- -

Development of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Development of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging

Show full item record

Figueroa-López, KJ.; Cabedo, L.; Lagaron, JM.; Torres Giner, S. (2020). Development of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging. Frontiers in Nutrition. 7:1-16. https://doi.org/10.3389/fnut.2020.00140

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166141

Files in this item

Item Metadata

Title: Development of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging
Author: Figueroa-López, Kelly J. Cabedo, Luis Lagaron, Jose M. Torres Giner, Sergio
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Issued date:
Abstract:
[EN] In this research, different contents of eugenol in the 2.5-25 wt.% range were first incorporated into ultrathin fibers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by electrospinning and then subjected to ...[+]
Copyrigths: Reconocimiento (by)
Source:
Frontiers in Nutrition. (eissn: 2296-861X )
DOI: 10.3389/fnut.2020.00140
Publisher:
Frontiers Media S.A.
Publisher version: https://doi.org/10.3389/fnut.2020.00140
Project ID:
info:eu-repo/grantAgreement/EC/H2020/773872/EU/HIGH PERFORMANCE POLYHYDROXYALKANOATES BASED PACKAGING TO MINIMISE FOOD WASTE/
Agencia Estatal de Investigación/IJCI-2016-29675
MCIU/RTI2018-097249-B-C21
GV/0001426013N810001A201
Thanks:
This research was funded by the Spanish Ministry of Science and Innovation (MICI) through the RTI2018-097249-B-C21 program number and the H2020 EU project YPACK (reference number 773872). KF-L is a recipient of a Santiago ...[+]
Type: Artículo

References

Fu, Y., Sarkar, P., Bhunia, A. K., & Yao, Y. (2016). Delivery systems of antimicrobial compounds to food. Trends in Food Science & Technology, 57, 165-177. doi:10.1016/j.tifs.2016.09.013

Petersen, K., Væggemose Nielsen, P., Bertelsen, G., Lawther, M., Olsen, M. B., Nilsson, N. H., & Mortensen, G. (1999). Potential of biobased materials for food packaging. Trends in Food Science & Technology, 10(2), 52-68. doi:10.1016/s0924-2244(99)00019-9

Arena, U., & Di Gregorio, F. (2014). A waste management planning based on substance flow analysis. Resources, Conservation and Recycling, 85, 54-66. doi:10.1016/j.resconrec.2013.05.008 [+]
Fu, Y., Sarkar, P., Bhunia, A. K., & Yao, Y. (2016). Delivery systems of antimicrobial compounds to food. Trends in Food Science & Technology, 57, 165-177. doi:10.1016/j.tifs.2016.09.013

Petersen, K., Væggemose Nielsen, P., Bertelsen, G., Lawther, M., Olsen, M. B., Nilsson, N. H., & Mortensen, G. (1999). Potential of biobased materials for food packaging. Trends in Food Science & Technology, 10(2), 52-68. doi:10.1016/s0924-2244(99)00019-9

Arena, U., & Di Gregorio, F. (2014). A waste management planning based on substance flow analysis. Resources, Conservation and Recycling, 85, 54-66. doi:10.1016/j.resconrec.2013.05.008

Kumar, G., Ponnusamy, V. K., Bhosale, R. R., Shobana, S., Yoon, J.-J., Bhatia, S. K., … Kim, S.-H. (2019). A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Bioresource Technology, 287, 121427. doi:10.1016/j.biortech.2019.121427

Shen, M., Huang, W., Chen, M., Song, B., Zeng, G., & Zhang, Y. (2020). (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. Journal of Cleaner Production, 254, 120138. doi:10.1016/j.jclepro.2020.120138

Mannina, G., Presti, D., Montiel-Jarillo, G., Carrera, J., & Suárez-Ojeda, M. E. (2020). Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review. Bioresource Technology, 297, 122478. doi:10.1016/j.biortech.2019.122478

Costa, S. S., Miranda, A. L., de Morais, M. G., Costa, J. A. V., & Druzian, J. I. (2019). Microalgae as source of polyhydroxyalkanoates (PHAs) — A review. International Journal of Biological Macromolecules, 131, 536-547. doi:10.1016/j.ijbiomac.2019.03.099

Nielsen, C., Rahman, A., Rehman, A. U., Walsh, M. K., & Miller, C. D. (2017). Food waste conversion to microbial polyhydroxyalkanoates. Microbial Biotechnology, 10(6), 1338-1352. doi:10.1111/1751-7915.12776

Bhatia, S. K., Gurav, R., Choi, T.-R., Jung, H.-R., Yang, S.-Y., Moon, Y.-M., … Yang, Y.-H. (2019). Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresource Technology, 271, 306-315. doi:10.1016/j.biortech.2018.09.122

Bhatia, S. K., Shim, Y.-H., Jeon, J.-M., Brigham, C. J., Kim, Y.-H., Kim, H.-J., … Yang, Y.-H. (2015). Starch based polyhydroxybutyrate production in engineered Escherichia coli. Bioprocess and Biosystems Engineering, 38(8), 1479-1484. doi:10.1007/s00449-015-1390-y

Park, Y.-L., Bhatia, S. K., Gurav, R., Choi, T.-R., Kim, H. J., Song, H.-S., … Yang, Y.-H. (2020). Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies. International Journal of Biological Macromolecules, 154, 929-936. doi:10.1016/j.ijbiomac.2020.03.129

Hong, J.-W., Song, H.-S., Moon, Y.-M., Hong, Y.-G., Bhatia, S. K., Jung, H.-R., … Yang, Y.-H. (2019). Polyhydroxybutyrate production in halophilic marine bacteria Vibrio proteolyticus isolated from the Korean peninsula. Bioprocess and Biosystems Engineering, 42(4), 603-610. doi:10.1007/s00449-018-02066-6

Vu, D. H., Åkesson, D., Taherzadeh, M. J., & Ferreira, J. A. (2020). Recycling strategies for polyhydroxyalkanoate-based waste materials: An overview. Bioresource Technology, 298, 122393. doi:10.1016/j.biortech.2019.122393

Możejko-Ciesielska, J., & Kiewisz, R. (2016). Bacterial polyhydroxyalkanoates: Still fabulous? Microbiological Research, 192, 271-282. doi:10.1016/j.micres.2016.07.010

Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002

Vahabi, H., Rohani Rad, E., Parpaite, T., Langlois, V., & Saeb, M. R. (2019). Biodegradable polyester thin films and coatings in the line of fire: the time of polyhydroxyalkanoate (PHA)? Progress in Organic Coatings, 133, 85-89. doi:10.1016/j.porgcoat.2019.04.044

Jung, H.-R., Jeon, J.-M., Yi, D.-H., Song, H.-S., Yang, S.-Y., Choi, T.-R., … Yang, Y.-H. (2019). Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolymer production from volatile fatty acids using engineered Ralstonia eutropha. International Journal of Biological Macromolecules, 138, 370-378. doi:10.1016/j.ijbiomac.2019.07.091

Rehm, B. H. A., & Steinbüchel, A. (1999). Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. International Journal of Biological Macromolecules, 25(1-3), 3-19. doi:10.1016/s0141-8130(99)00010-0

Tarawat, S., Incharoensakdi, A., & Monshupanee, T. (2020). Cyanobacterial production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from carbon dioxide or a single organic substrate: improved polymer elongation with an extremely high 3-hydroxyvalerate mole proportion. Journal of Applied Phycology, 32(2), 1095-1102. doi:10.1007/s10811-020-02040-4

Bhatia, S. K., Yoon, J.-J., Kim, H.-J., Hong, J. W., Gi Hong, Y., Song, H.-S., … Yang, Y.-H. (2018). Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding. Bioresource Technology, 257, 92-101. doi:10.1016/j.biortech.2018.02.056

Quillaguamán, J., Guzmán, H., Van-Thuoc, D., & Hatti-Kaul, R. (2009). Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Applied Microbiology and Biotechnology, 85(6), 1687-1696. doi:10.1007/s00253-009-2397-6

Cinelli, P., Seggiani, M., Mallegni, N., Gigante, V., & Lazzeri, A. (2019). Processability and Degradability of PHA-Based Composites in Terrestrial Environments. International Journal of Molecular Sciences, 20(2), 284. doi:10.3390/ijms20020284

Melendez-Rodriguez, B., Torres-Giner, S., Aldureid, A., Cabedo, L., & Lagaron, J. M. (2019). Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Materials, 12(13), 2152. doi:10.3390/ma12132152

Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789

Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115

Radusin, T., Torres-Giner, S., Stupar, A., Ristic, I., Miletic, A., Novakovic, A., & Lagaron, J. M. (2019). Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packaging and Shelf Life, 21, 100357. doi:10.1016/j.fpsl.2019.100357

Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., … Rather, M. A. (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogenesis, 134, 103580. doi:10.1016/j.micpath.2019.103580

Dorman, H. J. D., & Deans, S. G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308-316. doi:10.1046/j.1365-2672.2000.00969.x

Jia, C., Cao, D., Ji, S., Zhang, X., & Muhoza, B. (2020). Tannic acid-assisted cross-linked nanoparticles as a delivery system of eugenol: The characterization, thermal degradation and antioxidant properties. Food Hydrocolloids, 104, 105717. doi:10.1016/j.foodhyd.2020.105717

Kim, J., Marshall, M. R., & Wei, C. (1995). Antibacterial activity of some essential oil components against five foodborne pathogens. Journal of Agricultural and Food Chemistry, 43(11), 2839-2845. doi:10.1021/jf00059a013

Walsh, S. E., Maillard, J.-Y., Russell, A. D., Catrenich, C. E., Charbonneau, D. L., & Bartolo, R. G. (2003). Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. Journal of Applied Microbiology, 94(2), 240-247. doi:10.1046/j.1365-2672.2003.01825.x

ELGAYYAR, M., DRAUGHON, F. A., GOLDEN, D. A., & MOUNT, J. R. (2001). Antimicrobial Activity of Essential Oils from Plants against Selected Pathogenic and Saprophytic Microorganisms. Journal of Food Protection, 64(7), 1019-1024. doi:10.4315/0362-028x-64.7.1019

Devi, K. P., Nisha, S. A., Sakthivel, R., & Pandian, S. K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 130(1), 107-115. doi:10.1016/j.jep.2010.04.025

Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology, 8(6), 423-435. doi:10.1038/nrmicro2333

Khameneh, B., Iranshahy, M., Soheili, V., & Fazly Bazzaz, B. S. (2019). Review on plant antimicrobials: a mechanistic viewpoint. Antimicrobial Resistance & Infection Control, 8(1). doi:10.1186/s13756-019-0559-6

Li, Y., Dong, Q., Chen, J., & Li, L. (2020). Effects of coaxial electrospun eugenol loaded core-sheath PVP/shellac fibrous films on postharvest quality and shelf life of strawberries. Postharvest Biology and Technology, 159, 111028. doi:10.1016/j.postharvbio.2019.111028

Celebioglu, A., Yildiz, Z. I., & Uyar, T. (2018). Fabrication of Electrospun Eugenol/Cyclodextrin Inclusion Complex Nanofibrous Webs for Enhanced Antioxidant Property, Water Solubility, and High Temperature Stability. Journal of Agricultural and Food Chemistry, 66(2), 457-466. doi:10.1021/acs.jafc.7b04312

Soares, R. M. D., Siqueira, N. M., Prabhakaram, M. P., & Ramakrishna, S. (2018). Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Materials Science and Engineering: C, 92, 969-982. doi:10.1016/j.msec.2018.08.004

Figueroa-Lopez, K., Castro-Mayorga, J., Andrade-Mahecha, M., Cabedo, L., & Lagaron, J. (2018). Antibacterial and Barrier Properties of Gelatin Coated by Electrospun Polycaprolactone Ultrathin Fibers Containing Black Pepper Oleoresin of Interest in Active Food Biopackaging Applications. Nanomaterials, 8(4), 199. doi:10.3390/nano8040199

Marangoni Júnior, L., Oliveira, L. M. de, Bócoli, P. F. J., Cristianini, M., Padula, M., & Anjos, C. A. R. (2020). Morphological, thermal and mechanical properties of polyamide and ethylene vinyl alcohol multilayer flexible packaging after high-pressure processing. Journal of Food Engineering, 276, 109913. doi:10.1016/j.jfoodeng.2020.109913

Gómez Ramos, M. J., Lozano, A., & Fernández-Alba, A. R. (2019). High-resolution mass spectrometry with data independent acquisition for the comprehensive non-targeted analysis of migrating chemicals coming from multilayer plastic packaging materials used for fruit purée and juice. Talanta, 191, 180-192. doi:10.1016/j.talanta.2018.08.023

Wang, L., Chen, C., Wang, J., Gardner, D. J., & Tajvidi, M. (2020). Cellulose nanofibrils versus cellulose nanocrystals: Comparison of performance in flexible multilayer films for packaging applications. Food Packaging and Shelf Life, 23, 100464. doi:10.1016/j.fpsl.2020.100464

Garrido-López, Á., & Tena, M. T. (2010). Study of multilayer packaging delamination mechanisms using different surface analysis techniques. Applied Surface Science, 256(12), 3799-3805. doi:10.1016/j.apsusc.2010.01.029

Úbeda, S., Aznar, M., Vera, P., Nerín, C., Henríquez, L., Taborda, L., & Restrepo, C. (2017). Overall and specific migration from multilayer high barrier food contact materials – kinetic study of cyclic polyester oligomers migration. Food Additives & Contaminants: Part A, 34(10), 1784-1794. doi:10.1080/19440049.2017.1346390

Anukiruthika, T., Sethupathy, P., Wilson, A., Kashampur, K., Moses, J. A., & Anandharamakrishnan, C. (2020). Multilayer packaging: Advances in preparation techniques and emerging food applications. Comprehensive Reviews in Food Science and Food Safety, 19(3), 1156-1186. doi:10.1111/1541-4337.12556

Mount, E. (2010). Coextrusion equipment for multilayer flat films and sheets. Multilayer Flexible Packaging, 75-95. doi:10.1016/b978-0-8155-2021-4.10006-1

Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274

Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768

Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2013). High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein. Food Hydrocolloids, 32(1), 106-114. doi:10.1016/j.foodhyd.2012.12.007

Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1-9. doi:10.1016/j.jfoodeng.2013.11.022

Cherpinski, A., Torres‐Giner, S., Cabedo, L., Méndez, J. A., & Lagaron, J. M. (2017). Multilayer structures based on annealed electrospun biopolymer coatings of interest in water and aroma barrier fiber‐based food packaging applications. Journal of Applied Polymer Science, 135(24), 45501. doi:10.1002/app.45501

Cherpinski, A., Torres-Giner, S., Vartiainen, J., Peresin, M. S., Lahtinen, P., & Lagaron, J. M. (2018). Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 25(2), 1291-1307. doi:10.1007/s10570-018-1648-z

Quiles-Carrillo, L., Montanes, N., Lagaron, J., Balart, R., & Torres-Giner, S. (2019). Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences, 9(3), 533. doi:10.3390/app9030533

Akinalan Balik, B., Argin, S., Lagaron, J. M., & Torres-Giner, S. (2019). Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging. Applied Sciences, 9(23), 5136. doi:10.3390/app9235136

Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144

Castro-Mayorga, J. L., Fabra, M. J., Pourrahimi, A. M., Olsson, R. T., & Lagaron, J. M. (2017). The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications. Food and Bioproducts Processing, 101, 32-44. doi:10.1016/j.fbp.2016.10.007

Cerqueira, M. A., Fabra, M. J., Castro-Mayorga, J. L., Bourbon, A. I., Pastrana, L. M., Vicente, A. A., & Lagaron, J. M. (2016). Use of Electrospinning to Develop Antimicrobial Biodegradable Multilayer Systems: Encapsulation of Cinnamaldehyde and Their Physicochemical Characterization. Food and Bioprocess Technology, 9(11), 1874-1884. doi:10.1007/s11947-016-1772-4

Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348

Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9-19. doi:10.1016/j.foodhyd.2013.08.030

Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254-263. doi:10.1016/j.eurpolymj.2010.12.011

Torres-Giner, S., Gimenez, E., & Lagaron, J. M. (2008). Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning. Food Hydrocolloids, 22(4), 601-614. doi:10.1016/j.foodhyd.2007.02.005

Torres‐Giner, S., Ocio, M. J., & Lagaron, J. M. (2008). Development of Active Antimicrobial Fiber‐Based Chitosan Polysaccharide Nanostructures using Electrospinning. Engineering in Life Sciences, 8(3), 303-314. doi:10.1002/elsc.200700066

Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martínez-Máñez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 9(2), 227. doi:10.3390/nano9020227

Shen, Z., & Kamdem, D. P. (2015). Development and characterization of biodegradable chitosan films containing two essential oils. International Journal of Biological Macromolecules, 74, 289-296. doi:10.1016/j.ijbiomac.2014.11.046

Haghighi, H., Biard, S., Bigi, F., De Leo, R., Bedin, E., Pfeifer, F., … Pulvirenti, A. (2019). Comprehensive characterization of active chitosan-gelatin blend films enriched with different essential oils. Food Hydrocolloids, 95, 33-42. doi:10.1016/j.foodhyd.2019.04.019

Shao, Y., Wu, C., Wu, T., Li, Y., Chen, S., Yuan, C., & Hu, Y. (2018). Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: Formulation, characterization and antimicrobial activity. Carbohydrate Polymers, 193, 144-152. doi:10.1016/j.carbpol.2018.03.101

Piletti, R., Bugiereck, A. M., Pereira, A. T., Gussati, E., Dal Magro, J., Mello, J. M. M., … Fiori, M. A. (2017). Microencapsulation of eugenol molecules by β-cyclodextrine as a thermal protection method of antibacterial action. Materials Science and Engineering: C, 75, 259-271. doi:10.1016/j.msec.2017.02.075

Da Silva, C. G., Kano, F. S., & dos Santos Rosa, D. (2019). Thermal stability of the PBAT biofilms with cellulose nanostructures/essential oils for active packaging. Journal of Thermal Analysis and Calorimetry, 138(4), 2375-2386. doi:10.1007/s10973-019-08190-z

Figueroa-Lopez, K. J., Enescu, D., Torres-Giner, S., Cabedo, L., Cerqueira, M. A., Pastrana, L., … Lagaron, J. M. (2020). Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil. Food Hydrocolloids, 108, 106013. doi:10.1016/j.foodhyd.2020.106013

De Souza Moura, W., de Souza, S. R., Campos, F. S., Sander Rodrigues Cangussu, A., Macedo Sobrinho Santos, E., Silva Andrade, B., … de Souza Aguiar, R. W. (2020). Antibacterial activity of Siparuna guianensis essential oil mediated by impairment of membrane permeability and replication of pathogenic bacteria. Industrial Crops and Products, 146, 112142. doi:10.1016/j.indcrop.2020.112142

Alizadeh Behbahani, B., Noshad, M., & Falah, F. (2019). Cumin essential oil: Phytochemical analysis, antimicrobial activity and investigation of its mechanism of action through scanning electron microscopy. Microbial Pathogenesis, 136, 103716. doi:10.1016/j.micpath.2019.103716

Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals, 6(12), 1451-1474. doi:10.3390/ph6121451

Figueroa-Lopez, K. J., Torres-Giner, S., Enescu, D., Cabedo, L., Cerqueira, M. A., Pastrana, L. M., & Lagaron, J. M. (2020). Electrospun Active Biopapers of Food Waste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Short-Term and Long-Term Antimicrobial Performance. Nanomaterials, 10(3), 506. doi:10.3390/nano10030506

Navikaite-Snipaitiene, V., Ivanauskas, L., Jakstas, V., Rüegg, N., Rutkaite, R., Wolfram, E., & Yildirim, S. (2018). Development of antioxidant food packaging materials containing eugenol for extending display life of fresh beef. Meat Science, 145, 9-15. doi:10.1016/j.meatsci.2018.05.015

Fabra, M. J., López-Rubio, A., Cabedo, L., & Lagaron, J. M. (2016). Tailoring barrier properties of thermoplastic corn starch-based films (TPCS) by means of a multilayer design. Journal of Colloid and Interface Science, 483, 84-92. doi:10.1016/j.jcis.2016.08.021

Yoon, Y. I., Moon, H. S., Lyoo, W. S., Lee, T. S., & Park, W. H. (2008). Superhydrophobicity of PHBV fibrous surface with bead-on-string structure. Journal of Colloid and Interface Science, 320(1), 91-95. doi:10.1016/j.jcis.2008.01.029

Sombatmankhong, K., Suwantong, O., Waleetorncheepsawat, S., & Supaphol, P. (2006). Electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and their blends. Journal of Polymer Science Part B: Polymer Physics, 44(19), 2923-2933. doi:10.1002/polb.20915

Li, X., Liu, K. L., Wang, M., Wong, S. Y., Tjiu, W. C., He, C. B., … Li, J. (2009). Improving hydrophilicity, mechanical properties and biocompatibility of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide). Acta Biomaterialia, 5(6), 2002-2012. doi:10.1016/j.actbio.2009.01.035

Han, J., Wu, L.-P., Hou, J., Zhao, D., & Xiang, H. (2015). Biosynthesis, Characterization, and Hemostasis Potential of Tailor-Made Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Produced by Haloferax mediterranei. Biomacromolecules, 16(2), 578-588. doi:10.1021/bm5016267

Chang, C.-K., Wang, H.-M., & Lan, J. (2018). Investigation and Characterization of Plasma-Treated Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopolymers for an In Vitro Cellular Study of Mouse Adipose-Derived Stem Cells. Polymers, 10(4), 355. doi:10.3390/polym10040355

Medina-Jaramillo, C., Ochoa-Yepes, O., Bernal, C., & Famá, L. (2017). Active and smart biodegradable packaging based on starch and natural extracts. Carbohydrate Polymers, 176, 187-194. doi:10.1016/j.carbpol.2017.08.079

Corre, Y.-M., Bruzaud, S., Audic, J.-L., & Grohens, Y. (2012). Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study. Polymer Testing, 31(2), 226-235. doi:10.1016/j.polymertesting.2011.11.002

Kim, G. H., Han, H., Park, J. H., & Kim, W. D. (2007). An applicable electrospinning process for fabricating a mechanically improved nanofiber mat. Polymer Engineering & Science, 47(5), 707-712. doi:10.1002/pen.20744

Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009

Narayanan, A., Neera, Mallesha, & Ramana, K. V. (2013). Synergized Antimicrobial Activity of Eugenol Incorporated Polyhydroxybutyrate Films Against Food Spoilage Microorganisms in Conjunction with Pediocin. Applied Biochemistry and Biotechnology, 170(6), 1379-1388. doi:10.1007/s12010-013-0267-2

Requena, R., Jiménez, A., Vargas, M., & Chiralt, A. (2016). Poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] active bilayer films obtained by compression moulding and applying essential oils at the interface. Polymer International, 65(8), 883-891. doi:10.1002/pi.5091

Alp-Erbay, E., Figueroa-Lopez, K. J., Lagaron, J. M., Çağlak, E., & Torres-Giner, S. (2019). The impact of electrospun films of poly(ε-caprolactone) filled with nanostructured zeolite and silica microparticles on in vitro histamine formation by Staphylococcus aureus and Salmonella Paratyphi A. Food Packaging and Shelf Life, 22, 100414. doi:10.1016/j.fpsl.2019.100414

Razumovskii, L. P., Iordanskii, A. L., Zaikov, G. E., Zagreba, E. D., & McNeill, I. C. (1994). Sorption and diffusion of water and organic solvents in poly(β-hydroxybutyrate) films. Polymer Degradation and Stability, 44(2), 171-175. doi:10.1016/0141-3910(94)90161-9

Figueroa-Lopez, K., Andrade-Mahecha, M., & Torres-Vargas, O. (2018). Development of Antimicrobial Biocomposite Films to Preserve the Quality of Bread. Molecules, 23(1), 212. doi:10.3390/molecules23010212

Hasheminya, S.-M., Mokarram, R. R., Ghanbarzadeh, B., Hamishekar, H., Kafil, H. S., & Dehghannya, J. (2019). Development and characterization of biocomposite films made from kefiran, carboxymethyl cellulose and Satureja Khuzestanica essential oil. Food Chemistry, 289, 443-452. doi:10.1016/j.foodchem.2019.03.076

Requena, R., Vargas, M., & Chiralt, A. (2018). Obtaining antimicrobial bilayer starch and polyester-blend films with carvacrol. Food Hydrocolloids, 83, 118-133. doi:10.1016/j.foodhyd.2018.04.045

Al-Tayyar, N. A., Youssef, A. M., & Al-hindi Rashad. (2020). Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: A review. Food Chemistry, 310, 125915. doi:10.1016/j.foodchem.2019.125915

Ribes, S., Ruiz-Rico, M., Pérez-Esteve, É., Fuentes, A., & Barat, J. M. (2019). Enhancing the antimicrobial activity of eugenol, carvacrol and vanillin immobilised on silica supports against Escherichia coli or Zygosaccharomyces rouxii in fruit juices by their binary combinations. LWT, 113, 108326. doi:10.1016/j.lwt.2019.108326

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record