- -

Prospective computational design and in vitro bio-analytical tests of new chemical entities as potential selective CYP17A1 lyase inhibitors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Prospective computational design and in vitro bio-analytical tests of new chemical entities as potential selective CYP17A1 lyase inhibitors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gumede, N.J. es_ES
dc.contributor.author Nxumalo, W. es_ES
dc.contributor.author Bisetty, K. es_ES
dc.contributor.author Escuder Gilabert, L. es_ES
dc.contributor.author Medina-Hernández, M.J. es_ES
dc.contributor.author Sagrado Vives, Salvador es_ES
dc.date.accessioned 2021-05-11T03:31:36Z
dc.date.available 2021-05-11T03:31:36Z
dc.date.issued 2020-01 es_ES
dc.identifier.issn 0045-2068 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166136
dc.description.abstract [EN] The development and advancement of prostate cancer (PCa) into stage 4, where it metastasize, is a major problem mostly in elder males. The growth of PCa cells is stirred up by androgens and androgen receptor (AR). Therefore, therapeutic strategies such as blocking androgens synthesis and inhibiting AR binding have been explored in recent years. However, recently approved drugs (or in clinical phase) failed in improving the expected survival rates for this metastatic-castration resistant prostate cancer (mCRPC) patients. The selective CYP17A1 inhibition of 17,20-lyase route has emerged as a novel strategy. Such inhibition blocks the production of androgens everywhere they are found in the body. In this work, a three dimensional-quantitative structure activity relationship (3D-QSAR) pharmacophore model is developed on a diverse set of non-steroidal inhibitors of CYP17A1 enzyme. Highly active compounds are selected to define a six-point pharmacophore hypothesis with a unique geometrical arrangement fitting the following description: two hydrogen bond acceptors (A), two hydrogen bond donors (D) and two aromatic rings (R). The QSAR model showed adequate predictive statistics. The 3D-QSAR model is further used for database virtual screening of potential inhibitory hit structures. Density functional theory (DFT) optimization provides the electronic properties explaining the reactivity of the hits. Docking simulations discovers hydrogen bonding and hydrophobic interactions as responsible for the binding affinities of hits to the CYP17A1 Protein Data Bank structure. 13 hits from the database search (including five derivatives) are then synthesized in the laboratory as different scaffolds. Ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in vitro experiments reveals three new chemical entities (NCEs) with half maximal inhibitory concentration (IC50) values against the lyase route at mid-micromolar range with favorable selectivity to the lyase over the hydroxylase route (one of them with null hydroxylase inhibition). Thus, prospective computational design has enabled the design of potential lead lyase-selective inhibitors for further studies. es_ES
dc.description.sponsorship This work research work was supported financially in part by the National Research Foundation of South Africa and First Rand Foundation (UID: 112151). This work was also made possible through funding by the Research Capacity Development Initiative-South African Medical Research Council (RCDI-SAMRC). The content hereof is the sole responsibility of the authors and does not necessarily represent the official views of NRF and SAMRC. The authors would like to acknowledge the Centre for High Performance Computing for allowing access to their resources for molecular modeling. Xenogesis Ltd is greatly acknowledge for performing bioanalytical experiments, as an outsourced services. Enamine LTD is greatly acknowledge for custom synthesis of the compounds, as an outsourced service. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Bioorganic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Metastatic-castration resistant prostate cancer es_ES
dc.subject 3D-QSAR pharmacophore model es_ES
dc.subject CYP17A1 inhibitors es_ES
dc.subject 17,20-lyase selective inhibition es_ES
dc.subject Prospective computational design es_ES
dc.title Prospective computational design and in vitro bio-analytical tests of new chemical entities as potential selective CYP17A1 lyase inhibitors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.bioorg.2019.103462 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NRF//UID112151/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.description.bibliographicCitation Gumede, N.; Nxumalo, W.; Bisetty, K.; Escuder Gilabert, L.; Medina-Hernández, M.; Sagrado Vives, S. (2020). Prospective computational design and in vitro bio-analytical tests of new chemical entities as potential selective CYP17A1 lyase inhibitors. Bioorganic Chemistry. 94:1-16. https://doi.org/10.1016/j.bioorg.2019.103462 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.bioorg.2019.103462 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 94 es_ES
dc.identifier.pmid 31818479 es_ES
dc.relation.pasarela S\436570 es_ES
dc.contributor.funder FirstRand Foundation es_ES
dc.contributor.funder South African Medical Research Council es_ES
dc.contributor.funder National Research Foundation, South Africa es_ES
dc.description.references Nnane, I. P., Kato, K., Liu, Y., Long, B. J., Lu, Q., Wang, X., … Brodie, A. (1999). Inhibition of Androgen Synthesis in Human Testicular and Prostatic Microsomes and in Male Rats by Novel Steroidal Compounds*. Endocrinology, 140(6), 2891-2897. doi:10.1210/endo.140.6.6832 es_ES
dc.description.references C. Jagusch, M. Negri, U.E. Hille, Q. Hu, M. Bartels, K. Jahn-Hoffmann, M.A.E. Pinto-Bazurco Mendieta, B. Rodenwaldt, U. Müller-Vieira, D. Schmidt, T. Lauterbach, M. Recanatini, A. Cavalli, R.W. Hartmann, Synthesis, biological evaluation and molecular modelling studies of methylene imidazole substituted biaryls as inhibitors of human 17α-hydroxylase-17,20-lyase (CYP17). Part I: Heterocyclic modifications of the core structure, Bioorg. Med. Chem. J. 16 (2008) 1992–2010. es_ES
dc.description.references Haider, S. M., Patel, J. S., Poojari, C. S., & Neidle, S. (2010). Molecular Modeling on Inhibitor Complexes and Active-Site Dynamics of Cytochrome P450 C17, a Target for Prostate Cancer Therapy. Journal of Molecular Biology, 400(5), 1078-1098. doi:10.1016/j.jmb.2010.05.069 es_ES
dc.description.references Yap, T. A., Carden, C. P., Attard, G., & de Bono, J. S. (2008). Targeting CYP17: established and novel approaches in prostate cancer. Current Opinion in Pharmacology, 8(4), 449-457. doi:10.1016/j.coph.2008.06.004 es_ES
dc.description.references Gianti, E., & Zauhar, R. J. (2012). Modeling Androgen Receptor Flexibility: A Binding Mode Hypothesis of CYP17 Inhibitors/Antiandrogens for Prostate Cancer Therapy. Journal of Chemical Information and Modeling, 52(10), 2670-2683. doi:10.1021/ci3002342 es_ES
dc.description.references G. Schaefer, J.M. Mosquera, R. Ramoner, K. Park, A. Romanel, E. Steiner, W. Horninger, J. Bektic, M. Ladurner-Rennau, M.A. Rubin, F. Demichelis, H. Klocker, Distinct ERG rearrangement prevalence in prostate cancer: higher frequency in young age and in low PSA prostate cancer, Prostate Cancer P. D. 16 (2013) 132–138. es_ES
dc.description.references G. Lippolis, A. Edsjö, U.H. Stenman, A. Bjartell, A high density tissue micro-array from patients with clinically localized prostate cancer reveals ERG and TATI exclusivity in tumor cells, Cancer P. D. 16 (2013) 145–150. es_ES
dc.description.references Ferraldeschi, R., & de Bono, J. (2013). Agents That Target Androgen Synthesis in Castration-Resistant Prostate Cancer. The Cancer Journal, 19(1), 34-42. doi:10.1097/ppo.0b013e31827e0b6f es_ES
dc.description.references Hu, Q., Jagusch, C., Hille, U. E., Haupenthal, J., & Hartmann, R. W. (2010). Replacement of Imidazolyl by Pyridyl in Biphenylmethylenes Results in Selective CYP17 and Dual CYP17/CYP11B1 Inhibitors for the Treatment of Prostate Cancer. Journal of Medicinal Chemistry, 53(15), 5749-5758. doi:10.1021/jm100317b es_ES
dc.description.references Pinto-Bazurco Mendieta, M. A. E., Hu, Q., Engel, M., & Hartmann, R. W. (2013). Highly Potent and Selective Nonsteroidal Dual Inhibitors of CYP17/CYP11B2 for the Treatment of Prostate Cancer To Reduce Risks of Cardiovascular Diseases. Journal of Medicinal Chemistry, 56(15), 6101-6107. doi:10.1021/jm400484p es_ES
dc.description.references T. Kaku, S. Tsujimoto, N. Matsunaga, T. Tanaka, T. Hara, M. Yamaoka, M. Kusaka, A. Tasaka, 17,20-Lyase inhibitors. Part 3: Design, synthesis, and structure-activity relationships of biphenylylmethylimidazole derivatives as novel 17, 20-lyse inhibitors, Bioorg. Med. Chem. 19 (2011) 2428–2442. es_ES
dc.description.references Bruno, R. D., Vasaitis, T. S., Gediya, L. K., Purushottamachar, P., Godbole, A. M., Ates-Alagoz, Z., … Njar, V. C. O. (2011). Synthesis and biological evaluations of putative metabolically stable analogs of VN/124-1 (TOK-001): Head to head anti-tumor efficacy evaluation of VN/124-1 (TOK-001) and abiraterone in LAPC-4 human prostate cancer xenograft model. Steroids, 76(12), 1268-1279. doi:10.1016/j.steroids.2011.06.002 es_ES
dc.description.references MILLER, W. L. (1988). Molecular Biology of Steroid Hormone Synthesis*. Endocrine Reviews, 9(3), 295-318. doi:10.1210/edrv-9-3-295 es_ES
dc.description.references Zhu, H., & Garcia, J. A. (2013). Targeting the Adrenal Gland in Castration-Resistant Prostate Cancer: A Case for Orteronel, a Selective CYP-17 17,20-Lyase Inhibitor. Current Oncology Reports, 15(2), 105-112. doi:10.1007/s11912-013-0300-1 es_ES
dc.description.references Akhtar, M. K., Kelly, S. L., & Kaderbhai, M. A. (2005). Cytochrome b5 modulation of 17α hydroxylase and 17–20 lyase (CYP17) activities in steroidogenesis. Journal of Endocrinology, 187(2), 267-274. doi:10.1677/joe.1.06375 es_ES
dc.description.references Yin, L., & Hu, Q. (2013). CYP17 inhibitors—abiraterone, C17,20-lyase inhibitors and multi-targeting agents. Nature Reviews Urology, 11(1), 32-42. doi:10.1038/nrurol.2013.274 es_ES
dc.description.references DeVore, N. M., & Scott, E. E. (2012). Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. Nature, 482(7383), 116-119. doi:10.1038/nature10743 es_ES
dc.description.references Bird, I. M., & Abbott, D. H. (2016). The hunt for a selective 17,20 lyase inhibitor; learning lessons from nature. The Journal of Steroid Biochemistry and Molecular Biology, 163, 136-146. doi:10.1016/j.jsbmb.2016.04.021 es_ES
dc.description.references Vasaitis, T. S., Bruno, R. D., & Njar, V. C. O. (2011). CYP17 inhibitors for prostate cancer therapy. The Journal of Steroid Biochemistry and Molecular Biology, 125(1-2), 23-31. doi:10.1016/j.jsbmb.2010.11.005 es_ES
dc.description.references Gomez, L., Kovac, J. R., & Lamb, D. J. (2015). CYP17A1 inhibitors in castration-resistant prostate cancer. Steroids, 95, 80-87. doi:10.1016/j.steroids.2014.12.021 es_ES
dc.description.references De Bono, J. S., Logothetis, C. J., Molina, A., Fizazi, K., North, S., Chu, L., … Scher, H. I. (2011). Abiraterone and Increased Survival in Metastatic Prostate Cancer. New England Journal of Medicine, 364(21), 1995-2005. doi:10.1056/nejmoa1014618 es_ES
dc.description.references Kaku, T., Hitaka, T., Ojida, A., Matsunaga, N., Adachi, M., Tanaka, T., … Tasaka, A. (2011). Discovery of orteronel (TAK-700), a naphthylmethylimidazole derivative, as a highly selective 17,20-lyase inhibitor with potential utility in the treatment of prostate cancer. Bioorganic & Medicinal Chemistry, 19(21), 6383-6399. doi:10.1016/j.bmc.2011.08.066 es_ES
dc.description.references Salvador, J. A. R., Pinto, R. M. A., & Silvestre, S. M. (2013). Steroidal 5α-reductase and 17α-hydroxylase/17,20-lyase (CYP17) inhibitors useful in the treatment of prostatic diseases. The Journal of Steroid Biochemistry and Molecular Biology, 137, 199-222. doi:10.1016/j.jsbmb.2013.04.006 es_ES
dc.description.references Njar, V. C. O., & Brodie, A. M. H. (2015). Discovery and Development of Galeterone (TOK-001 or VN/124-1) for the Treatment of All Stages of Prostate Cancer. Journal of Medicinal Chemistry, 58(5), 2077-2087. doi:10.1021/jm501239f es_ES
dc.description.references Alzate-Morales, J. H., Vergara-Jaque, A., & Caballero, J. (2010). Computational Study on the Interaction of N1 Substituted Pyrazole Derivatives with B-Raf Kinase: An Unusual Water Wire Hydrogen-Bond Network and Novel Interactions at the Entrance of the Active Site. Journal of Chemical Information and Modeling, 50(6), 1101-1112. doi:10.1021/ci100049h es_ES
dc.description.references Purushottamachar, P., Khandelwal, A., Vasaitis, T. S., Bruno, R. D., Gediya, L. K., & Njar, V. C. O. (2008). Potent anti-prostate cancer agents derived from a novel androgen receptor down-regulating agent. Bioorganic & Medicinal Chemistry, 16(7), 3519-3529. doi:10.1016/j.bmc.2008.02.031 es_ES
dc.description.references Bonomo, S., Hansen, C. H., Petrunak, E. M., Scott, E. E., Styrishave, B., Jørgensen, F. S., & Olsen, L. (2016). Promising Tools in Prostate Cancer Research: Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors. Scientific Reports, 6(1). doi:10.1038/srep29468 es_ES
dc.description.references [Takeda announces termination of Orteronel (TAK-700) development for prostate cancer in Japan, USA and Europe, 2014 [Press release], http://www.takeda.com/newsreleases Accessed: 04/07/2018. es_ES
dc.description.references Giangreco, I., Cosgrove, D. A., & Packer, M. J. (2013). An Extensive and Diverse Set of Molecular Overlays for the Validation of Pharmacophore Programs. Journal of Chemical Information and Modeling, 53(4), 852-866. doi:10.1021/ci400020a es_ES
dc.description.references C.G. Wermuth, C.R. Ganellin, P. Lindberg, L.A. Mitscher, ; “Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998)”, Pure. Appl. Chem. J. 70 (1998) 1129–1143. es_ES
dc.description.references Schuster, D., Kowalik, D., Kirchmair, J., Laggner, C., Markt, P., Aebischer-Gumy, C., … Adamski, J. (2011). Identification of chemically diverse, novel inhibitors of 17β-hydroxysteroid dehydrogenase type 3 and 5 by pharmacophore-based virtual screening. The Journal of Steroid Biochemistry and Molecular Biology, 125(1-2), 148-161. doi:10.1016/j.jsbmb.2011.01.016 es_ES
dc.description.references Xiao, F., Yang, M., Xu, Y., & Vongsangnak, W. (2015). Comparisons of Prostate Cancer Inhibitors Abiraterone and TOK-001 Binding with CYP17A1 through Molecular Dynamics. Computational and Structural Biotechnology Journal, 13, 520-527. doi:10.1016/j.csbj.2015.10.001 es_ES
dc.description.references Petrunak, E. M., DeVore, N. M., Porubsky, P. R., & Scott, E. E. (2014). Structures of Human Steroidogenic Cytochrome P450 17A1 with Substrates. Journal of Biological Chemistry, 289(47), 32952-32964. doi:10.1074/jbc.m114.610998 es_ES
dc.description.references M.A.E. Pinto-Bazurco Mendieta, M. Negri, C. Jagusch, U. Müller-Vieira, T. Lauterbach, R.W. Hartmann, Synthesis, biological evaluation, and molecular modeling of abiraterone analogues: novel CYP17 inhibitors for the treatment of prostate cancer, J. Med. Chem. 51 (2008) 5009–5018. es_ES
dc.description.references Zhuang, Y., Wachall, B. G., & Hartmann, R. W. (2000). Novel imidazolyl and triazolyl substituted biphenyl compounds: synthesis and evaluation as nonsteroidal inhibitors of human 17α-hydroxylase-C17, 20-Lyase (P450 17). Bioorganic & Medicinal Chemistry, 8(6), 1245-1252. doi:10.1016/s0968-0896(00)00076-6 es_ES
dc.description.references Hu, Q., Yin, L., Jagusch, C., Hille, U. E., & Hartmann, R. W. (2010). Isopropylidene Substitution Increases Activity and Selectivity of Biphenylmethylene 4-Pyridine Type CYP17 Inhibitors. Journal of Medicinal Chemistry, 53(13), 5049-5053. doi:10.1021/jm100400a es_ES
dc.description.references Deora, G. S., Joshi, P., Rathore, V., Kumar, K. L., Ohlyan, R., & Kandale, A. (2012). Pharmacophore modeling and 3D QSAR analysis of isothiazolidinedione derivatives as PTP1B inhibitors. Medicinal Chemistry Research, 22(7), 3478-3484. doi:10.1007/s00044-012-0349-7 es_ES
dc.description.references Jain, S. V., Ghate, M., Bhadoriya, K. S., Bari, S. B., Sugandhi, G., & Mandwal, P. (2012). 3D-QSAR pharmacophore modeling and in silico screening of phospholipase A2α inhibitors. Medicinal Chemistry Research, 22(7), 3096-3108. doi:10.1007/s00044-012-0316-3 es_ES
dc.description.references Gumede, N. J., Singh, P., Sabela, M. I., Bisetty, K., Escuder-Gilabert, L., Medina-Hernández, M. J., & Sagrado, S. (2012). Experimental-Like Affinity Constants and Enantioselectivity Estimates from Flexible Docking. Journal of Chemical Information and Modeling, 52(10), 2754-2759. doi:10.1021/ci300335m es_ES
dc.description.references Attard, G., Belldegrun, A. S., & de Bono, J. S. (2005). Selective blockade of androgenic steroid synthesis by novel lyase inhibitors as a therapeutic strategy for treating metastatic prostate cancer. BJU International, 96(9), 1241-1246. doi:10.1111/j.1464-410x.2005.05821.x es_ES
dc.description.references L. Wang, Y. Deng, Y. Wu, B. Kim, D.N. LeBard, D. Wandschneider, M. Beachy, R.A. Friesner, R. Abel, Accurate modeling of scaffold hopping transformations in drug discovery, J. Chem. Theory Comput. 13 (2017) 42−54. es_ES
dc.description.references B. Kuhn, M. Tichý, L. Wang, S. Robinson, R.E. Martin, A. Kuglstatter, J. Benz, M. Giroud, T. Schirmeister, R. Abel, F. Diederich, J. Hert, Prospective evaluation of free energy calculations for the prioritization of Cathepsin L Inhibitors, J. Med. Chem. 60 (2017) 2485−2497. es_ES
dc.description.references Maestro, version 10.2, Schrödinger, LLC, New York, NY, 2015. es_ES
dc.description.references MacroModel, version 10.8, Schrödinger, LLC, New York, NY, 2015. es_ES
dc.description.references Phase, version 4.3, Schrödinger, LLC, New York, NY, 2015. es_ES
dc.description.references Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20(10-11), 647-671. doi:10.1007/s10822-006-9087-6 es_ES
dc.description.references Tawari, N. R., & Degani, M. S. (2011). Pharmacophore Modeling and Density Functional Theory Analysis for A Series of Nitroimidazole Compounds with Antitubercular Activity. Chemical Biology & Drug Design, 78(3), 408-417. doi:10.1111/j.1747-0285.2011.01161.x es_ES
dc.description.references Virtual Screening Workflow. Schrödinger, LLC, New York, NY, 2015. es_ES
dc.description.references Jaguar, version 8.8, Schrödinger, LLC, New York, NY, 2015. es_ES
dc.description.references http://www.enamine.net/ [accessed 05/11/2014]. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem