898-8. This work was also supported by grant BIO2017-88321-R from the ...[+]
Type: Artículo

References

Aparicio, F., Pallas, V., & Sanchez-Navarro, J. (2010). Implication of the C terminus of the Prunus necrotic ringspot virus movement protein in cell-to-cell transport and in its interaction with the coat protein. Journal of General Virology, 91(7), 1865-1870. doi:10.1099/vir.0.019950-0

Aparicio, F., Sánchez-Navarro, J. A., & Pallás, V. (2006). In vitro and in vivo mapping of the Prunus necrotic ringspot virus coat protein C-terminal dimerization domain by bimolecular fluorescence complementation. Journal of General Virology, 87(6), 1745-1750. doi:10.1099/vir.0.81696-0

Bastianel, M., Novelli, V. M., Kitajima, E. W., Kubo, K. S., Bassanezi, R. B., Machado, M. A., & Freitas-Astúa, J. (2010). Citrus Leprosis: Centennial of an Unusual Mite–Virus Pathosystem. Plant Disease, 94(3), 284-292. doi:10.1094/pdis-94-3-0284 [+]
Aparicio, F., Pallas, V., & Sanchez-Navarro, J. (2010). Implication of the C terminus of the Prunus necrotic ringspot virus movement protein in cell-to-cell transport and in its interaction with the coat protein. Journal of General Virology, 91(7), 1865-1870. doi:10.1099/vir.0.019950-0

Aparicio, F., Sánchez-Navarro, J. A., & Pallás, V. (2006). In vitro and in vivo mapping of the Prunus necrotic ringspot virus coat protein C-terminal dimerization domain by bimolecular fluorescence complementation. Journal of General Virology, 87(6), 1745-1750. doi:10.1099/vir.0.81696-0

Bastianel, M., Novelli, V. M., Kitajima, E. W., Kubo, K. S., Bassanezi, R. B., Machado, M. A., & Freitas-Astúa, J. (2010). Citrus Leprosis: Centennial of an Unusual Mite–Virus Pathosystem. Plant Disease, 94(3), 284-292. doi:10.1094/pdis-94-3-0284

Bejerman, N., Giolitti, F., de Breuil, S., Trucco, V., Nome, C., Lenardon, S., & Dietzgen, R. G. (2015). Complete genome sequence and integrated protein localization and interaction map for alfalfa dwarf virus, which combines properties of both cytoplasmic and nuclear plant rhabdoviruses. Virology, 483, 275-283. doi:10.1016/j.virol.2015.05.001

Beltran-Beltran, A. K., Santillán-Galicia, M. T., Guzmán-Franco, A. W., Teliz-Ortiz, D., Gutiérrez-Espinoza, M. A., Romero-Rosales, F., & Robles-García, P. L. (2020). Incidence of Citrus leprosis virus C and Orchid fleck dichorhavirus Citrus Strain in Mites of the Genus Brevipalpus in Mexico. Journal of Economic Entomology, 113(3), 1576-1581. doi:10.1093/jee/toaa007

Bordier, C. (1981). Phase separation of integral membrane proteins in Triton X-114 solution. Journal of Biological Chemistry, 256(4), 1604-1607. doi:10.1016/s0021-9258(19)69848-0

Brown, J. K., Idris, A. M., Alteri, C., & Stenger, D. C. (2002). Emergence of a New Cucurbit-Infecting Begomovirus Species Capable of Forming Viable Reassortants with Related Viruses in theSquash leaf curl virusCluster. Phytopathology®, 92(7), 734-742. doi:10.1094/phyto.2002.92.7.734

Canto, T., & Palukaitis, P. (2002). Novel N Gene-Associated, Temperature-Independent Resistance to the Movement of Tobacco Mosaic Virus Vectors Neutralized by a Cucumber Mosaic Virus RNA1 Transgene. Journal of Virology, 76(24), 12908-12916. doi:10.1128/jvi.76.24.12908-12916.2002

Chabi-Jesus, C., Ramos-González, P. L., Tassi, A. D., Guerra-Peraza, O., Kitajima, E. W., Harakava, R., … Freitas-Astúa, J. (2018). Identification and Characterization of Citrus Chlorotic Spot Virus, a New Dichorhavirus Associated with Citrus Leprosis-Like Symptoms. Plant Disease, 102(8), 1588-1598. doi:10.1094/pdis-09-17-1425-re

Chapman, S., Hills, G., Watts, J., & Baulcombe, D. (1992). Mutational analysis of the coat protein gene of potato virus X: Effects on virion morphology and viral pathogenicity. Virology, 191(1), 223-230. doi:10.1016/0042-6822(92)90183-p

Cook, G., Kirkman, W., Clase, R., Steyn, C., Basson, E., Fourie, P. H., … Hattingh, V. (2019). Orchid fleck virus associated with the first case of citrus leprosis-N in South Africa. European Journal of Plant Pathology, 155(4), 1373-1379. doi:10.1007/s10658-019-01854-4

Cruz-Jaramillo, J., Ruiz-Medrano, R., Rojas-Morales, L., López-Buenfil, J., Morales-Galván, O., Chavarín-Palacio, C., … Xoconostle-Cázares, B. (2014). Characterization of a Proposed Dichorhavirus Associated with the Citrus Leprosis Disease and Analysis of the Host Response. Viruses, 6(7), 2602-2622. doi:10.3390/v6072602

Deng, M., Bragg, J. N., Ruzin, S., Schichnes, D., King, D., Goodin, M. M., & Jackson, A. O. (2007). Role of the Sonchus Yellow Net Virus N Protein in Formation of Nuclear Viroplasms. Journal of Virology, 81(10), 5362-5374. doi:10.1128/jvi.02349-06

Dietzgen, R. G., Bejerman, N. E., Goodin, M. M., Higgins, C. M., Huot, O. B., Kondo, H., … Whitfield, A. E. (2020). Diversity and epidemiology of plant rhabdoviruses. Virus Research, 281, 197942. doi:10.1016/j.virusres.2020.197942

Dietzgen, R. G., Freitas-Astúa, J., Chabi-Jesus, C., Ramos-González, P. L., Goodin, M. M., Kondo, H., … Kitajima, E. W. (2018). Dichorhaviruses in their Host Plants and Mite Vectors. Advances in Virus Research, 119-148. doi:10.1016/bs.aivir.2018.06.001

Forster, R. L. S., Beck, D. L., Guilford, P. J., Voot, D. M., Van Dolleweerd, C. J., & Andersen, M. T. (1992). Thecoat protein of white clover mosaic potexvirus has a role in facilitating cell-to-cell transport in plants. Virology, 191(1), 480-484. doi:10.1016/0042-6822(92)90215-b

Freitas-Astúa, J., Moreira, L., Rivera, C., Rodríguez, C. M., & Kitajima, E. W. (2002). First Report of Orchid fleck virus in Costa Rica. Plant Disease, 86(12), 1402-1402. doi:10.1094/pdis.2002.86.12.1402d

Freitas-Astúa, J., Ramos-González, P. L., Arena, G. D., Tassi, A. D., & Kitajima, E. W. (2018). Brevipalpus-transmitted viruses: parallelism beyond a common vector or convergent evolution of distantly related pathogens? Current Opinion in Virology, 33, 66-73. doi:10.1016/j.coviro.2018.07.010

Genovés, A., Pallás, V., & Navarro, J. A. (2011). Contribution of Topology Determinants of a Viral Movement Protein to Its Membrane Association, Intracellular Traffic, and Viral Cell-to-Cell Movement. Journal of Virology, 85(15), 7797-7809. doi:10.1128/jvi.02465-10

Ghosh, D., Brooks, R. E., Wang, R., Lesnaw, J., & Goodin, M. M. (2008). Cloning and subcellular localization of the phosphoprotein and nucleocapsid proteins of Potato yellow dwarf virus, type species of the genus Nucleorhabdovirus. Virus Research, 135(1), 26-35. doi:10.1016/j.virusres.2008.02.003

Goodin, M. M., Austin, J., Tobias, R., Fujita, M., Morales, C., & Jackson, A. O. (2001). Interactions and Nuclear Import of the N and P Proteins of Sonchus Yellow Net Virus, a Plant Nucleorhabdovirus. Journal of Virology, 75(19), 9393-9406. doi:10.1128/jvi.75.19.9393-9406.2001

Goodin, M. M., Chakrabarty, R., Yelton, S., Martin, K., Clark, A., & Brooks, R. (2007). Membrane and protein dynamics in live plant nuclei infected with Sonchus yellow net virus, a plant-adapted rhabdovirus. Journal of General Virology, 88(6), 1810-1820. doi:10.1099/vir.0.82698-0

Goodin, M. M., Dietzgen, R. G., Schichnes, D., Ruzin, S., & Jackson, A. O. (2002). pGD vectors: versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. The Plant Journal, 31(3), 375-383. doi:10.1046/j.1365-313x.2002.01360.x

Hofmann, C., Niehl, A., Sambade, A., Steinmetz, A., & Heinlein, M. (2009). Inhibition of Tobacco Mosaic Virus Movement by Expression of an Actin-Binding Protein. Plant Physiology, 149(4), 1810-1823. doi:10.1104/pp.108.133827

Huang, Y.-W., Geng, Y.-F., Ying, X.-B., Chen, X.-Y., & Fang, R.-X. (2005). Identification of a Movement Protein of Rice Yellow Stunt Rhabdovirus. Journal of Virology, 79(4), 2108-2114. doi:10.1128/jvi.79.4.2108-2114.2005

Idris, A. M., & Brown, J. K. (2004). Cotton leaf crumple virus Is a Distinct Western Hemisphere Begomovirus Species with Complex Evolutionary Relationships Indicative of Recombination and Reassortment. Phytopathology®, 94(10), 1068-1074. doi:10.1094/phyto.2004.94.10.1068

Idris, A. M., Mills-Lujan, K., Martin, K., & Brown, J. K. (2008). Melon Chlorotic Leaf Curl Virus  : Characterization and Differential Reassortment with Closest Relatives Reveal Adaptive Virulence in the Squash Leaf Curl Virus Clade and Host Shifting by the Host-Restricted Bean Calico Mosaic Virus. Journal of Virology, 82(4), 1959-1967. doi:10.1128/jvi.01992-07

Kang, S.-H., Bak, A., Kim, O.-K., & Folimonova, S. Y. (2015). Membrane association of a nonconserved viral protein confers virus ability to extend its host range. Virology, 482, 208-217. doi:10.1016/j.virol.2015.03.047

Kawakami, S., Watanabe, Y., & Beachy, R. N. (2004). Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proceedings of the National Academy of Sciences, 101(16), 6291-6296. doi:10.1073/pnas.0401221101

Kondo, H., Chiba, S., Andika, I. B., Maruyama, K., Tamada, T., & Suzuki, N. (2013). Orchid Fleck Virus Structural Proteins N and P Form Intranuclear Viroplasm-Like Structures in the Absence of Viral Infection. Journal of Virology, 87(13), 7423-7434. doi:10.1128/jvi.00270-13

Kondo, H., Maeda, T., & Tamada, T. (2003). Orchid Fleck Virus: Brevipalpus californicus Mite Transmission, Biological Properties and Genome Structure. Experimental and Applied Acarology, 30(1-3), 215-223. doi:10.1023/b:appa.0000006550.88615.10

Kondo, H., Maruyama, K., Chiba, S., Andika, I. B., & Suzuki, N. (2014). Transcriptional mapping of the messenger and leader RNAs of orchid fleck virus, a bisegmented negative-strand RNA virus. Virology, 452-453, 166-174. doi:10.1016/j.virol.2014.01.007

Leastro, M. O., Castro, D. Y. O., Freitas-Astúa, J., Kitajima, E. W., Pallás, V., & Sánchez-Navarro, J. Á. (2020). Citrus Leprosis Virus C Encodes Three Proteins With Gene Silencing Suppression Activity. Frontiers in Microbiology, 11. doi:10.3389/fmicb.2020.01231

Leastro, M. O., De Oliveira, A. S., Pallás, V., Sánchez-Navarro, J. A., Kormelink, R., & Resende, R. O. (2017). The NSm proteins of phylogenetically related tospoviruses trigger Sw-5b–mediated resistance dissociated of their cell-to-cell movement function. Virus Research, 240, 25-34. doi:10.1016/j.virusres.2017.07.019

Leastro, M. O., Pallás, V., Resende, R. O., & Sánchez-Navarro, J. A. (2017). The functional analysis of distinct tospovirus movement proteins (NS M ) reveals different capabilities in tubule formation, cell-to-cell and systemic virus movement among the tospovirus species. Virus Research, 227, 57-68. doi:10.1016/j.virusres.2016.09.023

Leastro, M. O., Kitajima, E. W., Silva, M. S., Resende, R. O., & Freitas-Astúa, J. (2018). Dissecting the Subcellular Localization, Intracellular Trafficking, Interactions, Membrane Association, and Topology of Citrus Leprosis Virus C Proteins. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01299

Leastro, M. O., Pallás, V., Resende, R. O., & Sánchez-Navarro, J. A. (2015). The movement proteins (NSm) of distinct tospoviruses peripherally associate with cellular membranes and interact with homologous and heterologous NSm and nucleocapsid proteins. Virology, 478, 39-49. doi:10.1016/j.virol.2015.01.031

Sue Loesch-Fries, L., Halk, E. L., Nelson, S. E., & Krahn, K. J. (1985). Human leukocyte interferon does not inhibit alfalfa mosaic virus in protoplasts or tobacco tissue. Virology, 143(2), 626-629. doi:10.1016/0042-6822(85)90402-7

Mann, K. S., Bejerman, N., Johnson, K. N., & Dietzgen, R. G. (2016). Cytorhabdovirus P3 genes encode 30K-like cell-to-cell movement proteins. Virology, 489, 20-33. doi:10.1016/j.virol.2015.11.028

Martin, K. M., Dietzgen, R. G., Wang, R., & Goodin, M. M. (2012). Lettuce necrotic yellows cytorhabdovirus protein localization and interaction map, and comparison with nucleorhabdoviruses. Journal of General Virology, 93(4), 906-914. doi:10.1099/vir.0.038034-0

Martínez-Gil, L., Sánchez-Navarro, J. A., Cruz, A., Pallás, V., Pérez-Gil, J., & Mingarro, I. (2009). Plant Virus Cell-to-Cell Movement Is Not Dependent on the Transmembrane Disposition of Its Movement Protein. Journal of Virology, 83(11), 5535-5543. doi:10.1128/jvi.00393-09

Martínez-Pérez, M., Navarro, J. A., Pallás, V., & Sánchez-Navarro, J. A. (2019). A sensitive and rapid RNA silencing suppressor activity assay based on alfalfa mosaic virus expression vector. Virus Research, 272, 197733. doi:10.1016/j.virusres.2019.197733

Melcher, U. (2000). The ‘30K’ superfamily of viral movement proteins. Microbiology, 81(1), 257-266. doi:10.1099/0022-1317-81-1-257

Moreno, A. B., & López-Moya, J. J. (2020). When Viruses Play Team Sports: Mixed Infections in Plants. Phytopathology®, 110(1), 29-48. doi:10.1094/phyto-07-19-0250-fi

Nagano, H., Mise, K., Furusawa, I., & Okuno, T. (2001). Conversion in the Requirement of Coat Protein in Cell-to-Cell Movement Mediated by the Cucumber Mosaic Virus Movement Protein. Journal of Virology, 75(17), 8045-8053. doi:10.1128/jvi.75.17.8045-8053.2001

Nagano, H., Okuno, T., Mise, K., & Furusawa, I. (1997). Deletion of the C-terminal 33 amino acids of cucumber mosaic virus movement protein enables a chimeric brome mosaic virus to move from cell to cell. Journal of Virology, 71(3), 2270-2276. doi:10.1128/jvi.71.3.2270-2276.1997

Navarro, J. A., Sanchez-Navarro, J. A., & Pallas, V. (2019). Key checkpoints in the movement of plant viruses through the host. Advances in Virus Research, 1-64. doi:10.1016/bs.aivir.2019.05.001

Peiró, A., Cañizares, M. C., Rubio, L., López, C., Moriones, E., Aramburu, J., & Sánchez-Navarro, J. (2014). The movement protein (NSm) ofTomato spotted wilt virusis the avirulence determinant in the tomatoSw-5gene-based resistance. Molecular Plant Pathology, 15(8), 802-813. doi:10.1111/mpp.12142

Peiro, A., Martinez-Gil, L., Tamborero, S., Pallas, V., Sanchez-Navarro, J. A., Mingarro, I., & Simon, A. (2013). The Tobacco mosaic virus Movement Protein Associates with but Does Not Integrate into Biological Membranes. Journal of Virology, 88(5), 3016-3026. doi:10.1128/jvi.03648-13

Peremyslov, V. V., Pan, Y.-W., & Dolja, V. V. (2004). Movement Protein of a Closterovirus Is a Type III Integral Transmembrane Protein Localized to the EndoplasmicReticulum. Journal of Virology, 78(7), 3704-3709. doi:10.1128/jvi.78.7.3704-3709.2004

Edgerton, B. (1996). A new bacilliform virus in Australian Cherax destructor (Decapoda:Parastacidae) with notes on Cherax quadricarinatus bacilliform virus (= Cherax baculovirus). Diseases of Aquatic Organisms, 27, 43-52. doi:10.3354/dao027043

Pitzalis, N., & Heinlein, M. (2017). The roles of membranes and associated cytoskeleton in plant virus replication and cell-to-cell movement. Journal of Experimental Botany, 69(1), 117-132. doi:10.1093/jxb/erx334

Powers, J. G., Sit, T. L., Qu, F., Morris, T. J., Kim, K.-H., & Lommel, S. A. (2008). A Versatile Assay for the Identification of RNA Silencing Suppressors Based on Complementation of Viral Movement. Molecular Plant-Microbe Interactions®, 21(7), 879-890. doi:10.1094/mpmi-21-7-0879

Shankhwar, N., Singh, R. K., Kothiyal, G. P., Perumal, A., & Srinivasan, A. (2014). Evolution of Magnetic Properties of ${\hbox{CaO}}\hbox{-}{\hbox{P}}_{2}{\hbox{O}}_{5}\hbox{-}{\hbox{Na}}_{2}{\hbox{O}}\hbox{-}{\hbox{Fe}}_{2}{\hbox{O}}_{3}\hbox{-}{\hbox{SiO}}_{2}$ Glass Upon Heat Treatment. IEEE Transactions on Magnetics, 50(1), 1-4. doi:10.1109/tmag.2013.2278570

Ramalho, T. O., Figueira, A. R., Sotero, A. J., Wang, R., Geraldino Duarte, P. S., Farman, M., & Goodin, M. M. (2014). Characterization of Coffee ringspot virus-Lavras: A model for an emerging threat to coffee production and quality. Virology, 464-465, 385-396. doi:10.1016/j.virol.2014.07.031

Ramos-González, P. L., Chabi-Jesus, C., Guerra-Peraza, O., Tassi, A. D., Kitajima, E. W., Harakava, R., … Freitas-Astúa, J. (2017). Citrus leprosis virus N: A New Dichorhavirus Causing Citrus Leprosis Disease. Phytopathology®, 107(8), 963-976. doi:10.1094/phyto-02-17-0042-r

Ritzenthaler, C., & Hofmann, C. (s. f.). Tubule-Guided Movement of Plant Viruses. Plant Cell Monographs, 63-83. doi:10.1007/7089_2006_105

Roossinck, M. J. (1997). MECHANISMS OF PLANTVIRUS EVOLUTION. Annual Review of Phytopathology, 35(1), 191-209. doi:10.1146/annurev.phyto.35.1.191

Roy, A., Hartung, J. S., Schneider, W. L., Shao, J., Leon, G., Melzer, M. J., … Brlansky, R. H. (2015). Role Bending: Complex Relationships Between Viruses, Hosts, and Vectors Related to Citrus Leprosis, an Emerging Disease. Phytopathology®, 105(7), 1013-1025. doi:10.1094/phyto-12-14-0375-fi

Roy, A., Stone, A. L., Shao, J., Otero-Colina, G., Wei, G., Choudhary, N., … Brlansky, R. H. (2015). Identification and Molecular Characterization of Nuclear Citrus leprosis virus, a Member of the Proposed Dichorhavirus Genus Infecting Multiple Citrus Species in Mexico. Phytopathology®, 105(4), 564-575. doi:10.1094/phyto-09-14-0245-r

Sambade, A., & Heinlein, M. (2009). Approaching the cellular mechanism that supports the intercellular spread ofTobacco mosaic virus. Plant Signaling & Behavior, 4(1), 35-38. doi:10.4161/psb.4.1.7253

Sanchez-Navarro, J., Miglino, R., Ragozzino, A., & Bol, J. F. (2001). Engineering of Alfalfa mosaic virus RNA 3 into an expression vector. Archives of Virology, 146(5), 923-939. doi:10.1007/s007050170125

Sánchez-Navarro, J. A., & Bol, J. F. (2001). Role of the Alfalfa mosaic virus Movement Protein and Coat Protein in Virus Transport. Molecular Plant-Microbe Interactions®, 14(9), 1051-1062. doi:10.1094/mpmi.2001.14.9.1051

Sánchez-Navarro, J. A., Carmen Herranz, M., & Pallás, V. (2006). Cell-to-cell movement of Alfalfa mosaic virus can be mediated by the movement proteins of Ilar-, bromo-, cucumo-, tobamo- and comoviruses and does not require virion formation. Virology, 346(1), 66-73. doi:10.1016/j.virol.2005.10.024

Sánchez-Velázquez, E. J., Santillán-Galicia, M. T., Novelli, V. M., Nunes, M. A., Mora-Aguilera, G., Valdez-Carrasco, J. M., … Freitas-Astúa, J. (2015). Diversity and Genetic Variation among Brevipalpus Populations from Brazil and Mexico. PLOS ONE, 10(7), e0133861. doi:10.1371/journal.pone.0133861

Sauvêtre, P., Veniant, E., Croq, G., Tassi, A. D., Kitajima, E. W., Chabi-Jesus, C., … Navia, D. (2018). First Report of Orchid Fleck Virus in the Orchid Collection of Jardin du Luxembourg, Paris, France. Plant Disease, 102(12), 2670-2670. doi:10.1094/pdis-02-18-0371-pdn

Takeda, A., Kaido, M., Okuno, T., & Mise, K. (2004). The C terminus of the movement protein of Brome mosaic virus controls the requirement for coat protein in cell-to-cell movement and plays a role in long-distance movement. Journal of General Virology, 85(6), 1751-1761. doi:10.1099/vir.0.79976-0

Taschner, P. E. M., Van Der Kuyl, A. C., Neeleman, L., & Bol, J. F. (1991). Replication of an incomplete alfalfa mosaic virus genome in plants transformed with viral replicase genes. Virology, 181(2), 445-450. doi:10.1016/0042-6822(91)90876-d

Tsai, C.-W., Redinbaugh, M. G., Willie, K. J., Reed, S., Goodin, M., & Hogenhout, S. A. (2005). Complete Genome Sequence and In Planta Subcellular Localization of Maize Fine Streak Virus Proteins. Journal of Virology, 79(9), 5304-5314. doi:10.1128/jvi.79.9.5304-5314.2005

Van Dun, C. M. P., Van Vloten-Doting, L., & Bol, J. F. (1988). Expression of alfalfa mosaic virus cDNA1 and 2 in transgenic Tobacco plants. Virology, 163(2), 572-578. doi:10.1016/0042-6822(88)90298-x

Wolf, S., Lucas, W. J., Deom, C. M., & Beachy, R. N. (1989). Movement Protein of Tobacco Mosaic Virus Modifies Plasmodesmatal Size Exclusion Limit. Science, 246(4928), 377-379. doi:10.1126/science.246.4928.377

Zamyatnin, A. A., Solovyev, A. G., Bozhkov, P. V., Valkonen, J. P. T., Morozov, S. Y., & Savenkov, E. I. (2006). Assessment of the integral membrane protein topology in living cells. The Plant Journal, 46(1), 145-154. doi:10.1111/j.1365-313x.2006.02674.x

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record