- -

Dichorhaviruses Movement Protein and Nucleoprotein Form a Protein Complex That May Be Required for Virus Spread and Interacts in vivo With Viral Movement-Related Cilevirus Proteins

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dichorhaviruses Movement Protein and Nucleoprotein Form a Protein Complex That May Be Required for Virus Spread and Interacts in vivo With Viral Movement-Related Cilevirus Proteins

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Leastro, Mikhail Oliveira es_ES
dc.contributor.author Freitas-Astúa, Juliana es_ES
dc.contributor.author Kitajima, Elliot Watanabe es_ES
dc.contributor.author Pallás Benet, Vicente es_ES
dc.contributor.author SANCHEZ NAVARRO, JESUS ANGEL es_ES
dc.date.accessioned 2021-05-08T03:31:27Z
dc.date.available 2021-05-08T03:31:27Z
dc.date.issued 2020-11-04 es_ES
dc.identifier.issn 1664-302X es_ES
dc.identifier.uri http://hdl.handle.net/10251/166081
dc.description.abstract [EN] Brevipalpus-transmitted viruses (BTVs) belong to the genera Dichorhavirus and Cilevirus and are the main causal agents of the citrus leprosis (CL) disease. In this report, we explored aspects related to the movement mechanism mediated by dichorhaviruses movement proteins (MPs) and the homologous and heterologous interactions among viral proteins related to the movement of citrus leprosis-associated viruses. The membrane-spanning property and topology analysis of the nucleocapsid (N) and MP proteins from two dichorhaviruses revealed that the MPs are proteins tightly associated with the cell membrane, exposing their N- and C-termini to the cytoplasm and the inner part of the nucleus, whereas the N proteins are not membrane-associated. Subcellular localization analysis revealed the presence of dichorhavirus MPs at the cell surface and in the nucleus, while the phosphoproteins (P) were located exclusively in the nucleus and the N proteins in both the cytoplasm and the nucleus. Co-expression analysis with the MP, P, and N proteins showed an interaction network formed between them. We highlight the MP capability to partially redistribute the previously reported N-P core complex, redirecting a portion of the N from the nucleus to the plasmodesmata at the cell periphery, which indicates not only that the MP might guide the intracellular trafficking of the viral infective complex but also that the N protein may be associated with the cell-to-cell movement mechanism of dichorhaviruses. The movement functionality of these MPs was analyzed by using three movement-defective infectious systems. Also, the MP capacity to generate tubular structures on the protoplast surface by ectopic expression was analyzed. Finally, we evaluated the in vivo protein-protein interaction networks between the dichorhavirus MP and/or N proteins with the heterologous cilevirus movement components, which suggest a broad spectrum of interactions, highlighting those among capsid proteins (CP), MPs, and Ns from citrus leprosis-associated viruses. These data may aid in understanding the mixed infection process naturally observed in the field caused by distinct BTVs. es_ES
dc.description.sponsorship This work was supported by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), proc. 2014/08459, 2015/10249-1, 2017/50222-0, and 2017/19898-8. This work was also supported by grant BIO2017-88321-R from the Spanish Direccion General de Investigacion Cientifica y Tecnica (DGICYT) and the Prometeo Program GV2015/010 from the Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Microbiology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Dichorhaviruses es_ES
dc.subject Cileviruses es_ES
dc.subject Citrus leprosis pathosystem es_ES
dc.subject Virus movement es_ES
dc.subject In vivo protein-protein interaction es_ES
dc.subject Protein membrane association and topology es_ES
dc.subject Mixed infection es_ES
dc.title Dichorhaviruses Movement Protein and Nucleoprotein Form a Protein Complex That May Be Required for Virus Spread and Interacts in vivo With Viral Movement-Related Cilevirus Proteins es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fmicb.2020.571807 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2015%2F010/ES/Interacciones RNA-proteína y proteína-proteína en procesos de desarrollo y patogénesis mediados por virus y agentes subvirales en cultivos de interés Agronómico (RNAPROT)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2017%2F50222-0/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2017%2F19898-8/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2015%2F10249-1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2014%2F08459/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-88321-R/ES/DESCRIFRANDO INTERACCIONES VIRUS-PLANTA ESENCIALES PARA LA SUSCEPTIBILIDAD Y%2FO RESISTENCIA EN DOS PATOSISTEMAS AGRONOMICAMENTE RELEVANTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Leastro, MO.; Freitas-Astúa, J.; Kitajima, EW.; Pallás Benet, V.; Sanchez Navarro, JA. (2020). Dichorhaviruses Movement Protein and Nucleoprotein Form a Protein Complex That May Be Required for Virus Spread and Interacts in vivo With Viral Movement-Related Cilevirus Proteins. Frontiers in Microbiology. 11:1-22. https://doi.org/10.3389/fmicb.2020.571807 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fmicb.2020.571807 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.identifier.pmid 33250868 es_ES
dc.identifier.pmcid PMC7672204 es_ES
dc.relation.pasarela S\433224 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa do Estado de São Paulo es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Aparicio, F., Pallas, V., & Sanchez-Navarro, J. (2010). Implication of the C terminus of the Prunus necrotic ringspot virus movement protein in cell-to-cell transport and in its interaction with the coat protein. Journal of General Virology, 91(7), 1865-1870. doi:10.1099/vir.0.019950-0 es_ES
dc.description.references Aparicio, F., Sánchez-Navarro, J. A., & Pallás, V. (2006). In vitro and in vivo mapping of the Prunus necrotic ringspot virus coat protein C-terminal dimerization domain by bimolecular fluorescence complementation. Journal of General Virology, 87(6), 1745-1750. doi:10.1099/vir.0.81696-0 es_ES
dc.description.references Bastianel, M., Novelli, V. M., Kitajima, E. W., Kubo, K. S., Bassanezi, R. B., Machado, M. A., & Freitas-Astúa, J. (2010). Citrus Leprosis: Centennial of an Unusual Mite–Virus Pathosystem. Plant Disease, 94(3), 284-292. doi:10.1094/pdis-94-3-0284 es_ES
dc.description.references Bejerman, N., Giolitti, F., de Breuil, S., Trucco, V., Nome, C., Lenardon, S., & Dietzgen, R. G. (2015). Complete genome sequence and integrated protein localization and interaction map for alfalfa dwarf virus, which combines properties of both cytoplasmic and nuclear plant rhabdoviruses. Virology, 483, 275-283. doi:10.1016/j.virol.2015.05.001 es_ES
dc.description.references Beltran-Beltran, A. K., Santillán-Galicia, M. T., Guzmán-Franco, A. W., Teliz-Ortiz, D., Gutiérrez-Espinoza, M. A., Romero-Rosales, F., & Robles-García, P. L. (2020). Incidence of Citrus leprosis virus C and Orchid fleck dichorhavirus Citrus Strain in Mites of the Genus Brevipalpus in Mexico. Journal of Economic Entomology, 113(3), 1576-1581. doi:10.1093/jee/toaa007 es_ES
dc.description.references Bordier, C. (1981). Phase separation of integral membrane proteins in Triton X-114 solution. Journal of Biological Chemistry, 256(4), 1604-1607. doi:10.1016/s0021-9258(19)69848-0 es_ES
dc.description.references Brown, J. K., Idris, A. M., Alteri, C., & Stenger, D. C. (2002). Emergence of a New Cucurbit-Infecting Begomovirus Species Capable of Forming Viable Reassortants with Related Viruses in theSquash leaf curl virusCluster. Phytopathology®, 92(7), 734-742. doi:10.1094/phyto.2002.92.7.734 es_ES
dc.description.references Canto, T., & Palukaitis, P. (2002). Novel N Gene-Associated, Temperature-Independent Resistance to the Movement of Tobacco Mosaic Virus Vectors Neutralized by a Cucumber Mosaic Virus RNA1 Transgene. Journal of Virology, 76(24), 12908-12916. doi:10.1128/jvi.76.24.12908-12916.2002 es_ES
dc.description.references Chabi-Jesus, C., Ramos-González, P. L., Tassi, A. D., Guerra-Peraza, O., Kitajima, E. W., Harakava, R., … Freitas-Astúa, J. (2018). Identification and Characterization of Citrus Chlorotic Spot Virus, a New Dichorhavirus Associated with Citrus Leprosis-Like Symptoms. Plant Disease, 102(8), 1588-1598. doi:10.1094/pdis-09-17-1425-re es_ES
dc.description.references Chapman, S., Hills, G., Watts, J., & Baulcombe, D. (1992). Mutational analysis of the coat protein gene of potato virus X: Effects on virion morphology and viral pathogenicity. Virology, 191(1), 223-230. doi:10.1016/0042-6822(92)90183-p es_ES
dc.description.references Cook, G., Kirkman, W., Clase, R., Steyn, C., Basson, E., Fourie, P. H., … Hattingh, V. (2019). Orchid fleck virus associated with the first case of citrus leprosis-N in South Africa. European Journal of Plant Pathology, 155(4), 1373-1379. doi:10.1007/s10658-019-01854-4 es_ES
dc.description.references Cruz-Jaramillo, J., Ruiz-Medrano, R., Rojas-Morales, L., López-Buenfil, J., Morales-Galván, O., Chavarín-Palacio, C., … Xoconostle-Cázares, B. (2014). Characterization of a Proposed Dichorhavirus Associated with the Citrus Leprosis Disease and Analysis of the Host Response. Viruses, 6(7), 2602-2622. doi:10.3390/v6072602 es_ES
dc.description.references Deng, M., Bragg, J. N., Ruzin, S., Schichnes, D., King, D., Goodin, M. M., & Jackson, A. O. (2007). Role of the Sonchus Yellow Net Virus N Protein in Formation of Nuclear Viroplasms. Journal of Virology, 81(10), 5362-5374. doi:10.1128/jvi.02349-06 es_ES
dc.description.references Dietzgen, R. G., Bejerman, N. E., Goodin, M. M., Higgins, C. M., Huot, O. B., Kondo, H., … Whitfield, A. E. (2020). Diversity and epidemiology of plant rhabdoviruses. Virus Research, 281, 197942. doi:10.1016/j.virusres.2020.197942 es_ES
dc.description.references Dietzgen, R. G., Freitas-Astúa, J., Chabi-Jesus, C., Ramos-González, P. L., Goodin, M. M., Kondo, H., … Kitajima, E. W. (2018). Dichorhaviruses in their Host Plants and Mite Vectors. Advances in Virus Research, 119-148. doi:10.1016/bs.aivir.2018.06.001 es_ES
dc.description.references Forster, R. L. S., Beck, D. L., Guilford, P. J., Voot, D. M., Van Dolleweerd, C. J., & Andersen, M. T. (1992). Thecoat protein of white clover mosaic potexvirus has a role in facilitating cell-to-cell transport in plants. Virology, 191(1), 480-484. doi:10.1016/0042-6822(92)90215-b es_ES
dc.description.references Freitas-Astúa, J., Moreira, L., Rivera, C., Rodríguez, C. M., & Kitajima, E. W. (2002). First Report of Orchid fleck virus in Costa Rica. Plant Disease, 86(12), 1402-1402. doi:10.1094/pdis.2002.86.12.1402d es_ES
dc.description.references Freitas-Astúa, J., Ramos-González, P. L., Arena, G. D., Tassi, A. D., & Kitajima, E. W. (2018). Brevipalpus-transmitted viruses: parallelism beyond a common vector or convergent evolution of distantly related pathogens? Current Opinion in Virology, 33, 66-73. doi:10.1016/j.coviro.2018.07.010 es_ES
dc.description.references Genovés, A., Pallás, V., & Navarro, J. A. (2011). Contribution of Topology Determinants of a Viral Movement Protein to Its Membrane Association, Intracellular Traffic, and Viral Cell-to-Cell Movement. Journal of Virology, 85(15), 7797-7809. doi:10.1128/jvi.02465-10 es_ES
dc.description.references Ghosh, D., Brooks, R. E., Wang, R., Lesnaw, J., & Goodin, M. M. (2008). Cloning and subcellular localization of the phosphoprotein and nucleocapsid proteins of Potato yellow dwarf virus, type species of the genus Nucleorhabdovirus. Virus Research, 135(1), 26-35. doi:10.1016/j.virusres.2008.02.003 es_ES
dc.description.references Goodin, M. M., Austin, J., Tobias, R., Fujita, M., Morales, C., & Jackson, A. O. (2001). Interactions and Nuclear Import of the N and P Proteins of Sonchus Yellow Net Virus, a Plant Nucleorhabdovirus. Journal of Virology, 75(19), 9393-9406. doi:10.1128/jvi.75.19.9393-9406.2001 es_ES
dc.description.references Goodin, M. M., Chakrabarty, R., Yelton, S., Martin, K., Clark, A., & Brooks, R. (2007). Membrane and protein dynamics in live plant nuclei infected with Sonchus yellow net virus, a plant-adapted rhabdovirus. Journal of General Virology, 88(6), 1810-1820. doi:10.1099/vir.0.82698-0 es_ES
dc.description.references Goodin, M. M., Dietzgen, R. G., Schichnes, D., Ruzin, S., & Jackson, A. O. (2002). pGD vectors: versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. The Plant Journal, 31(3), 375-383. doi:10.1046/j.1365-313x.2002.01360.x es_ES
dc.description.references Hofmann, C., Niehl, A., Sambade, A., Steinmetz, A., & Heinlein, M. (2009). Inhibition of Tobacco Mosaic Virus Movement by Expression of an Actin-Binding Protein. Plant Physiology, 149(4), 1810-1823. doi:10.1104/pp.108.133827 es_ES
dc.description.references Huang, Y.-W., Geng, Y.-F., Ying, X.-B., Chen, X.-Y., & Fang, R.-X. (2005). Identification of a Movement Protein of Rice Yellow Stunt Rhabdovirus. Journal of Virology, 79(4), 2108-2114. doi:10.1128/jvi.79.4.2108-2114.2005 es_ES
dc.description.references Idris, A. M., & Brown, J. K. (2004). Cotton leaf crumple virus Is a Distinct Western Hemisphere Begomovirus Species with Complex Evolutionary Relationships Indicative of Recombination and Reassortment. Phytopathology®, 94(10), 1068-1074. doi:10.1094/phyto.2004.94.10.1068 es_ES
dc.description.references Idris, A. M., Mills-Lujan, K., Martin, K., & Brown, J. K. (2008). Melon Chlorotic Leaf Curl Virus  : Characterization and Differential Reassortment with Closest Relatives Reveal Adaptive Virulence in the Squash Leaf Curl Virus Clade and Host Shifting by the Host-Restricted Bean Calico Mosaic Virus. Journal of Virology, 82(4), 1959-1967. doi:10.1128/jvi.01992-07 es_ES
dc.description.references Kang, S.-H., Bak, A., Kim, O.-K., & Folimonova, S. Y. (2015). Membrane association of a nonconserved viral protein confers virus ability to extend its host range. Virology, 482, 208-217. doi:10.1016/j.virol.2015.03.047 es_ES
dc.description.references Kawakami, S., Watanabe, Y., & Beachy, R. N. (2004). Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proceedings of the National Academy of Sciences, 101(16), 6291-6296. doi:10.1073/pnas.0401221101 es_ES
dc.description.references Kondo, H., Chiba, S., Andika, I. B., Maruyama, K., Tamada, T., & Suzuki, N. (2013). Orchid Fleck Virus Structural Proteins N and P Form Intranuclear Viroplasm-Like Structures in the Absence of Viral Infection. Journal of Virology, 87(13), 7423-7434. doi:10.1128/jvi.00270-13 es_ES
dc.description.references Kondo, H., Maeda, T., & Tamada, T. (2003). Orchid Fleck Virus: Brevipalpus californicus Mite Transmission, Biological Properties and Genome Structure. Experimental and Applied Acarology, 30(1-3), 215-223. doi:10.1023/b:appa.0000006550.88615.10 es_ES
dc.description.references Kondo, H., Maruyama, K., Chiba, S., Andika, I. B., & Suzuki, N. (2014). Transcriptional mapping of the messenger and leader RNAs of orchid fleck virus, a bisegmented negative-strand RNA virus. Virology, 452-453, 166-174. doi:10.1016/j.virol.2014.01.007 es_ES
dc.description.references Leastro, M. O., Castro, D. Y. O., Freitas-Astúa, J., Kitajima, E. W., Pallás, V., & Sánchez-Navarro, J. Á. (2020). Citrus Leprosis Virus C Encodes Three Proteins With Gene Silencing Suppression Activity. Frontiers in Microbiology, 11. doi:10.3389/fmicb.2020.01231 es_ES
dc.description.references Leastro, M. O., De Oliveira, A. S., Pallás, V., Sánchez-Navarro, J. A., Kormelink, R., & Resende, R. O. (2017). The NSm proteins of phylogenetically related tospoviruses trigger Sw-5b–mediated resistance dissociated of their cell-to-cell movement function. Virus Research, 240, 25-34. doi:10.1016/j.virusres.2017.07.019 es_ES
dc.description.references Leastro, M. O., Pallás, V., Resende, R. O., & Sánchez-Navarro, J. A. (2017). The functional analysis of distinct tospovirus movement proteins (NS M ) reveals different capabilities in tubule formation, cell-to-cell and systemic virus movement among the tospovirus species. Virus Research, 227, 57-68. doi:10.1016/j.virusres.2016.09.023 es_ES
dc.description.references Leastro, M. O., Kitajima, E. W., Silva, M. S., Resende, R. O., & Freitas-Astúa, J. (2018). Dissecting the Subcellular Localization, Intracellular Trafficking, Interactions, Membrane Association, and Topology of Citrus Leprosis Virus C Proteins. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01299 es_ES
dc.description.references Leastro, M. O., Pallás, V., Resende, R. O., & Sánchez-Navarro, J. A. (2015). The movement proteins (NSm) of distinct tospoviruses peripherally associate with cellular membranes and interact with homologous and heterologous NSm and nucleocapsid proteins. Virology, 478, 39-49. doi:10.1016/j.virol.2015.01.031 es_ES
dc.description.references Sue Loesch-Fries, L., Halk, E. L., Nelson, S. E., & Krahn, K. J. (1985). Human leukocyte interferon does not inhibit alfalfa mosaic virus in protoplasts or tobacco tissue. Virology, 143(2), 626-629. doi:10.1016/0042-6822(85)90402-7 es_ES
dc.description.references Mann, K. S., Bejerman, N., Johnson, K. N., & Dietzgen, R. G. (2016). Cytorhabdovirus P3 genes encode 30K-like cell-to-cell movement proteins. Virology, 489, 20-33. doi:10.1016/j.virol.2015.11.028 es_ES
dc.description.references Martin, K. M., Dietzgen, R. G., Wang, R., & Goodin, M. M. (2012). Lettuce necrotic yellows cytorhabdovirus protein localization and interaction map, and comparison with nucleorhabdoviruses. Journal of General Virology, 93(4), 906-914. doi:10.1099/vir.0.038034-0 es_ES
dc.description.references Martínez-Gil, L., Sánchez-Navarro, J. A., Cruz, A., Pallás, V., Pérez-Gil, J., & Mingarro, I. (2009). Plant Virus Cell-to-Cell Movement Is Not Dependent on the Transmembrane Disposition of Its Movement Protein. Journal of Virology, 83(11), 5535-5543. doi:10.1128/jvi.00393-09 es_ES
dc.description.references Martínez-Pérez, M., Navarro, J. A., Pallás, V., & Sánchez-Navarro, J. A. (2019). A sensitive and rapid RNA silencing suppressor activity assay based on alfalfa mosaic virus expression vector. Virus Research, 272, 197733. doi:10.1016/j.virusres.2019.197733 es_ES
dc.description.references Melcher, U. (2000). The ‘30K’ superfamily of viral movement proteins. Microbiology, 81(1), 257-266. doi:10.1099/0022-1317-81-1-257 es_ES
dc.description.references Moreno, A. B., & López-Moya, J. J. (2020). When Viruses Play Team Sports: Mixed Infections in Plants. Phytopathology®, 110(1), 29-48. doi:10.1094/phyto-07-19-0250-fi es_ES
dc.description.references Nagano, H., Mise, K., Furusawa, I., & Okuno, T. (2001). Conversion in the Requirement of Coat Protein in Cell-to-Cell Movement Mediated by the Cucumber Mosaic Virus Movement Protein. Journal of Virology, 75(17), 8045-8053. doi:10.1128/jvi.75.17.8045-8053.2001 es_ES
dc.description.references Nagano, H., Okuno, T., Mise, K., & Furusawa, I. (1997). Deletion of the C-terminal 33 amino acids of cucumber mosaic virus movement protein enables a chimeric brome mosaic virus to move from cell to cell. Journal of Virology, 71(3), 2270-2276. doi:10.1128/jvi.71.3.2270-2276.1997 es_ES
dc.description.references Navarro, J. A., Sanchez-Navarro, J. A., & Pallas, V. (2019). Key checkpoints in the movement of plant viruses through the host. Advances in Virus Research, 1-64. doi:10.1016/bs.aivir.2019.05.001 es_ES
dc.description.references Peiró, A., Cañizares, M. C., Rubio, L., López, C., Moriones, E., Aramburu, J., & Sánchez-Navarro, J. (2014). The movement protein (NSm) ofTomato spotted wilt virusis the avirulence determinant in the tomatoSw-5gene-based resistance. Molecular Plant Pathology, 15(8), 802-813. doi:10.1111/mpp.12142 es_ES
dc.description.references Peiro, A., Martinez-Gil, L., Tamborero, S., Pallas, V., Sanchez-Navarro, J. A., Mingarro, I., & Simon, A. (2013). The Tobacco mosaic virus Movement Protein Associates with but Does Not Integrate into Biological Membranes. Journal of Virology, 88(5), 3016-3026. doi:10.1128/jvi.03648-13 es_ES
dc.description.references Peremyslov, V. V., Pan, Y.-W., & Dolja, V. V. (2004). Movement Protein of a Closterovirus Is a Type III Integral Transmembrane Protein Localized to the EndoplasmicReticulum. Journal of Virology, 78(7), 3704-3709. doi:10.1128/jvi.78.7.3704-3709.2004 es_ES
dc.description.references Edgerton, B. (1996). A new bacilliform virus in Australian Cherax destructor (Decapoda:Parastacidae) with notes on Cherax quadricarinatus bacilliform virus (= Cherax baculovirus). Diseases of Aquatic Organisms, 27, 43-52. doi:10.3354/dao027043 es_ES
dc.description.references Pitzalis, N., & Heinlein, M. (2017). The roles of membranes and associated cytoskeleton in plant virus replication and cell-to-cell movement. Journal of Experimental Botany, 69(1), 117-132. doi:10.1093/jxb/erx334 es_ES
dc.description.references Powers, J. G., Sit, T. L., Qu, F., Morris, T. J., Kim, K.-H., & Lommel, S. A. (2008). A Versatile Assay for the Identification of RNA Silencing Suppressors Based on Complementation of Viral Movement. Molecular Plant-Microbe Interactions®, 21(7), 879-890. doi:10.1094/mpmi-21-7-0879 es_ES
dc.description.references Shankhwar, N., Singh, R. K., Kothiyal, G. P., Perumal, A., & Srinivasan, A. (2014). Evolution of Magnetic Properties of ${\hbox{CaO}}\hbox{-}{\hbox{P}}_{2}{\hbox{O}}_{5}\hbox{-}{\hbox{Na}}_{2}{\hbox{O}}\hbox{-}{\hbox{Fe}}_{2}{\hbox{O}}_{3}\hbox{-}{\hbox{SiO}}_{2}$ Glass Upon Heat Treatment. IEEE Transactions on Magnetics, 50(1), 1-4. doi:10.1109/tmag.2013.2278570 es_ES
dc.description.references Ramalho, T. O., Figueira, A. R., Sotero, A. J., Wang, R., Geraldino Duarte, P. S., Farman, M., & Goodin, M. M. (2014). Characterization of Coffee ringspot virus-Lavras: A model for an emerging threat to coffee production and quality. Virology, 464-465, 385-396. doi:10.1016/j.virol.2014.07.031 es_ES
dc.description.references Ramos-González, P. L., Chabi-Jesus, C., Guerra-Peraza, O., Tassi, A. D., Kitajima, E. W., Harakava, R., … Freitas-Astúa, J. (2017). Citrus leprosis virus N: A New Dichorhavirus Causing Citrus Leprosis Disease. Phytopathology®, 107(8), 963-976. doi:10.1094/phyto-02-17-0042-r es_ES
dc.description.references Ritzenthaler, C., & Hofmann, C. (s. f.). Tubule-Guided Movement of Plant Viruses. Plant Cell Monographs, 63-83. doi:10.1007/7089_2006_105 es_ES
dc.description.references Roossinck, M. J. (1997). MECHANISMS OF PLANTVIRUS EVOLUTION. Annual Review of Phytopathology, 35(1), 191-209. doi:10.1146/annurev.phyto.35.1.191 es_ES
dc.description.references Roy, A., Hartung, J. S., Schneider, W. L., Shao, J., Leon, G., Melzer, M. J., … Brlansky, R. H. (2015). Role Bending: Complex Relationships Between Viruses, Hosts, and Vectors Related to Citrus Leprosis, an Emerging Disease. Phytopathology®, 105(7), 1013-1025. doi:10.1094/phyto-12-14-0375-fi es_ES
dc.description.references Roy, A., Stone, A. L., Shao, J., Otero-Colina, G., Wei, G., Choudhary, N., … Brlansky, R. H. (2015). Identification and Molecular Characterization of Nuclear Citrus leprosis virus, a Member of the Proposed Dichorhavirus Genus Infecting Multiple Citrus Species in Mexico. Phytopathology®, 105(4), 564-575. doi:10.1094/phyto-09-14-0245-r es_ES
dc.description.references Sambade, A., & Heinlein, M. (2009). Approaching the cellular mechanism that supports the intercellular spread ofTobacco mosaic virus. Plant Signaling & Behavior, 4(1), 35-38. doi:10.4161/psb.4.1.7253 es_ES
dc.description.references Sanchez-Navarro, J., Miglino, R., Ragozzino, A., & Bol, J. F. (2001). Engineering of Alfalfa mosaic virus RNA 3 into an expression vector. Archives of Virology, 146(5), 923-939. doi:10.1007/s007050170125 es_ES
dc.description.references Sánchez-Navarro, J. A., & Bol, J. F. (2001). Role of the Alfalfa mosaic virus Movement Protein and Coat Protein in Virus Transport. Molecular Plant-Microbe Interactions®, 14(9), 1051-1062. doi:10.1094/mpmi.2001.14.9.1051 es_ES
dc.description.references Sánchez-Navarro, J. A., Carmen Herranz, M., & Pallás, V. (2006). Cell-to-cell movement of Alfalfa mosaic virus can be mediated by the movement proteins of Ilar-, bromo-, cucumo-, tobamo- and comoviruses and does not require virion formation. Virology, 346(1), 66-73. doi:10.1016/j.virol.2005.10.024 es_ES
dc.description.references Sánchez-Velázquez, E. J., Santillán-Galicia, M. T., Novelli, V. M., Nunes, M. A., Mora-Aguilera, G., Valdez-Carrasco, J. M., … Freitas-Astúa, J. (2015). Diversity and Genetic Variation among Brevipalpus Populations from Brazil and Mexico. PLOS ONE, 10(7), e0133861. doi:10.1371/journal.pone.0133861 es_ES
dc.description.references Sauvêtre, P., Veniant, E., Croq, G., Tassi, A. D., Kitajima, E. W., Chabi-Jesus, C., … Navia, D. (2018). First Report of Orchid Fleck Virus in the Orchid Collection of Jardin du Luxembourg, Paris, France. Plant Disease, 102(12), 2670-2670. doi:10.1094/pdis-02-18-0371-pdn es_ES
dc.description.references Takeda, A., Kaido, M., Okuno, T., & Mise, K. (2004). The C terminus of the movement protein of Brome mosaic virus controls the requirement for coat protein in cell-to-cell movement and plays a role in long-distance movement. Journal of General Virology, 85(6), 1751-1761. doi:10.1099/vir.0.79976-0 es_ES
dc.description.references Taschner, P. E. M., Van Der Kuyl, A. C., Neeleman, L., & Bol, J. F. (1991). Replication of an incomplete alfalfa mosaic virus genome in plants transformed with viral replicase genes. Virology, 181(2), 445-450. doi:10.1016/0042-6822(91)90876-d es_ES
dc.description.references Tsai, C.-W., Redinbaugh, M. G., Willie, K. J., Reed, S., Goodin, M., & Hogenhout, S. A. (2005). Complete Genome Sequence and In Planta Subcellular Localization of Maize Fine Streak Virus Proteins. Journal of Virology, 79(9), 5304-5314. doi:10.1128/jvi.79.9.5304-5314.2005 es_ES
dc.description.references Van Dun, C. M. P., Van Vloten-Doting, L., & Bol, J. F. (1988). Expression of alfalfa mosaic virus cDNA1 and 2 in transgenic Tobacco plants. Virology, 163(2), 572-578. doi:10.1016/0042-6822(88)90298-x es_ES
dc.description.references Wolf, S., Lucas, W. J., Deom, C. M., & Beachy, R. N. (1989). Movement Protein of Tobacco Mosaic Virus Modifies Plasmodesmatal Size Exclusion Limit. Science, 246(4928), 377-379. doi:10.1126/science.246.4928.377 es_ES
dc.description.references Zamyatnin, A. A., Solovyev, A. G., Bozhkov, P. V., Valkonen, J. P. T., Morozov, S. Y., & Savenkov, E. I. (2006). Assessment of the integral membrane protein topology in living cells. The Plant Journal, 46(1), 145-154. doi:10.1111/j.1365-313x.2006.02674.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem