- -

Principles, fundamentals, and applications of programmable integrated photonics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Principles, fundamentals, and applications of programmable integrated photonics

Mostrar el registro completo del ítem

Pérez-López, D.; Gasulla Mestre, I.; Dasmahapatra, P.; Capmany Francoy, J. (2020). Principles, fundamentals, and applications of programmable integrated photonics. Advances in Optics and Photonics. 12(3):709-786. https://doi.org/10.1364/AOP.387155

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166139

Ficheros en el ítem

Metadatos del ítem

Título: Principles, fundamentals, and applications of programmable integrated photonics
Autor: Pérez-López, Daniel Gasulla Mestre, Ivana Dasmahapatra, Prometheus Capmany Francoy, José
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
[EN] Programmable integrated photonics is an emerging new paradigm that aims at designing common integrated optical hardware resource configurations, capable of implementing an unconstrained variety of functionalities by ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Advances in Optics and Photonics. (issn: 1943-8206 )
DOI: 10.1364/AOP.387155
Editorial:
Optical Society of America
Versión del editor: https://doi.org/10.1364/AOP.387155
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/741415/EU/Universal microwave photonics programmable processor for seamlessly interfacing wireless and optical ICT systems/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F103/ES/TECNOLOGIAS Y APLICACIONES FUTURAS DE LA FOTONICA DE MICROONDAS (FUTURE MWP TECHNOLOGIES & APPLICATIONS)/
info:eu-repo/grantAgreement/EC/H2020/859927/EU/Field Programmable Photonic Arrays/
info:eu-repo/grantAgreement/AEI//EQC2018-004683-P/ES/INFRAESTRUCTURA PARA CARACTERIZACION DE CHIPS FOTONICOS/
info:eu-repo/grantAgreement/EC/H2020/871330/EU/NEuromorphic Reconfigurable Integrated photonic Circuits as artificial image processor/
Agradecimientos:
European Research Council; Conselleria d'Educació, Investigació, Cultura i Esport; Ministerio de Ciencia, Innovación y Universidades; European Cooperation in Science and Technology; Horizon 2020 Framework Programme.
Tipo: Artículo

References

Lyke, J. C., Christodoulou, C. G., Vera, G. A., & Edwards, A. H. (2015). An Introduction to Reconfigurable Systems. Proceedings of the IEEE, 103(3), 291-317. doi:10.1109/jproc.2015.2397832

Kaeslin, H. (2008). Digital Integrated Circuit Design. doi:10.1017/cbo9780511805172

Trimberger, S. M. (2015). Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology. Proceedings of the IEEE, 103(3), 318-331. doi:10.1109/jproc.2015.2392104 [+]
Lyke, J. C., Christodoulou, C. G., Vera, G. A., & Edwards, A. H. (2015). An Introduction to Reconfigurable Systems. Proceedings of the IEEE, 103(3), 291-317. doi:10.1109/jproc.2015.2397832

Kaeslin, H. (2008). Digital Integrated Circuit Design. doi:10.1017/cbo9780511805172

Trimberger, S. M. (2015). Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology. Proceedings of the IEEE, 103(3), 318-331. doi:10.1109/jproc.2015.2392104

Mitola, J. (1995). The software radio architecture. IEEE Communications Magazine, 33(5), 26-38. doi:10.1109/35.393001

Nunes, B. A. A., Mendonca, M., Nguyen, X.-N., Obraczka, K., & Turletti, T. (2014). A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks. IEEE Communications Surveys & Tutorials, 16(3), 1617-1634. doi:10.1109/surv.2014.012214.00180

Papagianni, C., Leivadeas, A., Papavassiliou, S., Maglaris, V., Cervello-Pastor, C., & Monje, A. (2013). On the optimal allocation of virtual resources in cloud computing networks. IEEE Transactions on Computers, 62(6), 1060-1071. doi:10.1109/tc.2013.31

Peruzzo, A., Laing, A., Politi, A., Rudolph, T., & O’Brien, J. L. (2011). Multimode quantum interference of photons in multiport integrated devices. Nature Communications, 2(1). doi:10.1038/ncomms1228

Metcalf, B. J., Thomas-Peter, N., Spring, J. B., Kundys, D., Broome, M. A., Humphreys, P. C., … Walmsley, I. A. (2013). Multiphoton quantum interference in a multiport integrated photonic device. Nature Communications, 4(1). doi:10.1038/ncomms2349

Miller, D. A. B. (2013). Self-aligning universal beam coupler. Optics Express, 21(5), 6360. doi:10.1364/oe.21.006360

Miller, D. A. B. (2013). Self-configuring universal linear optical component [Invited]. Photonics Research, 1(1), 1. doi:10.1364/prj.1.000001

Carolan, J., Harrold, C., Sparrow, C., Martín-López, E., Russell, N. J., Silverstone, J. W., … Laing, A. (2015). Universal linear optics. Science, 349(6249), 711-716. doi:10.1126/science.aab3642

Harris, N. C., Steinbrecher, G. R., Prabhu, M., Lahini, Y., Mower, J., Bunandar, D., … Englund, D. (2017). Quantum transport simulations in a programmable nanophotonic processor. Nature Photonics, 11(7), 447-452. doi:10.1038/nphoton.2017.95

Birth of the programmable optical chip. (2015). Nature Photonics, 10(1), 1-1. doi:10.1038/nphoton.2015.265

Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854

Pérez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093

Capmany, J., Gasulla, I., & Pérez, D. (2015). The programmable processor. Nature Photonics, 10(1), 6-8. doi:10.1038/nphoton.2015.254

Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1

Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S., & Walsmley, I. A. (2016). Optimal design for universal multiport interferometers. Optica, 3(12), 1460. doi:10.1364/optica.3.001460

Perez, D., Gasulla, I., Fraile, F. J., Crudgington, L., Thomson, D. J., Khokhar, A. Z., … Capmany, J. (2017). Silicon Photonics Rectangular Universal Interferometer. Laser & Photonics Reviews, 11(6), 1700219. doi:10.1002/lpor.201700219

Shen, Y., Harris, N. C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., … Soljačić, M. (2017). Deep learning with coherent nanophotonic circuits. Nature Photonics, 11(7), 441-446. doi:10.1038/nphoton.2017.93

Ribeiro, A., Ruocco, A., Vanacker, L., & Bogaerts, W. (2016). Demonstration of a 4 × 4-port universal linear circuit. Optica, 3(12), 1348. doi:10.1364/optica.3.001348

Annoni, A., Guglielmi, E., Carminati, M., Ferrari, G., Sampietro, M., Miller, D. A., … Morichetti, F. (2017). Unscrambling light—automatically undoing strong mixing between modes. Light: Science & Applications, 6(12), e17110-e17110. doi:10.1038/lsa.2017.110

Perez, D., Gasulla, I., & Capmany, J. (2018). Toward Programmable Microwave Photonics Processors. Journal of Lightwave Technology, 36(2), 519-532. doi:10.1109/jlt.2017.2778741

Chen, L., Hall, E., Theogarajan, L., & Bowers, J. (2011). Photonic Switching for Data Center Applications. IEEE Photonics Journal, 3(5), 834-844. doi:10.1109/jphot.2011.2166994

Miller, D. A. B. (2017). Meshing optics with applications. Nature Photonics, 11(7), 403-404. doi:10.1038/nphoton.2017.104

Thomas-Peter, N., Langford, N. K., Datta, A., Zhang, L., Smith, B. J., Spring, J. B., … Walmsley, I. A. (2011). Integrated photonic sensing. New Journal of Physics, 13(5), 055024. doi:10.1088/1367-2630/13/5/055024

Smit, M., Leijtens, X., Ambrosius, H., Bente, E., van der Tol, J., Smalbrugge, B., … van Veldhoven, R. (2014). An introduction to InP-based generic integration technology. Semiconductor Science and Technology, 29(8), 083001. doi:10.1088/0268-1242/29/8/083001

Coldren, L. A., Nicholes, S. C., Johansson, L., Ristic, S., Guzzon, R. S., Norberg, E. J., & Krishnamachari, U. (2011). High Performance InP-Based Photonic ICs—A Tutorial. Journal of Lightwave Technology, 29(4), 554-570. doi:10.1109/jlt.2010.2100807

Kish, F., Nagarajan, R., Welch, D., Evans, P., Rossi, J., Pleumeekers, J., … Joyner, C. (2013). From Visible Light-Emitting Diodes to Large-Scale III–V Photonic Integrated Circuits. Proceedings of the IEEE, 101(10), 2255-2270. doi:10.1109/jproc.2013.2275018

Hochberg, M., & Baehr-Jones, T. (2010). Towards fabless silicon photonics. Nature Photonics, 4(8), 492-494. doi:10.1038/nphoton.2010.172

Bogaerts, W., Fiers, M., & Dumon, P. (2014). Design Challenges in Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 20(4), 1-8. doi:10.1109/jstqe.2013.2295882

Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151

Chrostowski, L., & Hochberg, M. (2015). Silicon Photonics Design. doi:10.1017/cbo9781316084168

Heck, M. J. R., Bauters, J. F., Davenport, M. L., Doylend, J. K., Jain, S., Kurczveil, G., … Bowers, J. E. (2013). Hybrid Silicon Photonic Integrated Circuit Technology. IEEE Journal of Selected Topics in Quantum Electronics, 19(4), 6100117-6100117. doi:10.1109/jstqe.2012.2235413

Keyvaninia, S., Muneeb, M., Stanković, S., Van Veldhoven, P. J., Van Thourhout, D., & Roelkens, G. (2012). Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Optical Materials Express, 3(1), 35. doi:10.1364/ome.3.000035

Heideman, R., Hoekman, M., & Schreuder, E. (2012). TriPleX-Based Integrated Optical Ring Resonators for Lab-on-a-Chip and Environmental Detection. IEEE Journal of Selected Topics in Quantum Electronics, 18(5), 1583-1596. doi:10.1109/jstqe.2012.2188382

Roeloffzen, C. G. H., Zhuang, L., Taddei, C., Leinse, A., Heideman, R. G., van Dijk, P. W. L., … Boller, K.-J. (2013). Silicon nitride microwave photonic circuits. Optics Express, 21(19), 22937. doi:10.1364/oe.21.022937

Corbett, B., Loi, R., Zhou, W., Liu, D., & Ma, Z. (2017). Transfer print techniques for heterogeneous integration of photonic components. Progress in Quantum Electronics, 52, 1-17. doi:10.1016/j.pquantelec.2017.01.001

Van der Tol, J. J. G. M., Jiao, Y., Shen, L., Millan-Mejia, A., Pogoretskii, V., van Engelen, J. P., & Smit, M. K. (2018). Indium Phosphide Integrated Photonics in Membranes. IEEE Journal of Selected Topics in Quantum Electronics, 24(1), 1-9. doi:10.1109/jstqe.2017.2772786

Bachmann, M., Besse, P. A., & Melchior, H. (1994). General self-imaging properties in N × N multimode interference couplers including phase relations. Applied Optics, 33(18), 3905. doi:10.1364/ao.33.003905

Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474

Madsen, C. K., & Zhao, J. H. (1999). Optical Filter Design and Analysis. Wiley Series in Microwave and Optical Engineering. doi:10.1002/0471213756

Desurvire, E. (2009). Classical and Quantum Information Theory. doi:10.1017/cbo9780511803758

Knill, E., Laflamme, R., & Milburn, G. J. (2001). A scheme for efficient quantum computation with linear optics. Nature, 409(6816), 46-52. doi:10.1038/35051009

Capmany, J., & Pérez, D. (2020). Programmable Integrated Photonics. doi:10.1093/oso/9780198844402.001.0001

Spagnolo, N., Vitelli, C., Bentivegna, M., Brod, D. J., Crespi, A., Flamini, F., … Sciarrino, F. (2014). Experimental validation of photonic boson sampling. Nature Photonics, 8(8), 615-620. doi:10.1038/nphoton.2014.135

Mennea, P. L., Clements, W. R., Smith, D. H., Gates, J. C., Metcalf, B. J., Bannerman, R. H. S., … Smith, P. G. R. (2018). Modular linear optical circuits. Optica, 5(9), 1087. doi:10.1364/optica.5.001087

Perez-Lopez, D., Sanchez, E., & Capmany, J. (2018). Programmable True Time Delay Lines Using Integrated Waveguide Meshes. Journal of Lightwave Technology, 36(19), 4591-4601. doi:10.1109/jlt.2018.2831008

Pérez-López, D., Gutierrez, A. M., Sánchez, E., DasMahapatra, P., & Capmany, J. (2019). Integrated photonic tunable basic units using dual-drive directional couplers. Optics Express, 27(26), 38071. doi:10.1364/oe.27.038071

Jinguji, K., & Kawachi, M. (1995). Synthesis of coherent two-port lattice-form optical delay-line circuit. Journal of Lightwave Technology, 13(1), 73-82. doi:10.1109/50.350643

Mookherjea, S., & Yariv, A. (2002). Coupled resonator optical waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 8(3), 448-456. doi:10.1109/jstqe.2002.1016347

Heebner, J. E., Chak, P., Pereira, S., Sipe, J. E., & Boyd, R. W. (2004). Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. Journal of the Optical Society of America B, 21(10), 1818. doi:10.1364/josab.21.001818

Fandiño, J. S., Muñoz, P., Doménech, D., & Capmany, J. (2016). A monolithic integrated photonic microwave filter. Nature Photonics, 11(2), 124-129. doi:10.1038/nphoton.2016.233

Miller, D. A. B. (2012). All linear optical devices are mode converters. Optics Express, 20(21), 23985. doi:10.1364/oe.20.023985

Brown, S. D., Francis, R. J., Rose, J., & Vranesic, Z. G. (1992). Field-Programmable Gate Arrays. doi:10.1007/978-1-4615-3572-0

Lee, E. K. F., & Gulak, P. G. (1992). Field programmable analogue array based on MOSFET transconductors. Electronics Letters, 28(1), 28-29. doi:10.1049/el:19920017

Lee, E. K. F., & Gulak, P. G. (s. f.). A transconductor-based field-programmable analog array. Proceedings ISSCC ’95 - International Solid-State Circuits Conference. doi:10.1109/isscc.1995.535521

Pérez, D., Gasulla, I., & Capmany, J. (2018). Field-programmable photonic arrays. Optics Express, 26(21), 27265. doi:10.1364/oe.26.027265

Zheng, D., Doménech, J. D., Pan, W., Zou, X., Yan, L., & Pérez, D. (2019). Low-loss broadband 5  ×  5 non-blocking Si3N4 optical switch matrix. Optics Letters, 44(11), 2629. doi:10.1364/ol.44.002629

Densmore, A., Janz, S., Ma, R., Schmid, J. H., Xu, D.-X., Delâge, A., … Cheben, P. (2009). Compact and low power thermo-optic switch using folded silicon waveguides. Optics Express, 17(13), 10457. doi:10.1364/oe.17.010457

Song, M., Long, C. M., Wu, R., Seo, D., Leaird, D. E., & Weiner, A. M. (2011). Reconfigurable and Tunable Flat-Top Microwave Photonic Filters Utilizing Optical Frequency Combs. IEEE Photonics Technology Letters, 23(21), 1618-1620. doi:10.1109/lpt.2011.2165209

Rudé, M., Pello, J., Simpson, R. E., Osmond, J., Roelkens, G., van der Tol, J. J. G. M., & Pruneri, V. (2013). Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials. Applied Physics Letters, 103(14), 141119. doi:10.1063/1.4824714

Zheng, J., Khanolkar, A., Xu, P., Colburn, S., Deshmukh, S., Myers, J., … Majumdar, A. (2018). GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Optical Materials Express, 8(6), 1551. doi:10.1364/ome.8.001551

Edinger, P., Errando-Herranz, C., & Gylfason, K. B. (2019). Low-Loss MEMS Phase Shifter for Large Scale Reconfigurable Silicon Photonics. 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). doi:10.1109/memsys.2019.8870616

Carroll, L., Lee, J.-S., Scarcella, C., Gradkowski, K., Duperron, M., Lu, H., … O’Brien, P. (2016). Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Applied Sciences, 6(12), 426. doi:10.3390/app6120426

Bahadori, M., Gazman, A., Janosik, N., Rumley, S., Zhu, Z., Polster, R., … Bergman, K. (2018). Thermal Rectification of Integrated Microheaters for Microring Resonators in Silicon Photonics Platform. Journal of Lightwave Technology, 36(3), 773-788. doi:10.1109/jlt.2017.2781131

Cocorullo, G., Della Corte, F. G., Rendina, I., & Sarro, P. M. (1998). Thermo-optic effect exploitation in silicon microstructures. Sensors and Actuators A: Physical, 71(1-2), 19-26. doi:10.1016/s0924-4247(98)00168-x

Zecevic, N., Hofbauer, M., & Zimmermann, H. (2015). Integrated Pulsewidth Modulation Control for a Scalable Optical Switch Matrix. IEEE Photonics Journal, 7(6), 1-7. doi:10.1109/jphot.2015.2506153

Seok, T. J., Quack, N., Han, S., & Wu, M. C. (2015). 50×50 Digital Silicon Photonic Switches with MEMS-Actuated Adiabatic Couplers. Optical Fiber Communication Conference. doi:10.1364/ofc.2015.m2b.4

Zortman, W. A., Trotter, D. C., & Watts, M. R. (2010). Silicon photonics manufacturing. Optics Express, 18(23), 23598. doi:10.1364/oe.18.023598

Mower, J., Harris, N. C., Steinbrecher, G. R., Lahini, Y., & Englund, D. (2015). High-fidelity quantum state evolution in imperfect photonic integrated circuits. Physical Review A, 92(3). doi:10.1103/physreva.92.032322

Pérez, D., & Capmany, J. (2019). Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica, 6(1), 19. doi:10.1364/optica.6.000019

Oton, C. J., Manganelli, C., Bontempi, F., Fournier, M., Fowler, D., & Kopp, C. (2016). Silicon photonic waveguide metrology using Mach-Zehnder interferometers. Optics Express, 24(6), 6265. doi:10.1364/oe.24.006265

Chen, X., & Bogaerts, W. (2019). A Graph-based Design and Programming Strategy for Reconfigurable Photonic Circuits. 2019 IEEE Photonics Society Summer Topical Meeting Series (SUM). doi:10.1109/phosst.2019.8795068

Zibar, D., Wymeersch, H., & Lyubomirsky, I. (2017). Machine learning under the spotlight. Nature Photonics, 11(12), 749-751. doi:10.1038/s41566-017-0058-3

Lopez, D. P. (2020). Programmable Integrated Silicon Photonics Waveguide Meshes: Optimized Designs and Control Algorithms. IEEE Journal of Selected Topics in Quantum Electronics, 26(2), 1-12. doi:10.1109/jstqe.2019.2948048

Harris, N. C., Bunandar, D., Pant, M., Steinbrecher, G. R., Mower, J., Prabhu, M., … Englund, D. (2016). Large-scale quantum photonic circuits in silicon. Nanophotonics, 5(3), 456-468. doi:10.1515/nanoph-2015-0146

Spring, J. B., Metcalf, B. J., Humphreys, P. C., Kolthammer, W. S., Jin, X.-M., Barbieri, M., … Walmsley, I. A. (2012). Boson Sampling on a Photonic Chip. Science, 339(6121), 798-801. doi:10.1126/science.1231692

O’Brien, J. L., Furusawa, A., & Vučković, J. (2009). Photonic quantum technologies. Nature Photonics, 3(12), 687-695. doi:10.1038/nphoton.2009.229

Kok, P., Munro, W. J., Nemoto, K., Ralph, T. C., Dowling, J. P., & Milburn, G. J. (2007). Linear optical quantum computing with photonic qubits. Reviews of Modern Physics, 79(1), 135-174. doi:10.1103/revmodphys.79.135

Politi, A., Cryan, M. J., Rarity, J. G., Yu, S., & O’Brien, J. L. (2008). Silica-on-Silicon Waveguide Quantum Circuits. Science, 320(5876), 646-649. doi:10.1126/science.1155441

Politi, A., Matthews, J., Thompson, M. G., & O’Brien, J. L. (2009). Integrated Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 15(6), 1673-1684. doi:10.1109/jstqe.2009.2026060

Thompson, M. G., Politi, A., Matthews, J. C. F., & O’Brien, J. L. (2011). Integrated waveguide circuits for optical quantum computing. IET Circuits, Devices & Systems, 5(2), 94. doi:10.1049/iet-cds.2010.0108

Silverstone, J. W., Bonneau, D., O’Brien, J. L., & Thompson, M. G. (2016). Silicon Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 22(6), 390-402. doi:10.1109/jstqe.2016.2573218

Poot, M., Schuck, C., Ma, X., Guo, X., & Tang, H. X. (2016). Design and characterization of integrated components for SiN photonic quantum circuits. Optics Express, 24(7), 6843. doi:10.1364/oe.24.006843

Saleh, M. F., Di Giuseppe, G., Saleh, B. E. A., & Teich, M. C. (2010). Modal and polarization qubits in Ti:LiNbO_3 photonic circuits for a universal quantum logic gate. Optics Express, 18(19), 20475. doi:10.1364/oe.18.020475

Harris, N. C., Carolan, J., Bunandar, D., Prabhu, M., Hochberg, M., Baehr-Jones, T., … Englund, D. (2018). Linear programmable nanophotonic processors. Optica, 5(12), 1623. doi:10.1364/optica.5.001623

Qiang, X., Zhou, X., Wang, J., Wilkes, C. M., Loke, T., O’Gara, S., … Matthews, J. C. F. (2018). Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nature Photonics, 12(9), 534-539. doi:10.1038/s41566-018-0236-y

Lee, B. G., & Dupuis, N. (2019). Silicon Photonic Switch Fabrics: Technology and Architecture. Journal of Lightwave Technology, 37(1), 6-20. doi:10.1109/jlt.2018.2876828

Cheng, Q., Rumley, S., Bahadori, M., & Bergman, K. (2018). Photonic switching in high performance datacenters [Invited]. Optics Express, 26(12), 16022. doi:10.1364/oe.26.016022

Wonfor, A., Wang, H., Penty, R. V., & White, I. H. (2011). Large Port Count High-Speed Optical Switch Fabric for Use Within Datacenters [Invited]. Journal of Optical Communications and Networking, 3(8), A32. doi:10.1364/jocn.3.000a32

Hamamoto, K., Anan, T., Komatsu, K., Sugimoto, M., & Mito, I. (1992). First 8×8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers. Electronics Letters, 28(5), 441. doi:10.1049/el:19920278

Van Campenhout, J., Green, W. M., Assefa, S., & Vlasov, Y. A. (2009). Low-power, 2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Optics Express, 17(26), 24020. doi:10.1364/oe.17.024020

Dupuis, N., Lee, B. G., Rylyakov, A. V., Kuchta, D. M., Baks, C. W., Orcutt, J. S., … Schow, C. L. (2015). Design and Fabrication of Low-Insertion-Loss and Low-Crosstalk Broadband $2\times 2$ Mach–Zehnder Silicon Photonic Switches. Journal of Lightwave Technology, 33(17), 3597-3606. doi:10.1109/jlt.2015.2446463

Poon, A. W., Luo, X., Xu, F., & Chen, H. (2009). Cascaded Microresonator-Based Matrix Switch for Silicon On-Chip Optical Interconnection. Proceedings of the IEEE, 97(7), 1216-1238. doi:10.1109/jproc.2009.2014884

Luo, X., Song, J., Feng, S., Poon, A. W., Liow, T.-Y., Yu, M., … Kwong, D.-L. (2012). Silicon High-Order Coupled-Microring-Based Electro-Optical Switches for On-Chip Optical Interconnects. IEEE Photonics Technology Letters, 24(10), 821-823. doi:10.1109/lpt.2012.2188829

DasMahapatra, P., Stabile, R., Rohit, A., & Williams, K. A. (2014). Optical Crosspoint Matrix Using Broadband Resonant Switches. IEEE Journal of Selected Topics in Quantum Electronics, 20(4), 1-10. doi:10.1109/jstqe.2013.2296746

Lee, M.-C. M., & Wu, M. C. (2006). Tunable coupling regimes of silicon microdisk resonators using MEMS actuators. Optics Express, 14(11), 4703. doi:10.1364/oe.14.004703

Yao, J., Leuenberger, D., Lee, M.-C. M., & Wu, M. C. (2007). Silicon Microtoroidal Resonators With Integrated MEMS Tunable Coupler. IEEE Journal of Selected Topics in Quantum Electronics, 13(2), 202-208. doi:10.1109/jstqe.2007.893743

Han, S., Seok, T. J., Quack, N., Yoo, B.-W., & Wu, M. C. (2015). Large-scale silicon photonic switches with movable directional couplers. Optica, 2(4), 370. doi:10.1364/optica.2.000370

Seok, T. J., Quack, N., Han, S., Muller, R. S., & Wu, M. C. (2016). Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 3(1), 64. doi:10.1364/optica.3.000064

Lu, L., Zhao, S., Zhou, L., Li, D., Li, Z., Wang, M., … Chen, J. (2016). 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Optics Express, 24(9), 9295. doi:10.1364/oe.24.009295

Qiao, L., Tang, W., & Chu, T. (2017). 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Scientific Reports, 7(1). doi:10.1038/srep42306

Guo, Z., Lu, L., Zhou, L., Shen, L., & Chen, J. (2018). 16 × 16 Silicon Optical Switch Based on Dual-Ring-Assisted Mach–Zehnder Interferometers. Journal of Lightwave Technology, 36(2), 225-232. doi:10.1109/jlt.2017.2751562

Han, S., Seok, T. J., Yu, K., Quack, N., Muller, R. S., & Wu, M. C. (2018). Large-Scale Polarization-Insensitive Silicon Photonic MEMS Switches. Journal of Lightwave Technology, 36(10), 1824-1830. doi:10.1109/jlt.2018.2791502

Hwang, H. Y., Lee, J. S., Seok, T. J., Forencich, A., Grant, H. R., Knutson, D., … O’Brien, P. (2017). Flip Chip Packaging of Digital Silicon Photonics MEMS Switch for Cloud Computing and Data Centre. IEEE Photonics Journal, 1-1. doi:10.1109/jphot.2017.2704097

Kouketsu, H., Kawasaki, S., Koyama, N., Takei, A., Taniguchi, T., Matsushima, Y., & Utaka, K. (2014). High-speed and Compact Non-blocking 8×8 InAlGaAs/InAlAs Mach-Zehnder-Type Optical Switch Fabric. Optical Fiber Communication Conference. doi:10.1364/ofc.2014.m2k.3

Cheng, Q., Wonfor, A., Penty, R. V., & White, I. H. (2013). Scalable, Low-Energy Hybrid Photonic Space Switch. Journal of Lightwave Technology, 31(18), 3077-3084. doi:10.1109/jlt.2013.2278708

Liu, S., Cheng, Q., Madarbux, M. R., Wonfor, A., Penty, R. V., White, I. H., & Watts, P. M. (2015). Low Latency Optical Switch for High Performance Computing With Minimized Processor Energy Load [Invited]. Journal of Optical Communications and Networking, 7(3), A498. doi:10.1364/jocn.7.00a498

Tanizawa, K., Suzuki, K., Toyama, M., Ohtsuka, M., Yokoyama, N., Matsumaro, K., … Kawashima, H. (2015). Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer. Optics Express, 23(13), 17599. doi:10.1364/oe.23.017599

Ferreira de Lima, T., Shastri, B. J., Tait, A. N., Nahmias, M. A., & Prucnal, P. R. (2017). Progress in neuromorphic photonics. Nanophotonics, 6(3), 577-599. doi:10.1515/nanoph-2016-0139

Prucnal, P. R., Shastri, B. J., Ferreira de Lima, T., Nahmias, M. A., & Tait, A. N. (2016). Recent progress in semiconductor excitable lasers for photonic spike processing. Advances in Optics and Photonics, 8(2), 228. doi:10.1364/aop.8.000228

Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G., Verstraeten, D., … Bienstman, P. (2014). Experimental demonstration of reservoir computing on a silicon photonics chip. Nature Communications, 5(1). doi:10.1038/ncomms4541

Tait, A. N., Ferreira de Lima, T., Nahmias, M. A., Shastri, B. J., & Prucnal, P. R. (2016). Continuous Calibration of Microring Weights for Analog Optical Networks. IEEE Photonics Technology Letters, 28(8), 887-890. doi:10.1109/lpt.2016.2516440

Tait, A. N., de Lima, T. F., Nahmias, M. A., Shastri, B. J., & Prucnal, P. R. (2016). Multi-channel control for microring weight banks. Optics Express, 24(8), 8895. doi:10.1364/oe.24.008895

Peng, H.-T., Nahmias, M. A., de Lima, T. F., Tait, A. N., & Shastri, B. J. (2018). Neuromorphic Photonic Integrated Circuits. IEEE Journal of Selected Topics in Quantum Electronics, 24(6), 1-15. doi:10.1109/jstqe.2018.2840448

Tait, A. N., Jayatilleka, H., De Lima, T. F., Ma, P. Y., Nahmias, M. A., Shastri, B. J., … Prucnal, P. R. (2018). Feedback control for microring weight banks. Optics Express, 26(20), 26422. doi:10.1364/oe.26.026422

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel Distributed Processing. doi:10.7551/mitpress/5236.001.0001

Marpaung, D., Roeloffzen, C., Heideman, R., Leinse, A., Sales, S., & Capmany, J. (2013). Integrated microwave photonics. Laser & Photonics Reviews, 7(4), 506-538. doi:10.1002/lpor.201200032

Marpaung, D., Yao, J., & Capmany, J. (2019). Integrated microwave photonics. Nature Photonics, 13(2), 80-90. doi:10.1038/s41566-018-0310-5

Zhang, W., & Yao, J. (2020). Photonic integrated field-programmable disk array signal processor. Nature Communications, 11(1). doi:10.1038/s41467-019-14249-0

Boeck, R., Jaeger, N. A., Rouger, N., & Chrostowski, L. (2010). Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement. Optics Express, 18(24), 25151. doi:10.1364/oe.18.025151

Norberg, E. J., Guzzon, R. S., Nicholes, S. C., Parker, J. S., & Coldren, L. A. (2010). Programmable Photonic Lattice Filters in InGaAsP–InP. IEEE Photonics Technology Letters, 22(2), 109-111. doi:10.1109/lpt.2009.2036448

Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A., & Coldren, L. A. (2011). Programmable Photonic Microwave Filters Monolithically Integrated in InP–InGaAsP. Journal of Lightwave Technology, 29(11), 1611-1619. doi:10.1109/jlt.2011.2134073

Chen, H.-W., Fang, A. W., Peters, J. D., Wang, Z., Bovington, J., Liang, D., & Bowers, J. E. (2010). Integrated Microwave Photonic Filter on a Hybrid Silicon Platform. IEEE Transactions on Microwave Theory and Techniques, 58(11), 3213-3219. doi:10.1109/tmtt.2010.2074870

Guzzon, R. S., Norberg, E. J., Parker, J. S., Johansson, L. A., & Coldren, L. A. (2011). Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss. Optics Express, 19(8), 7816. doi:10.1364/oe.19.007816

Pérez, D., Gasulla, I., Capmany, J., Fandiño, J. S., Muñoz, P., & Alavi, H. (2016). Figures of merit for self-beating filtered microwave photonic systems. Optics Express, 24(9), 10087. doi:10.1364/oe.24.010087

Pérez, D., Gasulla, I., & Capmany, J. (2015). Software-defined reconfigurable microwave photonics processor. Optics Express, 23(11), 14640. doi:10.1364/oe.23.014640

Guohua Qi, Jianping Yao, Seregelyi, J., Paquet, S., & Belisle, C. (2005). Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique. IEEE Transactions on Microwave Theory and Techniques, 53(10), 3090-3097. doi:10.1109/tmtt.2005.855123

Maleki, L. (2011). The optoelectronic oscillator. Nature Photonics, 5(12), 728-730. doi:10.1038/nphoton.2011.293

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem