- -

Prospective computational design and in vitro bio-analytical tests of new chemical entities as potential selective CYP17A1 lyase inhibitors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Prospective computational design and in vitro bio-analytical tests of new chemical entities as potential selective CYP17A1 lyase inhibitors

Mostrar el registro completo del ítem

Gumede, N.; Nxumalo, W.; Bisetty, K.; Escuder Gilabert, L.; Medina-Hernández, M.; Sagrado Vives, S. (2020). Prospective computational design and in vitro bio-analytical tests of new chemical entities as potential selective CYP17A1 lyase inhibitors. Bioorganic Chemistry. 94:1-16. https://doi.org/10.1016/j.bioorg.2019.103462

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166136

Ficheros en el ítem

Metadatos del ítem

Título: Prospective computational design and in vitro bio-analytical tests of new chemical entities as potential selective CYP17A1 lyase inhibitors
Autor: Gumede, N.J. Nxumalo, W. Bisetty, K. Escuder Gilabert, L. Medina-Hernández, M.J. Sagrado Vives, Salvador
Fecha difusión:
Resumen:
[EN] The development and advancement of prostate cancer (PCa) into stage 4, where it metastasize, is a major problem mostly in elder males. The growth of PCa cells is stirred up by androgens and androgen receptor (AR). ...[+]
Palabras clave: Metastatic-castration resistant prostate cancer , 3D-QSAR pharmacophore model , CYP17A1 inhibitors , 17,20-lyase selective inhibition , Prospective computational design
Derechos de uso: Cerrado
Fuente:
Bioorganic Chemistry. (issn: 0045-2068 )
DOI: 10.1016/j.bioorg.2019.103462
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.bioorg.2019.103462
Código del Proyecto:
info:eu-repo/grantAgreement/NRF//UID112151/
Agradecimientos:
This work research work was supported financially in part by the National Research Foundation of South Africa and First Rand Foundation (UID: 112151). This work was also made possible through funding by the Research Capacity ...[+]
Tipo: Artículo

References

Nnane, I. P., Kato, K., Liu, Y., Long, B. J., Lu, Q., Wang, X., … Brodie, A. (1999). Inhibition of Androgen Synthesis in Human Testicular and Prostatic Microsomes and in Male Rats by Novel Steroidal Compounds*. Endocrinology, 140(6), 2891-2897. doi:10.1210/endo.140.6.6832

C. Jagusch, M. Negri, U.E. Hille, Q. Hu, M. Bartels, K. Jahn-Hoffmann, M.A.E. Pinto-Bazurco Mendieta, B. Rodenwaldt, U. Müller-Vieira, D. Schmidt, T. Lauterbach, M. Recanatini, A. Cavalli, R.W. Hartmann, Synthesis, biological evaluation and molecular modelling studies of methylene imidazole substituted biaryls as inhibitors of human 17α-hydroxylase-17,20-lyase (CYP17). Part I: Heterocyclic modifications of the core structure, Bioorg. Med. Chem. J. 16 (2008) 1992–2010.

Haider, S. M., Patel, J. S., Poojari, C. S., & Neidle, S. (2010). Molecular Modeling on Inhibitor Complexes and Active-Site Dynamics of Cytochrome P450 C17, a Target for Prostate Cancer Therapy. Journal of Molecular Biology, 400(5), 1078-1098. doi:10.1016/j.jmb.2010.05.069 [+]
Nnane, I. P., Kato, K., Liu, Y., Long, B. J., Lu, Q., Wang, X., … Brodie, A. (1999). Inhibition of Androgen Synthesis in Human Testicular and Prostatic Microsomes and in Male Rats by Novel Steroidal Compounds*. Endocrinology, 140(6), 2891-2897. doi:10.1210/endo.140.6.6832

C. Jagusch, M. Negri, U.E. Hille, Q. Hu, M. Bartels, K. Jahn-Hoffmann, M.A.E. Pinto-Bazurco Mendieta, B. Rodenwaldt, U. Müller-Vieira, D. Schmidt, T. Lauterbach, M. Recanatini, A. Cavalli, R.W. Hartmann, Synthesis, biological evaluation and molecular modelling studies of methylene imidazole substituted biaryls as inhibitors of human 17α-hydroxylase-17,20-lyase (CYP17). Part I: Heterocyclic modifications of the core structure, Bioorg. Med. Chem. J. 16 (2008) 1992–2010.

Haider, S. M., Patel, J. S., Poojari, C. S., & Neidle, S. (2010). Molecular Modeling on Inhibitor Complexes and Active-Site Dynamics of Cytochrome P450 C17, a Target for Prostate Cancer Therapy. Journal of Molecular Biology, 400(5), 1078-1098. doi:10.1016/j.jmb.2010.05.069

Yap, T. A., Carden, C. P., Attard, G., & de Bono, J. S. (2008). Targeting CYP17: established and novel approaches in prostate cancer. Current Opinion in Pharmacology, 8(4), 449-457. doi:10.1016/j.coph.2008.06.004

Gianti, E., & Zauhar, R. J. (2012). Modeling Androgen Receptor Flexibility: A Binding Mode Hypothesis of CYP17 Inhibitors/Antiandrogens for Prostate Cancer Therapy. Journal of Chemical Information and Modeling, 52(10), 2670-2683. doi:10.1021/ci3002342

G. Schaefer, J.M. Mosquera, R. Ramoner, K. Park, A. Romanel, E. Steiner, W. Horninger, J. Bektic, M. Ladurner-Rennau, M.A. Rubin, F. Demichelis, H. Klocker, Distinct ERG rearrangement prevalence in prostate cancer: higher frequency in young age and in low PSA prostate cancer, Prostate Cancer P. D. 16 (2013) 132–138.

G. Lippolis, A. Edsjö, U.H. Stenman, A. Bjartell, A high density tissue micro-array from patients with clinically localized prostate cancer reveals ERG and TATI exclusivity in tumor cells, Cancer P. D. 16 (2013) 145–150.

Ferraldeschi, R., & de Bono, J. (2013). Agents That Target Androgen Synthesis in Castration-Resistant Prostate Cancer. The Cancer Journal, 19(1), 34-42. doi:10.1097/ppo.0b013e31827e0b6f

Hu, Q., Jagusch, C., Hille, U. E., Haupenthal, J., & Hartmann, R. W. (2010). Replacement of Imidazolyl by Pyridyl in Biphenylmethylenes Results in Selective CYP17 and Dual CYP17/CYP11B1 Inhibitors for the Treatment of Prostate Cancer. Journal of Medicinal Chemistry, 53(15), 5749-5758. doi:10.1021/jm100317b

Pinto-Bazurco Mendieta, M. A. E., Hu, Q., Engel, M., & Hartmann, R. W. (2013). Highly Potent and Selective Nonsteroidal Dual Inhibitors of CYP17/CYP11B2 for the Treatment of Prostate Cancer To Reduce Risks of Cardiovascular Diseases. Journal of Medicinal Chemistry, 56(15), 6101-6107. doi:10.1021/jm400484p

T. Kaku, S. Tsujimoto, N. Matsunaga, T. Tanaka, T. Hara, M. Yamaoka, M. Kusaka, A. Tasaka, 17,20-Lyase inhibitors. Part 3: Design, synthesis, and structure-activity relationships of biphenylylmethylimidazole derivatives as novel 17, 20-lyse inhibitors, Bioorg. Med. Chem. 19 (2011) 2428–2442.

Bruno, R. D., Vasaitis, T. S., Gediya, L. K., Purushottamachar, P., Godbole, A. M., Ates-Alagoz, Z., … Njar, V. C. O. (2011). Synthesis and biological evaluations of putative metabolically stable analogs of VN/124-1 (TOK-001): Head to head anti-tumor efficacy evaluation of VN/124-1 (TOK-001) and abiraterone in LAPC-4 human prostate cancer xenograft model. Steroids, 76(12), 1268-1279. doi:10.1016/j.steroids.2011.06.002

MILLER, W. L. (1988). Molecular Biology of Steroid Hormone Synthesis*. Endocrine Reviews, 9(3), 295-318. doi:10.1210/edrv-9-3-295

Zhu, H., & Garcia, J. A. (2013). Targeting the Adrenal Gland in Castration-Resistant Prostate Cancer: A Case for Orteronel, a Selective CYP-17 17,20-Lyase Inhibitor. Current Oncology Reports, 15(2), 105-112. doi:10.1007/s11912-013-0300-1

Akhtar, M. K., Kelly, S. L., & Kaderbhai, M. A. (2005). Cytochrome b5 modulation of 17α hydroxylase and 17–20 lyase (CYP17) activities in steroidogenesis. Journal of Endocrinology, 187(2), 267-274. doi:10.1677/joe.1.06375

Yin, L., & Hu, Q. (2013). CYP17 inhibitors—abiraterone, C17,20-lyase inhibitors and multi-targeting agents. Nature Reviews Urology, 11(1), 32-42. doi:10.1038/nrurol.2013.274

DeVore, N. M., & Scott, E. E. (2012). Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. Nature, 482(7383), 116-119. doi:10.1038/nature10743

Bird, I. M., & Abbott, D. H. (2016). The hunt for a selective 17,20 lyase inhibitor; learning lessons from nature. The Journal of Steroid Biochemistry and Molecular Biology, 163, 136-146. doi:10.1016/j.jsbmb.2016.04.021

Vasaitis, T. S., Bruno, R. D., & Njar, V. C. O. (2011). CYP17 inhibitors for prostate cancer therapy. The Journal of Steroid Biochemistry and Molecular Biology, 125(1-2), 23-31. doi:10.1016/j.jsbmb.2010.11.005

Gomez, L., Kovac, J. R., & Lamb, D. J. (2015). CYP17A1 inhibitors in castration-resistant prostate cancer. Steroids, 95, 80-87. doi:10.1016/j.steroids.2014.12.021

De Bono, J. S., Logothetis, C. J., Molina, A., Fizazi, K., North, S., Chu, L., … Scher, H. I. (2011). Abiraterone and Increased Survival in Metastatic Prostate Cancer. New England Journal of Medicine, 364(21), 1995-2005. doi:10.1056/nejmoa1014618

Kaku, T., Hitaka, T., Ojida, A., Matsunaga, N., Adachi, M., Tanaka, T., … Tasaka, A. (2011). Discovery of orteronel (TAK-700), a naphthylmethylimidazole derivative, as a highly selective 17,20-lyase inhibitor with potential utility in the treatment of prostate cancer. Bioorganic & Medicinal Chemistry, 19(21), 6383-6399. doi:10.1016/j.bmc.2011.08.066

Salvador, J. A. R., Pinto, R. M. A., & Silvestre, S. M. (2013). Steroidal 5α-reductase and 17α-hydroxylase/17,20-lyase (CYP17) inhibitors useful in the treatment of prostatic diseases. The Journal of Steroid Biochemistry and Molecular Biology, 137, 199-222. doi:10.1016/j.jsbmb.2013.04.006

Njar, V. C. O., & Brodie, A. M. H. (2015). Discovery and Development of Galeterone (TOK-001 or VN/124-1) for the Treatment of All Stages of Prostate Cancer. Journal of Medicinal Chemistry, 58(5), 2077-2087. doi:10.1021/jm501239f

Alzate-Morales, J. H., Vergara-Jaque, A., & Caballero, J. (2010). Computational Study on the Interaction of N1 Substituted Pyrazole Derivatives with B-Raf Kinase: An Unusual Water Wire Hydrogen-Bond Network and Novel Interactions at the Entrance of the Active Site. Journal of Chemical Information and Modeling, 50(6), 1101-1112. doi:10.1021/ci100049h

Purushottamachar, P., Khandelwal, A., Vasaitis, T. S., Bruno, R. D., Gediya, L. K., & Njar, V. C. O. (2008). Potent anti-prostate cancer agents derived from a novel androgen receptor down-regulating agent. Bioorganic & Medicinal Chemistry, 16(7), 3519-3529. doi:10.1016/j.bmc.2008.02.031

Bonomo, S., Hansen, C. H., Petrunak, E. M., Scott, E. E., Styrishave, B., Jørgensen, F. S., & Olsen, L. (2016). Promising Tools in Prostate Cancer Research: Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors. Scientific Reports, 6(1). doi:10.1038/srep29468

[Takeda announces termination of Orteronel (TAK-700) development for prostate cancer in Japan, USA and Europe, 2014 [Press release], http://www.takeda.com/newsreleases Accessed: 04/07/2018.

Giangreco, I., Cosgrove, D. A., & Packer, M. J. (2013). An Extensive and Diverse Set of Molecular Overlays for the Validation of Pharmacophore Programs. Journal of Chemical Information and Modeling, 53(4), 852-866. doi:10.1021/ci400020a

C.G. Wermuth, C.R. Ganellin, P. Lindberg, L.A. Mitscher, ; “Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998)”, Pure. Appl. Chem. J. 70 (1998) 1129–1143.

Schuster, D., Kowalik, D., Kirchmair, J., Laggner, C., Markt, P., Aebischer-Gumy, C., … Adamski, J. (2011). Identification of chemically diverse, novel inhibitors of 17β-hydroxysteroid dehydrogenase type 3 and 5 by pharmacophore-based virtual screening. The Journal of Steroid Biochemistry and Molecular Biology, 125(1-2), 148-161. doi:10.1016/j.jsbmb.2011.01.016

Xiao, F., Yang, M., Xu, Y., & Vongsangnak, W. (2015). Comparisons of Prostate Cancer Inhibitors Abiraterone and TOK-001 Binding with CYP17A1 through Molecular Dynamics. Computational and Structural Biotechnology Journal, 13, 520-527. doi:10.1016/j.csbj.2015.10.001

Petrunak, E. M., DeVore, N. M., Porubsky, P. R., & Scott, E. E. (2014). Structures of Human Steroidogenic Cytochrome P450 17A1 with Substrates. Journal of Biological Chemistry, 289(47), 32952-32964. doi:10.1074/jbc.m114.610998

M.A.E. Pinto-Bazurco Mendieta, M. Negri, C. Jagusch, U. Müller-Vieira, T. Lauterbach, R.W. Hartmann, Synthesis, biological evaluation, and molecular modeling of abiraterone analogues: novel CYP17 inhibitors for the treatment of prostate cancer, J. Med. Chem. 51 (2008) 5009–5018.

Zhuang, Y., Wachall, B. G., & Hartmann, R. W. (2000). Novel imidazolyl and triazolyl substituted biphenyl compounds: synthesis and evaluation as nonsteroidal inhibitors of human 17α-hydroxylase-C17, 20-Lyase (P450 17). Bioorganic & Medicinal Chemistry, 8(6), 1245-1252. doi:10.1016/s0968-0896(00)00076-6

Hu, Q., Yin, L., Jagusch, C., Hille, U. E., & Hartmann, R. W. (2010). Isopropylidene Substitution Increases Activity and Selectivity of Biphenylmethylene 4-Pyridine Type CYP17 Inhibitors. Journal of Medicinal Chemistry, 53(13), 5049-5053. doi:10.1021/jm100400a

Deora, G. S., Joshi, P., Rathore, V., Kumar, K. L., Ohlyan, R., & Kandale, A. (2012). Pharmacophore modeling and 3D QSAR analysis of isothiazolidinedione derivatives as PTP1B inhibitors. Medicinal Chemistry Research, 22(7), 3478-3484. doi:10.1007/s00044-012-0349-7

Jain, S. V., Ghate, M., Bhadoriya, K. S., Bari, S. B., Sugandhi, G., & Mandwal, P. (2012). 3D-QSAR pharmacophore modeling and in silico screening of phospholipase A2α inhibitors. Medicinal Chemistry Research, 22(7), 3096-3108. doi:10.1007/s00044-012-0316-3

Gumede, N. J., Singh, P., Sabela, M. I., Bisetty, K., Escuder-Gilabert, L., Medina-Hernández, M. J., & Sagrado, S. (2012). Experimental-Like Affinity Constants and Enantioselectivity Estimates from Flexible Docking. Journal of Chemical Information and Modeling, 52(10), 2754-2759. doi:10.1021/ci300335m

Attard, G., Belldegrun, A. S., & de Bono, J. S. (2005). Selective blockade of androgenic steroid synthesis by novel lyase inhibitors as a therapeutic strategy for treating metastatic prostate cancer. BJU International, 96(9), 1241-1246. doi:10.1111/j.1464-410x.2005.05821.x

L. Wang, Y. Deng, Y. Wu, B. Kim, D.N. LeBard, D. Wandschneider, M. Beachy, R.A. Friesner, R. Abel, Accurate modeling of scaffold hopping transformations in drug discovery, J. Chem. Theory Comput. 13 (2017) 42−54.

B. Kuhn, M. Tichý, L. Wang, S. Robinson, R.E. Martin, A. Kuglstatter, J. Benz, M. Giroud, T. Schirmeister, R. Abel, F. Diederich, J. Hert, Prospective evaluation of free energy calculations for the prioritization of Cathepsin L Inhibitors, J. Med. Chem. 60 (2017) 2485−2497.

Maestro, version 10.2, Schrödinger, LLC, New York, NY, 2015.

MacroModel, version 10.8, Schrödinger, LLC, New York, NY, 2015.

Phase, version 4.3, Schrödinger, LLC, New York, NY, 2015.

Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20(10-11), 647-671. doi:10.1007/s10822-006-9087-6

Tawari, N. R., & Degani, M. S. (2011). Pharmacophore Modeling and Density Functional Theory Analysis for A Series of Nitroimidazole Compounds with Antitubercular Activity. Chemical Biology & Drug Design, 78(3), 408-417. doi:10.1111/j.1747-0285.2011.01161.x

Virtual Screening Workflow. Schrödinger, LLC, New York, NY, 2015.

Jaguar, version 8.8, Schrödinger, LLC, New York, NY, 2015.

http://www.enamine.net/ [accessed 05/11/2014].

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem