- -

Principles, fundamentals, and applications of programmable integrated photonics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Principles, fundamentals, and applications of programmable integrated photonics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-López, Daniel es_ES
dc.contributor.author Gasulla Mestre, Ivana es_ES
dc.contributor.author Dasmahapatra, Prometheus es_ES
dc.contributor.author Capmany Francoy, José es_ES
dc.date.accessioned 2021-05-11T03:31:46Z
dc.date.available 2021-05-11T03:31:46Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 1943-8206 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166139
dc.description.abstract [EN] Programmable integrated photonics is an emerging new paradigm that aims at designing common integrated optical hardware resource configurations, capable of implementing an unconstrained variety of functionalities by suitable programming, following a parallel but not identical path to that of integrated electronics in the past two decades of the last century. Programmable integrated photonics is raising considerable interest, as it is driven by the surge of a considerable number of new applications in the fields of telecommunications, quantum information processing, sensing, and neurophotonics, calling for flexible, reconfigurable, low-cost, compact, and low-power-consuming devices that can cooperate with integrated electronic devices to overcome the limitation expected by the demise of Moore¿s Law. Integrated photonic devices exploiting full programmability are expected to scale from application-specific photonic chips (featuring a relatively low number of functionalities) up to very complex application-agnostic complex subsystems much in the same way as field programmable gate arrays and microprocessors operate in electronics. Two main differences need to be considered. First, as opposed to integrated electronics, programmable integrated photonics will carry analog operations over the signals to be processed. Second, the scale of integration density will be several orders of magnitude smaller due to the physical limitations imposed by the wavelength ratio of electrons and light wave photons. The success of programmable integrated photonics will depend on leveraging the properties of integrated photonic devices and, in particular, on research into suitable interconnection hardware architectures that can offer a very high spatial regularity as well as the possibility of independently setting (with a very low power consumption) the interconnection state of each connecting element. Integrated multiport interferometers and waveguide meshes provide regular and periodic geometries, formed by replicating unit elements and cells, respectively. In the case of waveguide meshes, the cells can take the form of a square, hexagon, or triangle, among other configurations. Each side of the cell is formed by two integrated waveguides connected by means of a Mach¿Zehnder interferometer or a tunable directional coupler that can be operated by means of an output control signal as a crossbar switch or as a variable coupler with independent power division ratio and phase shift. In this paper, we provide the basic foundations and principles behind the construction of these complex programmable circuits. We also review some practical aspects that limit the programming and scalability of programmable integrated photonics and provide an overview of some of the most salient applications demonstrated so far. es_ES
dc.description.sponsorship European Research Council; Conselleria d'Educació, Investigació, Cultura i Esport; Ministerio de Ciencia, Innovación y Universidades; European Cooperation in Science and Technology; Horizon 2020 Framework Programme. es_ES
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Advances in Optics and Photonics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Principles, fundamentals, and applications of programmable integrated photonics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/AOP.387155 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/741415/EU/Universal microwave photonics programmable processor for seamlessly interfacing wireless and optical ICT systems/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F103/ES/TECNOLOGIAS Y APLICACIONES FUTURAS DE LA FOTONICA DE MICROONDAS (FUTURE MWP TECHNOLOGIES & APPLICATIONS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/859927/EU/Field Programmable Photonic Arrays/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//EQC2018-004683-P/ES/INFRAESTRUCTURA PARA CARACTERIZACION DE CHIPS FOTONICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/871330/EU/NEuromorphic Reconfigurable Integrated photonic Circuits as artificial image processor/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Pérez-López, D.; Gasulla Mestre, I.; Dasmahapatra, P.; Capmany Francoy, J. (2020). Principles, fundamentals, and applications of programmable integrated photonics. Advances in Optics and Photonics. 12(3):709-786. https://doi.org/10.1364/AOP.387155 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/AOP.387155 es_ES
dc.description.upvformatpinicio 709 es_ES
dc.description.upvformatpfin 786 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\434256 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Lyke, J. C., Christodoulou, C. G., Vera, G. A., & Edwards, A. H. (2015). An Introduction to Reconfigurable Systems. Proceedings of the IEEE, 103(3), 291-317. doi:10.1109/jproc.2015.2397832 es_ES
dc.description.references Kaeslin, H. (2008). Digital Integrated Circuit Design. doi:10.1017/cbo9780511805172 es_ES
dc.description.references Trimberger, S. M. (2015). Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology. Proceedings of the IEEE, 103(3), 318-331. doi:10.1109/jproc.2015.2392104 es_ES
dc.description.references Mitola, J. (1995). The software radio architecture. IEEE Communications Magazine, 33(5), 26-38. doi:10.1109/35.393001 es_ES
dc.description.references Nunes, B. A. A., Mendonca, M., Nguyen, X.-N., Obraczka, K., & Turletti, T. (2014). A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks. IEEE Communications Surveys & Tutorials, 16(3), 1617-1634. doi:10.1109/surv.2014.012214.00180 es_ES
dc.description.references Papagianni, C., Leivadeas, A., Papavassiliou, S., Maglaris, V., Cervello-Pastor, C., & Monje, A. (2013). On the optimal allocation of virtual resources in cloud computing networks. IEEE Transactions on Computers, 62(6), 1060-1071. doi:10.1109/tc.2013.31 es_ES
dc.description.references Peruzzo, A., Laing, A., Politi, A., Rudolph, T., & O’Brien, J. L. (2011). Multimode quantum interference of photons in multiport integrated devices. Nature Communications, 2(1). doi:10.1038/ncomms1228 es_ES
dc.description.references Metcalf, B. J., Thomas-Peter, N., Spring, J. B., Kundys, D., Broome, M. A., Humphreys, P. C., … Walmsley, I. A. (2013). Multiphoton quantum interference in a multiport integrated photonic device. Nature Communications, 4(1). doi:10.1038/ncomms2349 es_ES
dc.description.references Miller, D. A. B. (2013). Self-aligning universal beam coupler. Optics Express, 21(5), 6360. doi:10.1364/oe.21.006360 es_ES
dc.description.references Miller, D. A. B. (2013). Self-configuring universal linear optical component [Invited]. Photonics Research, 1(1), 1. doi:10.1364/prj.1.000001 es_ES
dc.description.references Carolan, J., Harrold, C., Sparrow, C., Martín-López, E., Russell, N. J., Silverstone, J. W., … Laing, A. (2015). Universal linear optics. Science, 349(6249), 711-716. doi:10.1126/science.aab3642 es_ES
dc.description.references Harris, N. C., Steinbrecher, G. R., Prabhu, M., Lahini, Y., Mower, J., Bunandar, D., … Englund, D. (2017). Quantum transport simulations in a programmable nanophotonic processor. Nature Photonics, 11(7), 447-452. doi:10.1038/nphoton.2017.95 es_ES
dc.description.references Birth of the programmable optical chip. (2015). Nature Photonics, 10(1), 1-1. doi:10.1038/nphoton.2015.265 es_ES
dc.description.references Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854 es_ES
dc.description.references Pérez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093 es_ES
dc.description.references Capmany, J., Gasulla, I., & Pérez, D. (2015). The programmable processor. Nature Photonics, 10(1), 6-8. doi:10.1038/nphoton.2015.254 es_ES
dc.description.references Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1 es_ES
dc.description.references Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S., & Walsmley, I. A. (2016). Optimal design for universal multiport interferometers. Optica, 3(12), 1460. doi:10.1364/optica.3.001460 es_ES
dc.description.references Perez, D., Gasulla, I., Fraile, F. J., Crudgington, L., Thomson, D. J., Khokhar, A. Z., … Capmany, J. (2017). Silicon Photonics Rectangular Universal Interferometer. Laser & Photonics Reviews, 11(6), 1700219. doi:10.1002/lpor.201700219 es_ES
dc.description.references Shen, Y., Harris, N. C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., … Soljačić, M. (2017). Deep learning with coherent nanophotonic circuits. Nature Photonics, 11(7), 441-446. doi:10.1038/nphoton.2017.93 es_ES
dc.description.references Ribeiro, A., Ruocco, A., Vanacker, L., & Bogaerts, W. (2016). Demonstration of a 4 × 4-port universal linear circuit. Optica, 3(12), 1348. doi:10.1364/optica.3.001348 es_ES
dc.description.references Annoni, A., Guglielmi, E., Carminati, M., Ferrari, G., Sampietro, M., Miller, D. A., … Morichetti, F. (2017). Unscrambling light—automatically undoing strong mixing between modes. Light: Science & Applications, 6(12), e17110-e17110. doi:10.1038/lsa.2017.110 es_ES
dc.description.references Perez, D., Gasulla, I., & Capmany, J. (2018). Toward Programmable Microwave Photonics Processors. Journal of Lightwave Technology, 36(2), 519-532. doi:10.1109/jlt.2017.2778741 es_ES
dc.description.references Chen, L., Hall, E., Theogarajan, L., & Bowers, J. (2011). Photonic Switching for Data Center Applications. IEEE Photonics Journal, 3(5), 834-844. doi:10.1109/jphot.2011.2166994 es_ES
dc.description.references Miller, D. A. B. (2017). Meshing optics with applications. Nature Photonics, 11(7), 403-404. doi:10.1038/nphoton.2017.104 es_ES
dc.description.references Thomas-Peter, N., Langford, N. K., Datta, A., Zhang, L., Smith, B. J., Spring, J. B., … Walmsley, I. A. (2011). Integrated photonic sensing. New Journal of Physics, 13(5), 055024. doi:10.1088/1367-2630/13/5/055024 es_ES
dc.description.references Smit, M., Leijtens, X., Ambrosius, H., Bente, E., van der Tol, J., Smalbrugge, B., … van Veldhoven, R. (2014). An introduction to InP-based generic integration technology. Semiconductor Science and Technology, 29(8), 083001. doi:10.1088/0268-1242/29/8/083001 es_ES
dc.description.references Coldren, L. A., Nicholes, S. C., Johansson, L., Ristic, S., Guzzon, R. S., Norberg, E. J., & Krishnamachari, U. (2011). High Performance InP-Based Photonic ICs—A Tutorial. Journal of Lightwave Technology, 29(4), 554-570. doi:10.1109/jlt.2010.2100807 es_ES
dc.description.references Kish, F., Nagarajan, R., Welch, D., Evans, P., Rossi, J., Pleumeekers, J., … Joyner, C. (2013). From Visible Light-Emitting Diodes to Large-Scale III–V Photonic Integrated Circuits. Proceedings of the IEEE, 101(10), 2255-2270. doi:10.1109/jproc.2013.2275018 es_ES
dc.description.references Hochberg, M., & Baehr-Jones, T. (2010). Towards fabless silicon photonics. Nature Photonics, 4(8), 492-494. doi:10.1038/nphoton.2010.172 es_ES
dc.description.references Bogaerts, W., Fiers, M., & Dumon, P. (2014). Design Challenges in Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 20(4), 1-8. doi:10.1109/jstqe.2013.2295882 es_ES
dc.description.references Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151 es_ES
dc.description.references Chrostowski, L., & Hochberg, M. (2015). Silicon Photonics Design. doi:10.1017/cbo9781316084168 es_ES
dc.description.references Heck, M. J. R., Bauters, J. F., Davenport, M. L., Doylend, J. K., Jain, S., Kurczveil, G., … Bowers, J. E. (2013). Hybrid Silicon Photonic Integrated Circuit Technology. IEEE Journal of Selected Topics in Quantum Electronics, 19(4), 6100117-6100117. doi:10.1109/jstqe.2012.2235413 es_ES
dc.description.references Keyvaninia, S., Muneeb, M., Stanković, S., Van Veldhoven, P. J., Van Thourhout, D., & Roelkens, G. (2012). Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Optical Materials Express, 3(1), 35. doi:10.1364/ome.3.000035 es_ES
dc.description.references Heideman, R., Hoekman, M., & Schreuder, E. (2012). TriPleX-Based Integrated Optical Ring Resonators for Lab-on-a-Chip and Environmental Detection. IEEE Journal of Selected Topics in Quantum Electronics, 18(5), 1583-1596. doi:10.1109/jstqe.2012.2188382 es_ES
dc.description.references Roeloffzen, C. G. H., Zhuang, L., Taddei, C., Leinse, A., Heideman, R. G., van Dijk, P. W. L., … Boller, K.-J. (2013). Silicon nitride microwave photonic circuits. Optics Express, 21(19), 22937. doi:10.1364/oe.21.022937 es_ES
dc.description.references Corbett, B., Loi, R., Zhou, W., Liu, D., & Ma, Z. (2017). Transfer print techniques for heterogeneous integration of photonic components. Progress in Quantum Electronics, 52, 1-17. doi:10.1016/j.pquantelec.2017.01.001 es_ES
dc.description.references Van der Tol, J. J. G. M., Jiao, Y., Shen, L., Millan-Mejia, A., Pogoretskii, V., van Engelen, J. P., & Smit, M. K. (2018). Indium Phosphide Integrated Photonics in Membranes. IEEE Journal of Selected Topics in Quantum Electronics, 24(1), 1-9. doi:10.1109/jstqe.2017.2772786 es_ES
dc.description.references Bachmann, M., Besse, P. A., & Melchior, H. (1994). General self-imaging properties in N × N multimode interference couplers including phase relations. Applied Optics, 33(18), 3905. doi:10.1364/ao.33.003905 es_ES
dc.description.references Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474 es_ES
dc.description.references Madsen, C. K., & Zhao, J. H. (1999). Optical Filter Design and Analysis. Wiley Series in Microwave and Optical Engineering. doi:10.1002/0471213756 es_ES
dc.description.references Desurvire, E. (2009). Classical and Quantum Information Theory. doi:10.1017/cbo9780511803758 es_ES
dc.description.references Knill, E., Laflamme, R., & Milburn, G. J. (2001). A scheme for efficient quantum computation with linear optics. Nature, 409(6816), 46-52. doi:10.1038/35051009 es_ES
dc.description.references Capmany, J., & Pérez, D. (2020). Programmable Integrated Photonics. doi:10.1093/oso/9780198844402.001.0001 es_ES
dc.description.references Spagnolo, N., Vitelli, C., Bentivegna, M., Brod, D. J., Crespi, A., Flamini, F., … Sciarrino, F. (2014). Experimental validation of photonic boson sampling. Nature Photonics, 8(8), 615-620. doi:10.1038/nphoton.2014.135 es_ES
dc.description.references Mennea, P. L., Clements, W. R., Smith, D. H., Gates, J. C., Metcalf, B. J., Bannerman, R. H. S., … Smith, P. G. R. (2018). Modular linear optical circuits. Optica, 5(9), 1087. doi:10.1364/optica.5.001087 es_ES
dc.description.references Perez-Lopez, D., Sanchez, E., & Capmany, J. (2018). Programmable True Time Delay Lines Using Integrated Waveguide Meshes. Journal of Lightwave Technology, 36(19), 4591-4601. doi:10.1109/jlt.2018.2831008 es_ES
dc.description.references Pérez-López, D., Gutierrez, A. M., Sánchez, E., DasMahapatra, P., & Capmany, J. (2019). Integrated photonic tunable basic units using dual-drive directional couplers. Optics Express, 27(26), 38071. doi:10.1364/oe.27.038071 es_ES
dc.description.references Jinguji, K., & Kawachi, M. (1995). Synthesis of coherent two-port lattice-form optical delay-line circuit. Journal of Lightwave Technology, 13(1), 73-82. doi:10.1109/50.350643 es_ES
dc.description.references Mookherjea, S., & Yariv, A. (2002). Coupled resonator optical waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 8(3), 448-456. doi:10.1109/jstqe.2002.1016347 es_ES
dc.description.references Heebner, J. E., Chak, P., Pereira, S., Sipe, J. E., & Boyd, R. W. (2004). Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. Journal of the Optical Society of America B, 21(10), 1818. doi:10.1364/josab.21.001818 es_ES
dc.description.references Fandiño, J. S., Muñoz, P., Doménech, D., & Capmany, J. (2016). A monolithic integrated photonic microwave filter. Nature Photonics, 11(2), 124-129. doi:10.1038/nphoton.2016.233 es_ES
dc.description.references Miller, D. A. B. (2012). All linear optical devices are mode converters. Optics Express, 20(21), 23985. doi:10.1364/oe.20.023985 es_ES
dc.description.references Brown, S. D., Francis, R. J., Rose, J., & Vranesic, Z. G. (1992). Field-Programmable Gate Arrays. doi:10.1007/978-1-4615-3572-0 es_ES
dc.description.references Lee, E. K. F., & Gulak, P. G. (1992). Field programmable analogue array based on MOSFET transconductors. Electronics Letters, 28(1), 28-29. doi:10.1049/el:19920017 es_ES
dc.description.references Lee, E. K. F., & Gulak, P. G. (s. f.). A transconductor-based field-programmable analog array. Proceedings ISSCC ’95 - International Solid-State Circuits Conference. doi:10.1109/isscc.1995.535521 es_ES
dc.description.references Pérez, D., Gasulla, I., & Capmany, J. (2018). Field-programmable photonic arrays. Optics Express, 26(21), 27265. doi:10.1364/oe.26.027265 es_ES
dc.description.references Zheng, D., Doménech, J. D., Pan, W., Zou, X., Yan, L., & Pérez, D. (2019). Low-loss broadband 5  ×  5 non-blocking Si3N4 optical switch matrix. Optics Letters, 44(11), 2629. doi:10.1364/ol.44.002629 es_ES
dc.description.references Densmore, A., Janz, S., Ma, R., Schmid, J. H., Xu, D.-X., Delâge, A., … Cheben, P. (2009). Compact and low power thermo-optic switch using folded silicon waveguides. Optics Express, 17(13), 10457. doi:10.1364/oe.17.010457 es_ES
dc.description.references Song, M., Long, C. M., Wu, R., Seo, D., Leaird, D. E., & Weiner, A. M. (2011). Reconfigurable and Tunable Flat-Top Microwave Photonic Filters Utilizing Optical Frequency Combs. IEEE Photonics Technology Letters, 23(21), 1618-1620. doi:10.1109/lpt.2011.2165209 es_ES
dc.description.references Rudé, M., Pello, J., Simpson, R. E., Osmond, J., Roelkens, G., van der Tol, J. J. G. M., & Pruneri, V. (2013). Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials. Applied Physics Letters, 103(14), 141119. doi:10.1063/1.4824714 es_ES
dc.description.references Zheng, J., Khanolkar, A., Xu, P., Colburn, S., Deshmukh, S., Myers, J., … Majumdar, A. (2018). GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Optical Materials Express, 8(6), 1551. doi:10.1364/ome.8.001551 es_ES
dc.description.references Edinger, P., Errando-Herranz, C., & Gylfason, K. B. (2019). Low-Loss MEMS Phase Shifter for Large Scale Reconfigurable Silicon Photonics. 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). doi:10.1109/memsys.2019.8870616 es_ES
dc.description.references Carroll, L., Lee, J.-S., Scarcella, C., Gradkowski, K., Duperron, M., Lu, H., … O’Brien, P. (2016). Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Applied Sciences, 6(12), 426. doi:10.3390/app6120426 es_ES
dc.description.references Bahadori, M., Gazman, A., Janosik, N., Rumley, S., Zhu, Z., Polster, R., … Bergman, K. (2018). Thermal Rectification of Integrated Microheaters for Microring Resonators in Silicon Photonics Platform. Journal of Lightwave Technology, 36(3), 773-788. doi:10.1109/jlt.2017.2781131 es_ES
dc.description.references Cocorullo, G., Della Corte, F. G., Rendina, I., & Sarro, P. M. (1998). Thermo-optic effect exploitation in silicon microstructures. Sensors and Actuators A: Physical, 71(1-2), 19-26. doi:10.1016/s0924-4247(98)00168-x es_ES
dc.description.references Zecevic, N., Hofbauer, M., & Zimmermann, H. (2015). Integrated Pulsewidth Modulation Control for a Scalable Optical Switch Matrix. IEEE Photonics Journal, 7(6), 1-7. doi:10.1109/jphot.2015.2506153 es_ES
dc.description.references Seok, T. J., Quack, N., Han, S., & Wu, M. C. (2015). 50×50 Digital Silicon Photonic Switches with MEMS-Actuated Adiabatic Couplers. Optical Fiber Communication Conference. doi:10.1364/ofc.2015.m2b.4 es_ES
dc.description.references Zortman, W. A., Trotter, D. C., & Watts, M. R. (2010). Silicon photonics manufacturing. Optics Express, 18(23), 23598. doi:10.1364/oe.18.023598 es_ES
dc.description.references Mower, J., Harris, N. C., Steinbrecher, G. R., Lahini, Y., & Englund, D. (2015). High-fidelity quantum state evolution in imperfect photonic integrated circuits. Physical Review A, 92(3). doi:10.1103/physreva.92.032322 es_ES
dc.description.references Pérez, D., & Capmany, J. (2019). Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica, 6(1), 19. doi:10.1364/optica.6.000019 es_ES
dc.description.references Oton, C. J., Manganelli, C., Bontempi, F., Fournier, M., Fowler, D., & Kopp, C. (2016). Silicon photonic waveguide metrology using Mach-Zehnder interferometers. Optics Express, 24(6), 6265. doi:10.1364/oe.24.006265 es_ES
dc.description.references Chen, X., & Bogaerts, W. (2019). A Graph-based Design and Programming Strategy for Reconfigurable Photonic Circuits. 2019 IEEE Photonics Society Summer Topical Meeting Series (SUM). doi:10.1109/phosst.2019.8795068 es_ES
dc.description.references Zibar, D., Wymeersch, H., & Lyubomirsky, I. (2017). Machine learning under the spotlight. Nature Photonics, 11(12), 749-751. doi:10.1038/s41566-017-0058-3 es_ES
dc.description.references Lopez, D. P. (2020). Programmable Integrated Silicon Photonics Waveguide Meshes: Optimized Designs and Control Algorithms. IEEE Journal of Selected Topics in Quantum Electronics, 26(2), 1-12. doi:10.1109/jstqe.2019.2948048 es_ES
dc.description.references Harris, N. C., Bunandar, D., Pant, M., Steinbrecher, G. R., Mower, J., Prabhu, M., … Englund, D. (2016). Large-scale quantum photonic circuits in silicon. Nanophotonics, 5(3), 456-468. doi:10.1515/nanoph-2015-0146 es_ES
dc.description.references Spring, J. B., Metcalf, B. J., Humphreys, P. C., Kolthammer, W. S., Jin, X.-M., Barbieri, M., … Walmsley, I. A. (2012). Boson Sampling on a Photonic Chip. Science, 339(6121), 798-801. doi:10.1126/science.1231692 es_ES
dc.description.references O’Brien, J. L., Furusawa, A., & Vučković, J. (2009). Photonic quantum technologies. Nature Photonics, 3(12), 687-695. doi:10.1038/nphoton.2009.229 es_ES
dc.description.references Kok, P., Munro, W. J., Nemoto, K., Ralph, T. C., Dowling, J. P., & Milburn, G. J. (2007). Linear optical quantum computing with photonic qubits. Reviews of Modern Physics, 79(1), 135-174. doi:10.1103/revmodphys.79.135 es_ES
dc.description.references Politi, A., Cryan, M. J., Rarity, J. G., Yu, S., & O’Brien, J. L. (2008). Silica-on-Silicon Waveguide Quantum Circuits. Science, 320(5876), 646-649. doi:10.1126/science.1155441 es_ES
dc.description.references Politi, A., Matthews, J., Thompson, M. G., & O’Brien, J. L. (2009). Integrated Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 15(6), 1673-1684. doi:10.1109/jstqe.2009.2026060 es_ES
dc.description.references Thompson, M. G., Politi, A., Matthews, J. C. F., & O’Brien, J. L. (2011). Integrated waveguide circuits for optical quantum computing. IET Circuits, Devices & Systems, 5(2), 94. doi:10.1049/iet-cds.2010.0108 es_ES
dc.description.references Silverstone, J. W., Bonneau, D., O’Brien, J. L., & Thompson, M. G. (2016). Silicon Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 22(6), 390-402. doi:10.1109/jstqe.2016.2573218 es_ES
dc.description.references Poot, M., Schuck, C., Ma, X., Guo, X., & Tang, H. X. (2016). Design and characterization of integrated components for SiN photonic quantum circuits. Optics Express, 24(7), 6843. doi:10.1364/oe.24.006843 es_ES
dc.description.references Saleh, M. F., Di Giuseppe, G., Saleh, B. E. A., & Teich, M. C. (2010). Modal and polarization qubits in Ti:LiNbO_3 photonic circuits for a universal quantum logic gate. Optics Express, 18(19), 20475. doi:10.1364/oe.18.020475 es_ES
dc.description.references Harris, N. C., Carolan, J., Bunandar, D., Prabhu, M., Hochberg, M., Baehr-Jones, T., … Englund, D. (2018). Linear programmable nanophotonic processors. Optica, 5(12), 1623. doi:10.1364/optica.5.001623 es_ES
dc.description.references Qiang, X., Zhou, X., Wang, J., Wilkes, C. M., Loke, T., O’Gara, S., … Matthews, J. C. F. (2018). Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nature Photonics, 12(9), 534-539. doi:10.1038/s41566-018-0236-y es_ES
dc.description.references Lee, B. G., & Dupuis, N. (2019). Silicon Photonic Switch Fabrics: Technology and Architecture. Journal of Lightwave Technology, 37(1), 6-20. doi:10.1109/jlt.2018.2876828 es_ES
dc.description.references Cheng, Q., Rumley, S., Bahadori, M., & Bergman, K. (2018). Photonic switching in high performance datacenters [Invited]. Optics Express, 26(12), 16022. doi:10.1364/oe.26.016022 es_ES
dc.description.references Wonfor, A., Wang, H., Penty, R. V., & White, I. H. (2011). Large Port Count High-Speed Optical Switch Fabric for Use Within Datacenters [Invited]. Journal of Optical Communications and Networking, 3(8), A32. doi:10.1364/jocn.3.000a32 es_ES
dc.description.references Hamamoto, K., Anan, T., Komatsu, K., Sugimoto, M., & Mito, I. (1992). First 8×8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers. Electronics Letters, 28(5), 441. doi:10.1049/el:19920278 es_ES
dc.description.references Van Campenhout, J., Green, W. M., Assefa, S., & Vlasov, Y. A. (2009). Low-power, 2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Optics Express, 17(26), 24020. doi:10.1364/oe.17.024020 es_ES
dc.description.references Dupuis, N., Lee, B. G., Rylyakov, A. V., Kuchta, D. M., Baks, C. W., Orcutt, J. S., … Schow, C. L. (2015). Design and Fabrication of Low-Insertion-Loss and Low-Crosstalk Broadband $2\times 2$ Mach–Zehnder Silicon Photonic Switches. Journal of Lightwave Technology, 33(17), 3597-3606. doi:10.1109/jlt.2015.2446463 es_ES
dc.description.references Poon, A. W., Luo, X., Xu, F., & Chen, H. (2009). Cascaded Microresonator-Based Matrix Switch for Silicon On-Chip Optical Interconnection. Proceedings of the IEEE, 97(7), 1216-1238. doi:10.1109/jproc.2009.2014884 es_ES
dc.description.references Luo, X., Song, J., Feng, S., Poon, A. W., Liow, T.-Y., Yu, M., … Kwong, D.-L. (2012). Silicon High-Order Coupled-Microring-Based Electro-Optical Switches for On-Chip Optical Interconnects. IEEE Photonics Technology Letters, 24(10), 821-823. doi:10.1109/lpt.2012.2188829 es_ES
dc.description.references DasMahapatra, P., Stabile, R., Rohit, A., & Williams, K. A. (2014). Optical Crosspoint Matrix Using Broadband Resonant Switches. IEEE Journal of Selected Topics in Quantum Electronics, 20(4), 1-10. doi:10.1109/jstqe.2013.2296746 es_ES
dc.description.references Lee, M.-C. M., & Wu, M. C. (2006). Tunable coupling regimes of silicon microdisk resonators using MEMS actuators. Optics Express, 14(11), 4703. doi:10.1364/oe.14.004703 es_ES
dc.description.references Yao, J., Leuenberger, D., Lee, M.-C. M., & Wu, M. C. (2007). Silicon Microtoroidal Resonators With Integrated MEMS Tunable Coupler. IEEE Journal of Selected Topics in Quantum Electronics, 13(2), 202-208. doi:10.1109/jstqe.2007.893743 es_ES
dc.description.references Han, S., Seok, T. J., Quack, N., Yoo, B.-W., & Wu, M. C. (2015). Large-scale silicon photonic switches with movable directional couplers. Optica, 2(4), 370. doi:10.1364/optica.2.000370 es_ES
dc.description.references Seok, T. J., Quack, N., Han, S., Muller, R. S., & Wu, M. C. (2016). Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 3(1), 64. doi:10.1364/optica.3.000064 es_ES
dc.description.references Lu, L., Zhao, S., Zhou, L., Li, D., Li, Z., Wang, M., … Chen, J. (2016). 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Optics Express, 24(9), 9295. doi:10.1364/oe.24.009295 es_ES
dc.description.references Qiao, L., Tang, W., & Chu, T. (2017). 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Scientific Reports, 7(1). doi:10.1038/srep42306 es_ES
dc.description.references Guo, Z., Lu, L., Zhou, L., Shen, L., & Chen, J. (2018). 16 × 16 Silicon Optical Switch Based on Dual-Ring-Assisted Mach–Zehnder Interferometers. Journal of Lightwave Technology, 36(2), 225-232. doi:10.1109/jlt.2017.2751562 es_ES
dc.description.references Han, S., Seok, T. J., Yu, K., Quack, N., Muller, R. S., & Wu, M. C. (2018). Large-Scale Polarization-Insensitive Silicon Photonic MEMS Switches. Journal of Lightwave Technology, 36(10), 1824-1830. doi:10.1109/jlt.2018.2791502 es_ES
dc.description.references Hwang, H. Y., Lee, J. S., Seok, T. J., Forencich, A., Grant, H. R., Knutson, D., … O’Brien, P. (2017). Flip Chip Packaging of Digital Silicon Photonics MEMS Switch for Cloud Computing and Data Centre. IEEE Photonics Journal, 1-1. doi:10.1109/jphot.2017.2704097 es_ES
dc.description.references Kouketsu, H., Kawasaki, S., Koyama, N., Takei, A., Taniguchi, T., Matsushima, Y., & Utaka, K. (2014). High-speed and Compact Non-blocking 8×8 InAlGaAs/InAlAs Mach-Zehnder-Type Optical Switch Fabric. Optical Fiber Communication Conference. doi:10.1364/ofc.2014.m2k.3 es_ES
dc.description.references Cheng, Q., Wonfor, A., Penty, R. V., & White, I. H. (2013). Scalable, Low-Energy Hybrid Photonic Space Switch. Journal of Lightwave Technology, 31(18), 3077-3084. doi:10.1109/jlt.2013.2278708 es_ES
dc.description.references Liu, S., Cheng, Q., Madarbux, M. R., Wonfor, A., Penty, R. V., White, I. H., & Watts, P. M. (2015). Low Latency Optical Switch for High Performance Computing With Minimized Processor Energy Load [Invited]. Journal of Optical Communications and Networking, 7(3), A498. doi:10.1364/jocn.7.00a498 es_ES
dc.description.references Tanizawa, K., Suzuki, K., Toyama, M., Ohtsuka, M., Yokoyama, N., Matsumaro, K., … Kawashima, H. (2015). Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer. Optics Express, 23(13), 17599. doi:10.1364/oe.23.017599 es_ES
dc.description.references Ferreira de Lima, T., Shastri, B. J., Tait, A. N., Nahmias, M. A., & Prucnal, P. R. (2017). Progress in neuromorphic photonics. Nanophotonics, 6(3), 577-599. doi:10.1515/nanoph-2016-0139 es_ES
dc.description.references Prucnal, P. R., Shastri, B. J., Ferreira de Lima, T., Nahmias, M. A., & Tait, A. N. (2016). Recent progress in semiconductor excitable lasers for photonic spike processing. Advances in Optics and Photonics, 8(2), 228. doi:10.1364/aop.8.000228 es_ES
dc.description.references Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G., Verstraeten, D., … Bienstman, P. (2014). Experimental demonstration of reservoir computing on a silicon photonics chip. Nature Communications, 5(1). doi:10.1038/ncomms4541 es_ES
dc.description.references Tait, A. N., Ferreira de Lima, T., Nahmias, M. A., Shastri, B. J., & Prucnal, P. R. (2016). Continuous Calibration of Microring Weights for Analog Optical Networks. IEEE Photonics Technology Letters, 28(8), 887-890. doi:10.1109/lpt.2016.2516440 es_ES
dc.description.references Tait, A. N., de Lima, T. F., Nahmias, M. A., Shastri, B. J., & Prucnal, P. R. (2016). Multi-channel control for microring weight banks. Optics Express, 24(8), 8895. doi:10.1364/oe.24.008895 es_ES
dc.description.references Peng, H.-T., Nahmias, M. A., de Lima, T. F., Tait, A. N., & Shastri, B. J. (2018). Neuromorphic Photonic Integrated Circuits. IEEE Journal of Selected Topics in Quantum Electronics, 24(6), 1-15. doi:10.1109/jstqe.2018.2840448 es_ES
dc.description.references Tait, A. N., Jayatilleka, H., De Lima, T. F., Ma, P. Y., Nahmias, M. A., Shastri, B. J., … Prucnal, P. R. (2018). Feedback control for microring weight banks. Optics Express, 26(20), 26422. doi:10.1364/oe.26.026422 es_ES
dc.description.references Rumelhart, D. E., & McClelland, J. L. (1986). Parallel Distributed Processing. doi:10.7551/mitpress/5236.001.0001 es_ES
dc.description.references Marpaung, D., Roeloffzen, C., Heideman, R., Leinse, A., Sales, S., & Capmany, J. (2013). Integrated microwave photonics. Laser & Photonics Reviews, 7(4), 506-538. doi:10.1002/lpor.201200032 es_ES
dc.description.references Marpaung, D., Yao, J., & Capmany, J. (2019). Integrated microwave photonics. Nature Photonics, 13(2), 80-90. doi:10.1038/s41566-018-0310-5 es_ES
dc.description.references Zhang, W., & Yao, J. (2020). Photonic integrated field-programmable disk array signal processor. Nature Communications, 11(1). doi:10.1038/s41467-019-14249-0 es_ES
dc.description.references Boeck, R., Jaeger, N. A., Rouger, N., & Chrostowski, L. (2010). Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement. Optics Express, 18(24), 25151. doi:10.1364/oe.18.025151 es_ES
dc.description.references Norberg, E. J., Guzzon, R. S., Nicholes, S. C., Parker, J. S., & Coldren, L. A. (2010). Programmable Photonic Lattice Filters in InGaAsP–InP. IEEE Photonics Technology Letters, 22(2), 109-111. doi:10.1109/lpt.2009.2036448 es_ES
dc.description.references Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A., & Coldren, L. A. (2011). Programmable Photonic Microwave Filters Monolithically Integrated in InP–InGaAsP. Journal of Lightwave Technology, 29(11), 1611-1619. doi:10.1109/jlt.2011.2134073 es_ES
dc.description.references Chen, H.-W., Fang, A. W., Peters, J. D., Wang, Z., Bovington, J., Liang, D., & Bowers, J. E. (2010). Integrated Microwave Photonic Filter on a Hybrid Silicon Platform. IEEE Transactions on Microwave Theory and Techniques, 58(11), 3213-3219. doi:10.1109/tmtt.2010.2074870 es_ES
dc.description.references Guzzon, R. S., Norberg, E. J., Parker, J. S., Johansson, L. A., & Coldren, L. A. (2011). Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss. Optics Express, 19(8), 7816. doi:10.1364/oe.19.007816 es_ES
dc.description.references Pérez, D., Gasulla, I., Capmany, J., Fandiño, J. S., Muñoz, P., & Alavi, H. (2016). Figures of merit for self-beating filtered microwave photonic systems. Optics Express, 24(9), 10087. doi:10.1364/oe.24.010087 es_ES
dc.description.references Pérez, D., Gasulla, I., & Capmany, J. (2015). Software-defined reconfigurable microwave photonics processor. Optics Express, 23(11), 14640. doi:10.1364/oe.23.014640 es_ES
dc.description.references Guohua Qi, Jianping Yao, Seregelyi, J., Paquet, S., & Belisle, C. (2005). Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique. IEEE Transactions on Microwave Theory and Techniques, 53(10), 3090-3097. doi:10.1109/tmtt.2005.855123 es_ES
dc.description.references Maleki, L. (2011). The optoelectronic oscillator. Nature Photonics, 5(12), 728-730. doi:10.1038/nphoton.2011.293 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem