Mostrar el registro sencillo del ítem
dc.contributor.author | Leastro, Mikhail Oliveira | es_ES |
dc.contributor.author | Freitas-Astúa, Juliana | es_ES |
dc.contributor.author | Kitajima, Elliot Watanabe | es_ES |
dc.contributor.author | Pallás Benet, Vicente | es_ES |
dc.contributor.author | SANCHEZ NAVARRO, JESUS ANGEL | es_ES |
dc.date.accessioned | 2021-05-08T03:31:27Z | |
dc.date.available | 2021-05-08T03:31:27Z | |
dc.date.issued | 2020-11-04 | es_ES |
dc.identifier.issn | 1664-302X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166081 | |
dc.description.abstract | [EN] Brevipalpus-transmitted viruses (BTVs) belong to the genera Dichorhavirus and Cilevirus and are the main causal agents of the citrus leprosis (CL) disease. In this report, we explored aspects related to the movement mechanism mediated by dichorhaviruses movement proteins (MPs) and the homologous and heterologous interactions among viral proteins related to the movement of citrus leprosis-associated viruses. The membrane-spanning property and topology analysis of the nucleocapsid (N) and MP proteins from two dichorhaviruses revealed that the MPs are proteins tightly associated with the cell membrane, exposing their N- and C-termini to the cytoplasm and the inner part of the nucleus, whereas the N proteins are not membrane-associated. Subcellular localization analysis revealed the presence of dichorhavirus MPs at the cell surface and in the nucleus, while the phosphoproteins (P) were located exclusively in the nucleus and the N proteins in both the cytoplasm and the nucleus. Co-expression analysis with the MP, P, and N proteins showed an interaction network formed between them. We highlight the MP capability to partially redistribute the previously reported N-P core complex, redirecting a portion of the N from the nucleus to the plasmodesmata at the cell periphery, which indicates not only that the MP might guide the intracellular trafficking of the viral infective complex but also that the N protein may be associated with the cell-to-cell movement mechanism of dichorhaviruses. The movement functionality of these MPs was analyzed by using three movement-defective infectious systems. Also, the MP capacity to generate tubular structures on the protoplast surface by ectopic expression was analyzed. Finally, we evaluated the in vivo protein-protein interaction networks between the dichorhavirus MP and/or N proteins with the heterologous cilevirus movement components, which suggest a broad spectrum of interactions, highlighting those among capsid proteins (CP), MPs, and Ns from citrus leprosis-associated viruses. These data may aid in understanding the mixed infection process naturally observed in the field caused by distinct BTVs. | es_ES |
dc.description.sponsorship | This work was supported by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), proc. 2014/08459, 2015/10249-1, 2017/50222-0, and 2017/19898-8. This work was also supported by grant BIO2017-88321-R from the Spanish Direccion General de Investigacion Cientifica y Tecnica (DGICYT) and the Prometeo Program GV2015/010 from the Generalitat Valenciana. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Microbiology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Dichorhaviruses | es_ES |
dc.subject | Cileviruses | es_ES |
dc.subject | Citrus leprosis pathosystem | es_ES |
dc.subject | Virus movement | es_ES |
dc.subject | In vivo protein-protein interaction | es_ES |
dc.subject | Protein membrane association and topology | es_ES |
dc.subject | Mixed infection | es_ES |
dc.title | Dichorhaviruses Movement Protein and Nucleoprotein Form a Protein Complex That May Be Required for Virus Spread and Interacts in vivo With Viral Movement-Related Cilevirus Proteins | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fmicb.2020.571807 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2015%2F010/ES/Interacciones RNA-proteína y proteína-proteína en procesos de desarrollo y patogénesis mediados por virus y agentes subvirales en cultivos de interés Agronómico (RNAPROT)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FAPESP//2017%2F50222-0/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FAPESP//2017%2F19898-8/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FAPESP//2015%2F10249-1/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FAPESP//2014%2F08459/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-88321-R/ES/DESCRIFRANDO INTERACCIONES VIRUS-PLANTA ESENCIALES PARA LA SUSCEPTIBILIDAD Y%2FO RESISTENCIA EN DOS PATOSISTEMAS AGRONOMICAMENTE RELEVANTES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Leastro, MO.; Freitas-Astúa, J.; Kitajima, EW.; Pallás Benet, V.; Sanchez Navarro, JA. (2020). Dichorhaviruses Movement Protein and Nucleoprotein Form a Protein Complex That May Be Required for Virus Spread and Interacts in vivo With Viral Movement-Related Cilevirus Proteins. Frontiers in Microbiology. 11:1-22. https://doi.org/10.3389/fmicb.2020.571807 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fmicb.2020.571807 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.identifier.pmid | 33250868 | es_ES |
dc.identifier.pmcid | PMC7672204 | es_ES |
dc.relation.pasarela | S\433224 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado de São Paulo | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Aparicio, F., Pallas, V., & Sanchez-Navarro, J. (2010). Implication of the C terminus of the Prunus necrotic ringspot virus movement protein in cell-to-cell transport and in its interaction with the coat protein. Journal of General Virology, 91(7), 1865-1870. doi:10.1099/vir.0.019950-0 | es_ES |
dc.description.references | Aparicio, F., Sánchez-Navarro, J. A., & Pallás, V. (2006). In vitro and in vivo mapping of the Prunus necrotic ringspot virus coat protein C-terminal dimerization domain by bimolecular fluorescence complementation. Journal of General Virology, 87(6), 1745-1750. doi:10.1099/vir.0.81696-0 | es_ES |
dc.description.references | Bastianel, M., Novelli, V. M., Kitajima, E. W., Kubo, K. S., Bassanezi, R. B., Machado, M. A., & Freitas-Astúa, J. (2010). Citrus Leprosis: Centennial of an Unusual Mite–Virus Pathosystem. Plant Disease, 94(3), 284-292. doi:10.1094/pdis-94-3-0284 | es_ES |
dc.description.references | Bejerman, N., Giolitti, F., de Breuil, S., Trucco, V., Nome, C., Lenardon, S., & Dietzgen, R. G. (2015). Complete genome sequence and integrated protein localization and interaction map for alfalfa dwarf virus, which combines properties of both cytoplasmic and nuclear plant rhabdoviruses. Virology, 483, 275-283. doi:10.1016/j.virol.2015.05.001 | es_ES |
dc.description.references | Beltran-Beltran, A. K., Santillán-Galicia, M. T., Guzmán-Franco, A. W., Teliz-Ortiz, D., Gutiérrez-Espinoza, M. A., Romero-Rosales, F., & Robles-García, P. L. (2020). Incidence of Citrus leprosis virus C and Orchid fleck dichorhavirus Citrus Strain in Mites of the Genus Brevipalpus in Mexico. Journal of Economic Entomology, 113(3), 1576-1581. doi:10.1093/jee/toaa007 | es_ES |
dc.description.references | Bordier, C. (1981). Phase separation of integral membrane proteins in Triton X-114 solution. Journal of Biological Chemistry, 256(4), 1604-1607. doi:10.1016/s0021-9258(19)69848-0 | es_ES |
dc.description.references | Brown, J. K., Idris, A. M., Alteri, C., & Stenger, D. C. (2002). Emergence of a New Cucurbit-Infecting Begomovirus Species Capable of Forming Viable Reassortants with Related Viruses in theSquash leaf curl virusCluster. Phytopathology®, 92(7), 734-742. doi:10.1094/phyto.2002.92.7.734 | es_ES |
dc.description.references | Canto, T., & Palukaitis, P. (2002). Novel N Gene-Associated, Temperature-Independent Resistance to the Movement of Tobacco Mosaic Virus Vectors Neutralized by a Cucumber Mosaic Virus RNA1 Transgene. Journal of Virology, 76(24), 12908-12916. doi:10.1128/jvi.76.24.12908-12916.2002 | es_ES |
dc.description.references | Chabi-Jesus, C., Ramos-González, P. L., Tassi, A. D., Guerra-Peraza, O., Kitajima, E. W., Harakava, R., … Freitas-Astúa, J. (2018). Identification and Characterization of Citrus Chlorotic Spot Virus, a New Dichorhavirus Associated with Citrus Leprosis-Like Symptoms. Plant Disease, 102(8), 1588-1598. doi:10.1094/pdis-09-17-1425-re | es_ES |
dc.description.references | Chapman, S., Hills, G., Watts, J., & Baulcombe, D. (1992). Mutational analysis of the coat protein gene of potato virus X: Effects on virion morphology and viral pathogenicity. Virology, 191(1), 223-230. doi:10.1016/0042-6822(92)90183-p | es_ES |
dc.description.references | Cook, G., Kirkman, W., Clase, R., Steyn, C., Basson, E., Fourie, P. H., … Hattingh, V. (2019). Orchid fleck virus associated with the first case of citrus leprosis-N in South Africa. European Journal of Plant Pathology, 155(4), 1373-1379. doi:10.1007/s10658-019-01854-4 | es_ES |
dc.description.references | Cruz-Jaramillo, J., Ruiz-Medrano, R., Rojas-Morales, L., López-Buenfil, J., Morales-Galván, O., Chavarín-Palacio, C., … Xoconostle-Cázares, B. (2014). Characterization of a Proposed Dichorhavirus Associated with the Citrus Leprosis Disease and Analysis of the Host Response. Viruses, 6(7), 2602-2622. doi:10.3390/v6072602 | es_ES |
dc.description.references | Deng, M., Bragg, J. N., Ruzin, S., Schichnes, D., King, D., Goodin, M. M., & Jackson, A. O. (2007). Role of the Sonchus Yellow Net Virus N Protein in Formation of Nuclear Viroplasms. Journal of Virology, 81(10), 5362-5374. doi:10.1128/jvi.02349-06 | es_ES |
dc.description.references | Dietzgen, R. G., Bejerman, N. E., Goodin, M. M., Higgins, C. M., Huot, O. B., Kondo, H., … Whitfield, A. E. (2020). Diversity and epidemiology of plant rhabdoviruses. Virus Research, 281, 197942. doi:10.1016/j.virusres.2020.197942 | es_ES |
dc.description.references | Dietzgen, R. G., Freitas-Astúa, J., Chabi-Jesus, C., Ramos-González, P. L., Goodin, M. M., Kondo, H., … Kitajima, E. W. (2018). Dichorhaviruses in their Host Plants and Mite Vectors. Advances in Virus Research, 119-148. doi:10.1016/bs.aivir.2018.06.001 | es_ES |
dc.description.references | Forster, R. L. S., Beck, D. L., Guilford, P. J., Voot, D. M., Van Dolleweerd, C. J., & Andersen, M. T. (1992). Thecoat protein of white clover mosaic potexvirus has a role in facilitating cell-to-cell transport in plants. Virology, 191(1), 480-484. doi:10.1016/0042-6822(92)90215-b | es_ES |
dc.description.references | Freitas-Astúa, J., Moreira, L., Rivera, C., Rodríguez, C. M., & Kitajima, E. W. (2002). First Report of Orchid fleck virus in Costa Rica. Plant Disease, 86(12), 1402-1402. doi:10.1094/pdis.2002.86.12.1402d | es_ES |
dc.description.references | Freitas-Astúa, J., Ramos-González, P. L., Arena, G. D., Tassi, A. D., & Kitajima, E. W. (2018). Brevipalpus-transmitted viruses: parallelism beyond a common vector or convergent evolution of distantly related pathogens? Current Opinion in Virology, 33, 66-73. doi:10.1016/j.coviro.2018.07.010 | es_ES |
dc.description.references | Genovés, A., Pallás, V., & Navarro, J. A. (2011). Contribution of Topology Determinants of a Viral Movement Protein to Its Membrane Association, Intracellular Traffic, and Viral Cell-to-Cell Movement. Journal of Virology, 85(15), 7797-7809. doi:10.1128/jvi.02465-10 | es_ES |
dc.description.references | Ghosh, D., Brooks, R. E., Wang, R., Lesnaw, J., & Goodin, M. M. (2008). Cloning and subcellular localization of the phosphoprotein and nucleocapsid proteins of Potato yellow dwarf virus, type species of the genus Nucleorhabdovirus. Virus Research, 135(1), 26-35. doi:10.1016/j.virusres.2008.02.003 | es_ES |
dc.description.references | Goodin, M. M., Austin, J., Tobias, R., Fujita, M., Morales, C., & Jackson, A. O. (2001). Interactions and Nuclear Import of the N and P Proteins of Sonchus Yellow Net Virus, a Plant Nucleorhabdovirus. Journal of Virology, 75(19), 9393-9406. doi:10.1128/jvi.75.19.9393-9406.2001 | es_ES |
dc.description.references | Goodin, M. M., Chakrabarty, R., Yelton, S., Martin, K., Clark, A., & Brooks, R. (2007). Membrane and protein dynamics in live plant nuclei infected with Sonchus yellow net virus, a plant-adapted rhabdovirus. Journal of General Virology, 88(6), 1810-1820. doi:10.1099/vir.0.82698-0 | es_ES |
dc.description.references | Goodin, M. M., Dietzgen, R. G., Schichnes, D., Ruzin, S., & Jackson, A. O. (2002). pGD vectors: versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. The Plant Journal, 31(3), 375-383. doi:10.1046/j.1365-313x.2002.01360.x | es_ES |
dc.description.references | Hofmann, C., Niehl, A., Sambade, A., Steinmetz, A., & Heinlein, M. (2009). Inhibition of Tobacco Mosaic Virus Movement by Expression of an Actin-Binding Protein. Plant Physiology, 149(4), 1810-1823. doi:10.1104/pp.108.133827 | es_ES |
dc.description.references | Huang, Y.-W., Geng, Y.-F., Ying, X.-B., Chen, X.-Y., & Fang, R.-X. (2005). Identification of a Movement Protein of Rice Yellow Stunt Rhabdovirus. Journal of Virology, 79(4), 2108-2114. doi:10.1128/jvi.79.4.2108-2114.2005 | es_ES |
dc.description.references | Idris, A. M., & Brown, J. K. (2004). Cotton leaf crumple virus Is a Distinct Western Hemisphere Begomovirus Species with Complex Evolutionary Relationships Indicative of Recombination and Reassortment. Phytopathology®, 94(10), 1068-1074. doi:10.1094/phyto.2004.94.10.1068 | es_ES |
dc.description.references | Idris, A. M., Mills-Lujan, K., Martin, K., & Brown, J. K. (2008). Melon Chlorotic Leaf Curl Virus : Characterization and Differential Reassortment with Closest Relatives Reveal Adaptive Virulence in the Squash Leaf Curl Virus Clade and Host Shifting by the Host-Restricted Bean Calico Mosaic Virus. Journal of Virology, 82(4), 1959-1967. doi:10.1128/jvi.01992-07 | es_ES |
dc.description.references | Kang, S.-H., Bak, A., Kim, O.-K., & Folimonova, S. Y. (2015). Membrane association of a nonconserved viral protein confers virus ability to extend its host range. Virology, 482, 208-217. doi:10.1016/j.virol.2015.03.047 | es_ES |
dc.description.references | Kawakami, S., Watanabe, Y., & Beachy, R. N. (2004). Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proceedings of the National Academy of Sciences, 101(16), 6291-6296. doi:10.1073/pnas.0401221101 | es_ES |
dc.description.references | Kondo, H., Chiba, S., Andika, I. B., Maruyama, K., Tamada, T., & Suzuki, N. (2013). Orchid Fleck Virus Structural Proteins N and P Form Intranuclear Viroplasm-Like Structures in the Absence of Viral Infection. Journal of Virology, 87(13), 7423-7434. doi:10.1128/jvi.00270-13 | es_ES |
dc.description.references | Kondo, H., Maeda, T., & Tamada, T. (2003). Orchid Fleck Virus: Brevipalpus californicus Mite Transmission, Biological Properties and Genome Structure. Experimental and Applied Acarology, 30(1-3), 215-223. doi:10.1023/b:appa.0000006550.88615.10 | es_ES |
dc.description.references | Kondo, H., Maruyama, K., Chiba, S., Andika, I. B., & Suzuki, N. (2014). Transcriptional mapping of the messenger and leader RNAs of orchid fleck virus, a bisegmented negative-strand RNA virus. Virology, 452-453, 166-174. doi:10.1016/j.virol.2014.01.007 | es_ES |
dc.description.references | Leastro, M. O., Castro, D. Y. O., Freitas-Astúa, J., Kitajima, E. W., Pallás, V., & Sánchez-Navarro, J. Á. (2020). Citrus Leprosis Virus C Encodes Three Proteins With Gene Silencing Suppression Activity. Frontiers in Microbiology, 11. doi:10.3389/fmicb.2020.01231 | es_ES |
dc.description.references | Leastro, M. O., De Oliveira, A. S., Pallás, V., Sánchez-Navarro, J. A., Kormelink, R., & Resende, R. O. (2017). The NSm proteins of phylogenetically related tospoviruses trigger Sw-5b–mediated resistance dissociated of their cell-to-cell movement function. Virus Research, 240, 25-34. doi:10.1016/j.virusres.2017.07.019 | es_ES |
dc.description.references | Leastro, M. O., Pallás, V., Resende, R. O., & Sánchez-Navarro, J. A. (2017). The functional analysis of distinct tospovirus movement proteins (NS M ) reveals different capabilities in tubule formation, cell-to-cell and systemic virus movement among the tospovirus species. Virus Research, 227, 57-68. doi:10.1016/j.virusres.2016.09.023 | es_ES |
dc.description.references | Leastro, M. O., Kitajima, E. W., Silva, M. S., Resende, R. O., & Freitas-Astúa, J. (2018). Dissecting the Subcellular Localization, Intracellular Trafficking, Interactions, Membrane Association, and Topology of Citrus Leprosis Virus C Proteins. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01299 | es_ES |
dc.description.references | Leastro, M. O., Pallás, V., Resende, R. O., & Sánchez-Navarro, J. A. (2015). The movement proteins (NSm) of distinct tospoviruses peripherally associate with cellular membranes and interact with homologous and heterologous NSm and nucleocapsid proteins. Virology, 478, 39-49. doi:10.1016/j.virol.2015.01.031 | es_ES |
dc.description.references | Sue Loesch-Fries, L., Halk, E. L., Nelson, S. E., & Krahn, K. J. (1985). Human leukocyte interferon does not inhibit alfalfa mosaic virus in protoplasts or tobacco tissue. Virology, 143(2), 626-629. doi:10.1016/0042-6822(85)90402-7 | es_ES |
dc.description.references | Mann, K. S., Bejerman, N., Johnson, K. N., & Dietzgen, R. G. (2016). Cytorhabdovirus P3 genes encode 30K-like cell-to-cell movement proteins. Virology, 489, 20-33. doi:10.1016/j.virol.2015.11.028 | es_ES |
dc.description.references | Martin, K. M., Dietzgen, R. G., Wang, R., & Goodin, M. M. (2012). Lettuce necrotic yellows cytorhabdovirus protein localization and interaction map, and comparison with nucleorhabdoviruses. Journal of General Virology, 93(4), 906-914. doi:10.1099/vir.0.038034-0 | es_ES |
dc.description.references | Martínez-Gil, L., Sánchez-Navarro, J. A., Cruz, A., Pallás, V., Pérez-Gil, J., & Mingarro, I. (2009). Plant Virus Cell-to-Cell Movement Is Not Dependent on the Transmembrane Disposition of Its Movement Protein. Journal of Virology, 83(11), 5535-5543. doi:10.1128/jvi.00393-09 | es_ES |
dc.description.references | Martínez-Pérez, M., Navarro, J. A., Pallás, V., & Sánchez-Navarro, J. A. (2019). A sensitive and rapid RNA silencing suppressor activity assay based on alfalfa mosaic virus expression vector. Virus Research, 272, 197733. doi:10.1016/j.virusres.2019.197733 | es_ES |
dc.description.references | Melcher, U. (2000). The ‘30K’ superfamily of viral movement proteins. Microbiology, 81(1), 257-266. doi:10.1099/0022-1317-81-1-257 | es_ES |
dc.description.references | Moreno, A. B., & López-Moya, J. J. (2020). When Viruses Play Team Sports: Mixed Infections in Plants. Phytopathology®, 110(1), 29-48. doi:10.1094/phyto-07-19-0250-fi | es_ES |
dc.description.references | Nagano, H., Mise, K., Furusawa, I., & Okuno, T. (2001). Conversion in the Requirement of Coat Protein in Cell-to-Cell Movement Mediated by the Cucumber Mosaic Virus Movement Protein. Journal of Virology, 75(17), 8045-8053. doi:10.1128/jvi.75.17.8045-8053.2001 | es_ES |
dc.description.references | Nagano, H., Okuno, T., Mise, K., & Furusawa, I. (1997). Deletion of the C-terminal 33 amino acids of cucumber mosaic virus movement protein enables a chimeric brome mosaic virus to move from cell to cell. Journal of Virology, 71(3), 2270-2276. doi:10.1128/jvi.71.3.2270-2276.1997 | es_ES |
dc.description.references | Navarro, J. A., Sanchez-Navarro, J. A., & Pallas, V. (2019). Key checkpoints in the movement of plant viruses through the host. Advances in Virus Research, 1-64. doi:10.1016/bs.aivir.2019.05.001 | es_ES |
dc.description.references | Peiró, A., Cañizares, M. C., Rubio, L., López, C., Moriones, E., Aramburu, J., & Sánchez-Navarro, J. (2014). The movement protein (NSm) ofTomato spotted wilt virusis the avirulence determinant in the tomatoSw-5gene-based resistance. Molecular Plant Pathology, 15(8), 802-813. doi:10.1111/mpp.12142 | es_ES |
dc.description.references | Peiro, A., Martinez-Gil, L., Tamborero, S., Pallas, V., Sanchez-Navarro, J. A., Mingarro, I., & Simon, A. (2013). The Tobacco mosaic virus Movement Protein Associates with but Does Not Integrate into Biological Membranes. Journal of Virology, 88(5), 3016-3026. doi:10.1128/jvi.03648-13 | es_ES |
dc.description.references | Peremyslov, V. V., Pan, Y.-W., & Dolja, V. V. (2004). Movement Protein of a Closterovirus Is a Type III Integral Transmembrane Protein Localized to the EndoplasmicReticulum. Journal of Virology, 78(7), 3704-3709. doi:10.1128/jvi.78.7.3704-3709.2004 | es_ES |
dc.description.references | Edgerton, B. (1996). A new bacilliform virus in Australian Cherax destructor (Decapoda:Parastacidae) with notes on Cherax quadricarinatus bacilliform virus (= Cherax baculovirus). Diseases of Aquatic Organisms, 27, 43-52. doi:10.3354/dao027043 | es_ES |
dc.description.references | Pitzalis, N., & Heinlein, M. (2017). The roles of membranes and associated cytoskeleton in plant virus replication and cell-to-cell movement. Journal of Experimental Botany, 69(1), 117-132. doi:10.1093/jxb/erx334 | es_ES |
dc.description.references | Powers, J. G., Sit, T. L., Qu, F., Morris, T. J., Kim, K.-H., & Lommel, S. A. (2008). A Versatile Assay for the Identification of RNA Silencing Suppressors Based on Complementation of Viral Movement. Molecular Plant-Microbe Interactions®, 21(7), 879-890. doi:10.1094/mpmi-21-7-0879 | es_ES |
dc.description.references | Shankhwar, N., Singh, R. K., Kothiyal, G. P., Perumal, A., & Srinivasan, A. (2014). Evolution of Magnetic Properties of ${\hbox{CaO}}\hbox{-}{\hbox{P}}_{2}{\hbox{O}}_{5}\hbox{-}{\hbox{Na}}_{2}{\hbox{O}}\hbox{-}{\hbox{Fe}}_{2}{\hbox{O}}_{3}\hbox{-}{\hbox{SiO}}_{2}$ Glass Upon Heat Treatment. IEEE Transactions on Magnetics, 50(1), 1-4. doi:10.1109/tmag.2013.2278570 | es_ES |
dc.description.references | Ramalho, T. O., Figueira, A. R., Sotero, A. J., Wang, R., Geraldino Duarte, P. S., Farman, M., & Goodin, M. M. (2014). Characterization of Coffee ringspot virus-Lavras: A model for an emerging threat to coffee production and quality. Virology, 464-465, 385-396. doi:10.1016/j.virol.2014.07.031 | es_ES |
dc.description.references | Ramos-González, P. L., Chabi-Jesus, C., Guerra-Peraza, O., Tassi, A. D., Kitajima, E. W., Harakava, R., … Freitas-Astúa, J. (2017). Citrus leprosis virus N: A New Dichorhavirus Causing Citrus Leprosis Disease. Phytopathology®, 107(8), 963-976. doi:10.1094/phyto-02-17-0042-r | es_ES |
dc.description.references | Ritzenthaler, C., & Hofmann, C. (s. f.). Tubule-Guided Movement of Plant Viruses. Plant Cell Monographs, 63-83. doi:10.1007/7089_2006_105 | es_ES |
dc.description.references | Roossinck, M. J. (1997). MECHANISMS OF PLANTVIRUS EVOLUTION. Annual Review of Phytopathology, 35(1), 191-209. doi:10.1146/annurev.phyto.35.1.191 | es_ES |
dc.description.references | Roy, A., Hartung, J. S., Schneider, W. L., Shao, J., Leon, G., Melzer, M. J., … Brlansky, R. H. (2015). Role Bending: Complex Relationships Between Viruses, Hosts, and Vectors Related to Citrus Leprosis, an Emerging Disease. Phytopathology®, 105(7), 1013-1025. doi:10.1094/phyto-12-14-0375-fi | es_ES |
dc.description.references | Roy, A., Stone, A. L., Shao, J., Otero-Colina, G., Wei, G., Choudhary, N., … Brlansky, R. H. (2015). Identification and Molecular Characterization of Nuclear Citrus leprosis virus, a Member of the Proposed Dichorhavirus Genus Infecting Multiple Citrus Species in Mexico. Phytopathology®, 105(4), 564-575. doi:10.1094/phyto-09-14-0245-r | es_ES |
dc.description.references | Sambade, A., & Heinlein, M. (2009). Approaching the cellular mechanism that supports the intercellular spread ofTobacco mosaic virus. Plant Signaling & Behavior, 4(1), 35-38. doi:10.4161/psb.4.1.7253 | es_ES |
dc.description.references | Sanchez-Navarro, J., Miglino, R., Ragozzino, A., & Bol, J. F. (2001). Engineering of Alfalfa mosaic virus RNA 3 into an expression vector. Archives of Virology, 146(5), 923-939. doi:10.1007/s007050170125 | es_ES |
dc.description.references | Sánchez-Navarro, J. A., & Bol, J. F. (2001). Role of the Alfalfa mosaic virus Movement Protein and Coat Protein in Virus Transport. Molecular Plant-Microbe Interactions®, 14(9), 1051-1062. doi:10.1094/mpmi.2001.14.9.1051 | es_ES |
dc.description.references | Sánchez-Navarro, J. A., Carmen Herranz, M., & Pallás, V. (2006). Cell-to-cell movement of Alfalfa mosaic virus can be mediated by the movement proteins of Ilar-, bromo-, cucumo-, tobamo- and comoviruses and does not require virion formation. Virology, 346(1), 66-73. doi:10.1016/j.virol.2005.10.024 | es_ES |
dc.description.references | Sánchez-Velázquez, E. J., Santillán-Galicia, M. T., Novelli, V. M., Nunes, M. A., Mora-Aguilera, G., Valdez-Carrasco, J. M., … Freitas-Astúa, J. (2015). Diversity and Genetic Variation among Brevipalpus Populations from Brazil and Mexico. PLOS ONE, 10(7), e0133861. doi:10.1371/journal.pone.0133861 | es_ES |
dc.description.references | Sauvêtre, P., Veniant, E., Croq, G., Tassi, A. D., Kitajima, E. W., Chabi-Jesus, C., … Navia, D. (2018). First Report of Orchid Fleck Virus in the Orchid Collection of Jardin du Luxembourg, Paris, France. Plant Disease, 102(12), 2670-2670. doi:10.1094/pdis-02-18-0371-pdn | es_ES |
dc.description.references | Takeda, A., Kaido, M., Okuno, T., & Mise, K. (2004). The C terminus of the movement protein of Brome mosaic virus controls the requirement for coat protein in cell-to-cell movement and plays a role in long-distance movement. Journal of General Virology, 85(6), 1751-1761. doi:10.1099/vir.0.79976-0 | es_ES |
dc.description.references | Taschner, P. E. M., Van Der Kuyl, A. C., Neeleman, L., & Bol, J. F. (1991). Replication of an incomplete alfalfa mosaic virus genome in plants transformed with viral replicase genes. Virology, 181(2), 445-450. doi:10.1016/0042-6822(91)90876-d | es_ES |
dc.description.references | Tsai, C.-W., Redinbaugh, M. G., Willie, K. J., Reed, S., Goodin, M., & Hogenhout, S. A. (2005). Complete Genome Sequence and In Planta Subcellular Localization of Maize Fine Streak Virus Proteins. Journal of Virology, 79(9), 5304-5314. doi:10.1128/jvi.79.9.5304-5314.2005 | es_ES |
dc.description.references | Van Dun, C. M. P., Van Vloten-Doting, L., & Bol, J. F. (1988). Expression of alfalfa mosaic virus cDNA1 and 2 in transgenic Tobacco plants. Virology, 163(2), 572-578. doi:10.1016/0042-6822(88)90298-x | es_ES |
dc.description.references | Wolf, S., Lucas, W. J., Deom, C. M., & Beachy, R. N. (1989). Movement Protein of Tobacco Mosaic Virus Modifies Plasmodesmatal Size Exclusion Limit. Science, 246(4928), 377-379. doi:10.1126/science.246.4928.377 | es_ES |
dc.description.references | Zamyatnin, A. A., Solovyev, A. G., Bozhkov, P. V., Valkonen, J. P. T., Morozov, S. Y., & Savenkov, E. I. (2006). Assessment of the integral membrane protein topology in living cells. The Plant Journal, 46(1), 145-154. doi:10.1111/j.1365-313x.2006.02674.x | es_ES |