- -

Development of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Development of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging

Show simple item record

Files in this item

dc.contributor.author Figueroa-López, Kelly J. es_ES
dc.contributor.author Cabedo, Luis es_ES
dc.contributor.author Lagaron, Jose M. es_ES
dc.contributor.author Torres Giner, Sergio es_ES
dc.date.accessioned 2021-05-11T03:31:55Z
dc.date.available 2021-05-11T03:31:55Z
dc.date.issued 2020-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166141
dc.description.abstract [EN] In this research, different contents of eugenol in the 2.5-25 wt.% range were first incorporated into ultrathin fibers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by electrospinning and then subjected to annealing to obtain antimicrobial monolayers. The most optimal concentration of eugenol in the PHBV monolayer was 15 wt.% since it showed high electrospinnability and thermal stability and also yielded the highest bacterial reduction against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). This eugenol-containing monolayer was then selected to be applied as an interlayer between a structural layer made of a cast-extruded poly(3-hydroxybutyrate) (PHB) sheet and a commercial PHBV film as the food contact layer. The whole system was, thereafter, annealed at 160°C for 10 s to develop a novel multilayer active packaging material. The resultant multilayer showed high hydrophobicity, strong adhesion and mechanical resistance, and improved barrier properties against water vapor and limonene vapors. The antimicrobial activity of the multilayer structure was also evaluated in both open and closed systems for up to 15 days, showing significant reductions (R ¿ 1 and < 3) for the two strains of food-borne bacteria. Higher inhibition values were particularly attained against S. aureus due to the higher activity of eugenol against the cell membrane of Gram positive (G+) bacteria. The multilayer also provided the highest antimicrobial activity for the closed system, which better resembles the actual packaging and it was related to the headspace accumulation of the volatile compounds. Hence, the here-developed multilayer fully based on polyhydroxyalkanoates (PHAs) shows a great deal of potential for antimicrobial packaging applications using biodegradable materials to increase both quality and safety of food products. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministry of Science and Innovation (MICI) through the RTI2018-097249-B-C21 program number and the H2020 EU project YPACK (reference number 773872). KF-L is a recipient of a Santiago Grisolía (Ref. 0001426013N810001A201) research contract of the Valencian Government (GVA) whereas ST-G holds a Juan de la Cierva¿ Incorporación contract (IJCI-2016-29675) from MICI. The authors would also like to thank the Unidad Asociada IATA-UJI Plastics Technology. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media S.A. es_ES
dc.relation Agencia Estatal de Investigación/IJCI-2016-29675 es_ES
dc.relation MCIU/RTI2018-097249-B-C21 es_ES
dc.relation GV/0001426013N810001A201 es_ES
dc.relation.ispartof Frontiers in Nutrition es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Development of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fnut.2020.00140 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/773872/EU/HIGH PERFORMANCE POLYHYDROXYALKANOATES BASED PACKAGING TO MINIMISE FOOD WASTE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Figueroa-López, KJ.; Cabedo, L.; Lagaron, JM.; Torres Giner, S. (2020). Development of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging. Frontiers in Nutrition. 7:1-16. https://doi.org/10.3389/fnut.2020.00140 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fnut.2020.00140 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.identifier.eissn 2296-861X es_ES
dc.identifier.pmid 33015118 es_ES
dc.identifier.pmcid PMC7509432 es_ES
dc.relation.pasarela S\427338 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Fu, Y., Sarkar, P., Bhunia, A. K., & Yao, Y. (2016). Delivery systems of antimicrobial compounds to food. Trends in Food Science & Technology, 57, 165-177. doi:10.1016/j.tifs.2016.09.013 es_ES
dc.description.references Petersen, K., Væggemose Nielsen, P., Bertelsen, G., Lawther, M., Olsen, M. B., Nilsson, N. H., & Mortensen, G. (1999). Potential of biobased materials for food packaging. Trends in Food Science & Technology, 10(2), 52-68. doi:10.1016/s0924-2244(99)00019-9 es_ES
dc.description.references Arena, U., & Di Gregorio, F. (2014). A waste management planning based on substance flow analysis. Resources, Conservation and Recycling, 85, 54-66. doi:10.1016/j.resconrec.2013.05.008 es_ES
dc.description.references Kumar, G., Ponnusamy, V. K., Bhosale, R. R., Shobana, S., Yoon, J.-J., Bhatia, S. K., … Kim, S.-H. (2019). A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Bioresource Technology, 287, 121427. doi:10.1016/j.biortech.2019.121427 es_ES
dc.description.references Shen, M., Huang, W., Chen, M., Song, B., Zeng, G., & Zhang, Y. (2020). (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. Journal of Cleaner Production, 254, 120138. doi:10.1016/j.jclepro.2020.120138 es_ES
dc.description.references Mannina, G., Presti, D., Montiel-Jarillo, G., Carrera, J., & Suárez-Ojeda, M. E. (2020). Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review. Bioresource Technology, 297, 122478. doi:10.1016/j.biortech.2019.122478 es_ES
dc.description.references Costa, S. S., Miranda, A. L., de Morais, M. G., Costa, J. A. V., & Druzian, J. I. (2019). Microalgae as source of polyhydroxyalkanoates (PHAs) — A review. International Journal of Biological Macromolecules, 131, 536-547. doi:10.1016/j.ijbiomac.2019.03.099 es_ES
dc.description.references Nielsen, C., Rahman, A., Rehman, A. U., Walsh, M. K., & Miller, C. D. (2017). Food waste conversion to microbial polyhydroxyalkanoates. Microbial Biotechnology, 10(6), 1338-1352. doi:10.1111/1751-7915.12776 es_ES
dc.description.references Bhatia, S. K., Gurav, R., Choi, T.-R., Jung, H.-R., Yang, S.-Y., Moon, Y.-M., … Yang, Y.-H. (2019). Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresource Technology, 271, 306-315. doi:10.1016/j.biortech.2018.09.122 es_ES
dc.description.references Bhatia, S. K., Shim, Y.-H., Jeon, J.-M., Brigham, C. J., Kim, Y.-H., Kim, H.-J., … Yang, Y.-H. (2015). Starch based polyhydroxybutyrate production in engineered Escherichia coli. Bioprocess and Biosystems Engineering, 38(8), 1479-1484. doi:10.1007/s00449-015-1390-y es_ES
dc.description.references Park, Y.-L., Bhatia, S. K., Gurav, R., Choi, T.-R., Kim, H. J., Song, H.-S., … Yang, Y.-H. (2020). Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies. International Journal of Biological Macromolecules, 154, 929-936. doi:10.1016/j.ijbiomac.2020.03.129 es_ES
dc.description.references Hong, J.-W., Song, H.-S., Moon, Y.-M., Hong, Y.-G., Bhatia, S. K., Jung, H.-R., … Yang, Y.-H. (2019). Polyhydroxybutyrate production in halophilic marine bacteria Vibrio proteolyticus isolated from the Korean peninsula. Bioprocess and Biosystems Engineering, 42(4), 603-610. doi:10.1007/s00449-018-02066-6 es_ES
dc.description.references Vu, D. H., Åkesson, D., Taherzadeh, M. J., & Ferreira, J. A. (2020). Recycling strategies for polyhydroxyalkanoate-based waste materials: An overview. Bioresource Technology, 298, 122393. doi:10.1016/j.biortech.2019.122393 es_ES
dc.description.references Możejko-Ciesielska, J., & Kiewisz, R. (2016). Bacterial polyhydroxyalkanoates: Still fabulous? Microbiological Research, 192, 271-282. doi:10.1016/j.micres.2016.07.010 es_ES
dc.description.references Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002 es_ES
dc.description.references Vahabi, H., Rohani Rad, E., Parpaite, T., Langlois, V., & Saeb, M. R. (2019). Biodegradable polyester thin films and coatings in the line of fire: the time of polyhydroxyalkanoate (PHA)? Progress in Organic Coatings, 133, 85-89. doi:10.1016/j.porgcoat.2019.04.044 es_ES
dc.description.references Jung, H.-R., Jeon, J.-M., Yi, D.-H., Song, H.-S., Yang, S.-Y., Choi, T.-R., … Yang, Y.-H. (2019). Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolymer production from volatile fatty acids using engineered Ralstonia eutropha. International Journal of Biological Macromolecules, 138, 370-378. doi:10.1016/j.ijbiomac.2019.07.091 es_ES
dc.description.references Rehm, B. H. A., & Steinbüchel, A. (1999). Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. International Journal of Biological Macromolecules, 25(1-3), 3-19. doi:10.1016/s0141-8130(99)00010-0 es_ES
dc.description.references Tarawat, S., Incharoensakdi, A., & Monshupanee, T. (2020). Cyanobacterial production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from carbon dioxide or a single organic substrate: improved polymer elongation with an extremely high 3-hydroxyvalerate mole proportion. Journal of Applied Phycology, 32(2), 1095-1102. doi:10.1007/s10811-020-02040-4 es_ES
dc.description.references Bhatia, S. K., Yoon, J.-J., Kim, H.-J., Hong, J. W., Gi Hong, Y., Song, H.-S., … Yang, Y.-H. (2018). Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding. Bioresource Technology, 257, 92-101. doi:10.1016/j.biortech.2018.02.056 es_ES
dc.description.references Quillaguamán, J., Guzmán, H., Van-Thuoc, D., & Hatti-Kaul, R. (2009). Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Applied Microbiology and Biotechnology, 85(6), 1687-1696. doi:10.1007/s00253-009-2397-6 es_ES
dc.description.references Cinelli, P., Seggiani, M., Mallegni, N., Gigante, V., & Lazzeri, A. (2019). Processability and Degradability of PHA-Based Composites in Terrestrial Environments. International Journal of Molecular Sciences, 20(2), 284. doi:10.3390/ijms20020284 es_ES
dc.description.references Melendez-Rodriguez, B., Torres-Giner, S., Aldureid, A., Cabedo, L., & Lagaron, J. M. (2019). Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Materials, 12(13), 2152. doi:10.3390/ma12132152 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789 es_ES
dc.description.references Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115 es_ES
dc.description.references Radusin, T., Torres-Giner, S., Stupar, A., Ristic, I., Miletic, A., Novakovic, A., & Lagaron, J. M. (2019). Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packaging and Shelf Life, 21, 100357. doi:10.1016/j.fpsl.2019.100357 es_ES
dc.description.references Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., … Rather, M. A. (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogenesis, 134, 103580. doi:10.1016/j.micpath.2019.103580 es_ES
dc.description.references Dorman, H. J. D., & Deans, S. G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308-316. doi:10.1046/j.1365-2672.2000.00969.x es_ES
dc.description.references Jia, C., Cao, D., Ji, S., Zhang, X., & Muhoza, B. (2020). Tannic acid-assisted cross-linked nanoparticles as a delivery system of eugenol: The characterization, thermal degradation and antioxidant properties. Food Hydrocolloids, 104, 105717. doi:10.1016/j.foodhyd.2020.105717 es_ES
dc.description.references Kim, J., Marshall, M. R., & Wei, C. (1995). Antibacterial activity of some essential oil components against five foodborne pathogens. Journal of Agricultural and Food Chemistry, 43(11), 2839-2845. doi:10.1021/jf00059a013 es_ES
dc.description.references Walsh, S. E., Maillard, J.-Y., Russell, A. D., Catrenich, C. E., Charbonneau, D. L., & Bartolo, R. G. (2003). Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. Journal of Applied Microbiology, 94(2), 240-247. doi:10.1046/j.1365-2672.2003.01825.x es_ES
dc.description.references ELGAYYAR, M., DRAUGHON, F. A., GOLDEN, D. A., & MOUNT, J. R. (2001). Antimicrobial Activity of Essential Oils from Plants against Selected Pathogenic and Saprophytic Microorganisms. Journal of Food Protection, 64(7), 1019-1024. doi:10.4315/0362-028x-64.7.1019 es_ES
dc.description.references Devi, K. P., Nisha, S. A., Sakthivel, R., & Pandian, S. K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 130(1), 107-115. doi:10.1016/j.jep.2010.04.025 es_ES
dc.description.references Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology, 8(6), 423-435. doi:10.1038/nrmicro2333 es_ES
dc.description.references Khameneh, B., Iranshahy, M., Soheili, V., & Fazly Bazzaz, B. S. (2019). Review on plant antimicrobials: a mechanistic viewpoint. Antimicrobial Resistance & Infection Control, 8(1). doi:10.1186/s13756-019-0559-6 es_ES
dc.description.references Li, Y., Dong, Q., Chen, J., & Li, L. (2020). Effects of coaxial electrospun eugenol loaded core-sheath PVP/shellac fibrous films on postharvest quality and shelf life of strawberries. Postharvest Biology and Technology, 159, 111028. doi:10.1016/j.postharvbio.2019.111028 es_ES
dc.description.references Celebioglu, A., Yildiz, Z. I., & Uyar, T. (2018). Fabrication of Electrospun Eugenol/Cyclodextrin Inclusion Complex Nanofibrous Webs for Enhanced Antioxidant Property, Water Solubility, and High Temperature Stability. Journal of Agricultural and Food Chemistry, 66(2), 457-466. doi:10.1021/acs.jafc.7b04312 es_ES
dc.description.references Soares, R. M. D., Siqueira, N. M., Prabhakaram, M. P., & Ramakrishna, S. (2018). Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Materials Science and Engineering: C, 92, 969-982. doi:10.1016/j.msec.2018.08.004 es_ES
dc.description.references Figueroa-Lopez, K., Castro-Mayorga, J., Andrade-Mahecha, M., Cabedo, L., & Lagaron, J. (2018). Antibacterial and Barrier Properties of Gelatin Coated by Electrospun Polycaprolactone Ultrathin Fibers Containing Black Pepper Oleoresin of Interest in Active Food Biopackaging Applications. Nanomaterials, 8(4), 199. doi:10.3390/nano8040199 es_ES
dc.description.references Marangoni Júnior, L., Oliveira, L. M. de, Bócoli, P. F. J., Cristianini, M., Padula, M., & Anjos, C. A. R. (2020). Morphological, thermal and mechanical properties of polyamide and ethylene vinyl alcohol multilayer flexible packaging after high-pressure processing. Journal of Food Engineering, 276, 109913. doi:10.1016/j.jfoodeng.2020.109913 es_ES
dc.description.references Gómez Ramos, M. J., Lozano, A., & Fernández-Alba, A. R. (2019). High-resolution mass spectrometry with data independent acquisition for the comprehensive non-targeted analysis of migrating chemicals coming from multilayer plastic packaging materials used for fruit purée and juice. Talanta, 191, 180-192. doi:10.1016/j.talanta.2018.08.023 es_ES
dc.description.references Wang, L., Chen, C., Wang, J., Gardner, D. J., & Tajvidi, M. (2020). Cellulose nanofibrils versus cellulose nanocrystals: Comparison of performance in flexible multilayer films for packaging applications. Food Packaging and Shelf Life, 23, 100464. doi:10.1016/j.fpsl.2020.100464 es_ES
dc.description.references Garrido-López, Á., & Tena, M. T. (2010). Study of multilayer packaging delamination mechanisms using different surface analysis techniques. Applied Surface Science, 256(12), 3799-3805. doi:10.1016/j.apsusc.2010.01.029 es_ES
dc.description.references Úbeda, S., Aznar, M., Vera, P., Nerín, C., Henríquez, L., Taborda, L., & Restrepo, C. (2017). Overall and specific migration from multilayer high barrier food contact materials – kinetic study of cyclic polyester oligomers migration. Food Additives & Contaminants: Part A, 34(10), 1784-1794. doi:10.1080/19440049.2017.1346390 es_ES
dc.description.references Anukiruthika, T., Sethupathy, P., Wilson, A., Kashampur, K., Moses, J. A., & Anandharamakrishnan, C. (2020). Multilayer packaging: Advances in preparation techniques and emerging food applications. Comprehensive Reviews in Food Science and Food Safety, 19(3), 1156-1186. doi:10.1111/1541-4337.12556 es_ES
dc.description.references Mount, E. (2010). Coextrusion equipment for multilayer flat films and sheets. Multilayer Flexible Packaging, 75-95. doi:10.1016/b978-0-8155-2021-4.10006-1 es_ES
dc.description.references Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274 es_ES
dc.description.references Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768 es_ES
dc.description.references Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2013). High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein. Food Hydrocolloids, 32(1), 106-114. doi:10.1016/j.foodhyd.2012.12.007 es_ES
dc.description.references Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1-9. doi:10.1016/j.jfoodeng.2013.11.022 es_ES
dc.description.references Cherpinski, A., Torres‐Giner, S., Cabedo, L., Méndez, J. A., & Lagaron, J. M. (2017). Multilayer structures based on annealed electrospun biopolymer coatings of interest in water and aroma barrier fiber‐based food packaging applications. Journal of Applied Polymer Science, 135(24), 45501. doi:10.1002/app.45501 es_ES
dc.description.references Cherpinski, A., Torres-Giner, S., Vartiainen, J., Peresin, M. S., Lahtinen, P., & Lagaron, J. M. (2018). Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 25(2), 1291-1307. doi:10.1007/s10570-018-1648-z es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Lagaron, J., Balart, R., & Torres-Giner, S. (2019). Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences, 9(3), 533. doi:10.3390/app9030533 es_ES
dc.description.references Akinalan Balik, B., Argin, S., Lagaron, J. M., & Torres-Giner, S. (2019). Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging. Applied Sciences, 9(23), 5136. doi:10.3390/app9235136 es_ES
dc.description.references Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144 es_ES
dc.description.references Castro-Mayorga, J. L., Fabra, M. J., Pourrahimi, A. M., Olsson, R. T., & Lagaron, J. M. (2017). The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications. Food and Bioproducts Processing, 101, 32-44. doi:10.1016/j.fbp.2016.10.007 es_ES
dc.description.references Cerqueira, M. A., Fabra, M. J., Castro-Mayorga, J. L., Bourbon, A. I., Pastrana, L. M., Vicente, A. A., & Lagaron, J. M. (2016). Use of Electrospinning to Develop Antimicrobial Biodegradable Multilayer Systems: Encapsulation of Cinnamaldehyde and Their Physicochemical Characterization. Food and Bioprocess Technology, 9(11), 1874-1884. doi:10.1007/s11947-016-1772-4 es_ES
dc.description.references Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348 es_ES
dc.description.references Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9-19. doi:10.1016/j.foodhyd.2013.08.030 es_ES
dc.description.references Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254-263. doi:10.1016/j.eurpolymj.2010.12.011 es_ES
dc.description.references Torres-Giner, S., Gimenez, E., & Lagaron, J. M. (2008). Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning. Food Hydrocolloids, 22(4), 601-614. doi:10.1016/j.foodhyd.2007.02.005 es_ES
dc.description.references Torres‐Giner, S., Ocio, M. J., & Lagaron, J. M. (2008). Development of Active Antimicrobial Fiber‐Based Chitosan Polysaccharide Nanostructures using Electrospinning. Engineering in Life Sciences, 8(3), 303-314. doi:10.1002/elsc.200700066 es_ES
dc.description.references Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martínez-Máñez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 9(2), 227. doi:10.3390/nano9020227 es_ES
dc.description.references Shen, Z., & Kamdem, D. P. (2015). Development and characterization of biodegradable chitosan films containing two essential oils. International Journal of Biological Macromolecules, 74, 289-296. doi:10.1016/j.ijbiomac.2014.11.046 es_ES
dc.description.references Haghighi, H., Biard, S., Bigi, F., De Leo, R., Bedin, E., Pfeifer, F., … Pulvirenti, A. (2019). Comprehensive characterization of active chitosan-gelatin blend films enriched with different essential oils. Food Hydrocolloids, 95, 33-42. doi:10.1016/j.foodhyd.2019.04.019 es_ES
dc.description.references Shao, Y., Wu, C., Wu, T., Li, Y., Chen, S., Yuan, C., & Hu, Y. (2018). Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: Formulation, characterization and antimicrobial activity. Carbohydrate Polymers, 193, 144-152. doi:10.1016/j.carbpol.2018.03.101 es_ES
dc.description.references Piletti, R., Bugiereck, A. M., Pereira, A. T., Gussati, E., Dal Magro, J., Mello, J. M. M., … Fiori, M. A. (2017). Microencapsulation of eugenol molecules by β-cyclodextrine as a thermal protection method of antibacterial action. Materials Science and Engineering: C, 75, 259-271. doi:10.1016/j.msec.2017.02.075 es_ES
dc.description.references Da Silva, C. G., Kano, F. S., & dos Santos Rosa, D. (2019). Thermal stability of the PBAT biofilms with cellulose nanostructures/essential oils for active packaging. Journal of Thermal Analysis and Calorimetry, 138(4), 2375-2386. doi:10.1007/s10973-019-08190-z es_ES
dc.description.references Figueroa-Lopez, K. J., Enescu, D., Torres-Giner, S., Cabedo, L., Cerqueira, M. A., Pastrana, L., … Lagaron, J. M. (2020). Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil. Food Hydrocolloids, 108, 106013. doi:10.1016/j.foodhyd.2020.106013 es_ES
dc.description.references De Souza Moura, W., de Souza, S. R., Campos, F. S., Sander Rodrigues Cangussu, A., Macedo Sobrinho Santos, E., Silva Andrade, B., … de Souza Aguiar, R. W. (2020). Antibacterial activity of Siparuna guianensis essential oil mediated by impairment of membrane permeability and replication of pathogenic bacteria. Industrial Crops and Products, 146, 112142. doi:10.1016/j.indcrop.2020.112142 es_ES
dc.description.references Alizadeh Behbahani, B., Noshad, M., & Falah, F. (2019). Cumin essential oil: Phytochemical analysis, antimicrobial activity and investigation of its mechanism of action through scanning electron microscopy. Microbial Pathogenesis, 136, 103716. doi:10.1016/j.micpath.2019.103716 es_ES
dc.description.references Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals, 6(12), 1451-1474. doi:10.3390/ph6121451 es_ES
dc.description.references Figueroa-Lopez, K. J., Torres-Giner, S., Enescu, D., Cabedo, L., Cerqueira, M. A., Pastrana, L. M., & Lagaron, J. M. (2020). Electrospun Active Biopapers of Food Waste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Short-Term and Long-Term Antimicrobial Performance. Nanomaterials, 10(3), 506. doi:10.3390/nano10030506 es_ES
dc.description.references Navikaite-Snipaitiene, V., Ivanauskas, L., Jakstas, V., Rüegg, N., Rutkaite, R., Wolfram, E., & Yildirim, S. (2018). Development of antioxidant food packaging materials containing eugenol for extending display life of fresh beef. Meat Science, 145, 9-15. doi:10.1016/j.meatsci.2018.05.015 es_ES
dc.description.references Fabra, M. J., López-Rubio, A., Cabedo, L., & Lagaron, J. M. (2016). Tailoring barrier properties of thermoplastic corn starch-based films (TPCS) by means of a multilayer design. Journal of Colloid and Interface Science, 483, 84-92. doi:10.1016/j.jcis.2016.08.021 es_ES
dc.description.references Yoon, Y. I., Moon, H. S., Lyoo, W. S., Lee, T. S., & Park, W. H. (2008). Superhydrophobicity of PHBV fibrous surface with bead-on-string structure. Journal of Colloid and Interface Science, 320(1), 91-95. doi:10.1016/j.jcis.2008.01.029 es_ES
dc.description.references Sombatmankhong, K., Suwantong, O., Waleetorncheepsawat, S., & Supaphol, P. (2006). Electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and their blends. Journal of Polymer Science Part B: Polymer Physics, 44(19), 2923-2933. doi:10.1002/polb.20915 es_ES
dc.description.references Li, X., Liu, K. L., Wang, M., Wong, S. Y., Tjiu, W. C., He, C. B., … Li, J. (2009). Improving hydrophilicity, mechanical properties and biocompatibility of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide). Acta Biomaterialia, 5(6), 2002-2012. doi:10.1016/j.actbio.2009.01.035 es_ES
dc.description.references Han, J., Wu, L.-P., Hou, J., Zhao, D., & Xiang, H. (2015). Biosynthesis, Characterization, and Hemostasis Potential of Tailor-Made Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Produced by Haloferax mediterranei. Biomacromolecules, 16(2), 578-588. doi:10.1021/bm5016267 es_ES
dc.description.references Chang, C.-K., Wang, H.-M., & Lan, J. (2018). Investigation and Characterization of Plasma-Treated Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopolymers for an In Vitro Cellular Study of Mouse Adipose-Derived Stem Cells. Polymers, 10(4), 355. doi:10.3390/polym10040355 es_ES
dc.description.references Medina-Jaramillo, C., Ochoa-Yepes, O., Bernal, C., & Famá, L. (2017). Active and smart biodegradable packaging based on starch and natural extracts. Carbohydrate Polymers, 176, 187-194. doi:10.1016/j.carbpol.2017.08.079 es_ES
dc.description.references Corre, Y.-M., Bruzaud, S., Audic, J.-L., & Grohens, Y. (2012). Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study. Polymer Testing, 31(2), 226-235. doi:10.1016/j.polymertesting.2011.11.002 es_ES
dc.description.references Kim, G. H., Han, H., Park, J. H., & Kim, W. D. (2007). An applicable electrospinning process for fabricating a mechanically improved nanofiber mat. Polymer Engineering & Science, 47(5), 707-712. doi:10.1002/pen.20744 es_ES
dc.description.references Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009 es_ES
dc.description.references Narayanan, A., Neera, Mallesha, & Ramana, K. V. (2013). Synergized Antimicrobial Activity of Eugenol Incorporated Polyhydroxybutyrate Films Against Food Spoilage Microorganisms in Conjunction with Pediocin. Applied Biochemistry and Biotechnology, 170(6), 1379-1388. doi:10.1007/s12010-013-0267-2 es_ES
dc.description.references Requena, R., Jiménez, A., Vargas, M., & Chiralt, A. (2016). Poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] active bilayer films obtained by compression moulding and applying essential oils at the interface. Polymer International, 65(8), 883-891. doi:10.1002/pi.5091 es_ES
dc.description.references Alp-Erbay, E., Figueroa-Lopez, K. J., Lagaron, J. M., Çağlak, E., & Torres-Giner, S. (2019). The impact of electrospun films of poly(ε-caprolactone) filled with nanostructured zeolite and silica microparticles on in vitro histamine formation by Staphylococcus aureus and Salmonella Paratyphi A. Food Packaging and Shelf Life, 22, 100414. doi:10.1016/j.fpsl.2019.100414 es_ES
dc.description.references Razumovskii, L. P., Iordanskii, A. L., Zaikov, G. E., Zagreba, E. D., & McNeill, I. C. (1994). Sorption and diffusion of water and organic solvents in poly(β-hydroxybutyrate) films. Polymer Degradation and Stability, 44(2), 171-175. doi:10.1016/0141-3910(94)90161-9 es_ES
dc.description.references Figueroa-Lopez, K., Andrade-Mahecha, M., & Torres-Vargas, O. (2018). Development of Antimicrobial Biocomposite Films to Preserve the Quality of Bread. Molecules, 23(1), 212. doi:10.3390/molecules23010212 es_ES
dc.description.references Hasheminya, S.-M., Mokarram, R. R., Ghanbarzadeh, B., Hamishekar, H., Kafil, H. S., & Dehghannya, J. (2019). Development and characterization of biocomposite films made from kefiran, carboxymethyl cellulose and Satureja Khuzestanica essential oil. Food Chemistry, 289, 443-452. doi:10.1016/j.foodchem.2019.03.076 es_ES
dc.description.references Requena, R., Vargas, M., & Chiralt, A. (2018). Obtaining antimicrobial bilayer starch and polyester-blend films with carvacrol. Food Hydrocolloids, 83, 118-133. doi:10.1016/j.foodhyd.2018.04.045 es_ES
dc.description.references Al-Tayyar, N. A., Youssef, A. M., & Al-hindi Rashad. (2020). Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: A review. Food Chemistry, 310, 125915. doi:10.1016/j.foodchem.2019.125915 es_ES
dc.description.references Ribes, S., Ruiz-Rico, M., Pérez-Esteve, É., Fuentes, A., & Barat, J. M. (2019). Enhancing the antimicrobial activity of eugenol, carvacrol and vanillin immobilised on silica supports against Escherichia coli or Zygosaccharomyces rouxii in fruit juices by their binary combinations. LWT, 113, 108326. doi:10.1016/j.lwt.2019.108326 es_ES


This item appears in the following Collection(s)

Show simple item record