- -

Unusually Low Heat of Adsorption of CO2 on AlPO and SAPO Molecular Sieves

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Unusually Low Heat of Adsorption of CO2 on AlPO and SAPO Molecular Sieves

Show full item record

Pérez-Botella, E.; Martínez-Franco, R.; Gonzalez-Camuñas, N.; Cantin Sanz, A.; Palomino Roca, M.; Moliner Marin, M.; Valencia Valencia, S.... (2020). Unusually Low Heat of Adsorption of CO2 on AlPO and SAPO Molecular Sieves. Frontiers in Chemistry. 8:1-10. https://doi.org/10.3389/fchem.2020.588712

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166142

Files in this item

Item Metadata

Title: Unusually Low Heat of Adsorption of CO2 on AlPO and SAPO Molecular Sieves
Author: Pérez-Botella, Eduardo Martínez-Franco, Raquel Gonzalez-Camuñas, Nuria Cantin Sanz, Angel Palomino Roca, Miguel Moliner Marin, Manuel Valencia Valencia, Susana Rey Garcia, Fernando
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Issued date:
Abstract:
[EN] The capture of CO2 from post-combustion streams or from other mixtures, such as natural gas, is an effective way of reducing CO2 emissions, which contribute to the greenhouse effect in the atmosphere. One of the ...[+]
Subjects: Carbon dioxide , Separation , Adsorption , Capture , Molecular sieves , Zeolites
Copyrigths: Reconocimiento (by)
Source:
Frontiers in Chemistry. (eissn: 2296-2646 )
DOI: 10.3389/fchem.2020.588712
Publisher:
Frontiers Media SA
Publisher version: https://doi.org/10.3389/fchem.2020.588712
Project ID:
info:eu-repo/grantAgreement/EC/H2020/720783/EU/MULTI-site organic-inorganic HYbrid CATalysts for MULTI-step chemical processes/
...[+]
info:eu-repo/grantAgreement/EC/H2020/720783/EU/MULTI-site organic-inorganic HYbrid CATalysts for MULTI-step chemical processes/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/Fundación Ramón Areces//CIVP18A3908/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/
info:eu-repo/grantAgreement/MECD//FPU15%2F01602/ES/FPU15%2F01602/
info:eu-repo/grantAgreement/AEI//BES-2016-078178/
[-]
Thanks:
We acknowledge the Spanish Ministry of Sciences, Innovation and Universities (MCIU), State Research Agency (AEI), and the European Fund for Regional Development (FEDER) for their funding via projects Multi2HYcat (EU-Horizon ...[+]
Type: Artículo

References

Bacsik, Z., Cheung, O., Vasiliev, P., & Hedin, N. (2016). Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56. Applied Energy, 162, 613-621. doi:10.1016/j.apenergy.2015.10.109

BaerlocherC. H. McCuskerL. B. Database of Zeolite Structures

Boot-Handford, M. E., Abanades, J. C., Anthony, E. J., Blunt, M. J., Brandani, S., Mac Dowell, N., … Fennell, P. S. (2014). Carbon capture and storage update. Energy Environ. Sci., 7(1), 130-189. doi:10.1039/c3ee42350f [+]
Bacsik, Z., Cheung, O., Vasiliev, P., & Hedin, N. (2016). Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56. Applied Energy, 162, 613-621. doi:10.1016/j.apenergy.2015.10.109

BaerlocherC. H. McCuskerL. B. Database of Zeolite Structures

Boot-Handford, M. E., Abanades, J. C., Anthony, E. J., Blunt, M. J., Brandani, S., Mac Dowell, N., … Fennell, P. S. (2014). Carbon capture and storage update. Energy Environ. Sci., 7(1), 130-189. doi:10.1039/c3ee42350f

BourgogneM. GuthJ.-L. WeyR. Process for the Preparation of Synthetic Zeolites, and Zeolites Obtained by Said Process1985

Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., … Mac Dowell, N. (2018). Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, 11(5), 1062-1176. doi:10.1039/c7ee02342a

Cheung, O., Liu, Q., Bacsik, Z., & Hedin, N. (2012). Silicoaluminophosphates as CO2 sorbents. Microporous and Mesoporous Materials, 156, 90-96. doi:10.1016/j.micromeso.2012.02.003

Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909

Dawson, D. M., Griffin, J. M., Seymour, V. R., Wheatley, P. S., Amri, M., Kurkiewicz, T., … Ashbrook, S. E. (2017). A Multinuclear NMR Study of Six Forms of AlPO-34: Structure and Motional Broadening. The Journal of Physical Chemistry C, 121(3), 1781-1793. doi:10.1021/acs.jpcc.6b11908

Díaz-Cabañas, M.-J., & Barrett, P. A. (1998). Synthesis and structure of pure SiO2 chabazite: the SiO2 polymorph with the lowest framework density. Chemical Communications, (17), 1881-1882. doi:10.1039/a804800b

Fischer, M. (2017). Computational evaluation of aluminophosphate zeotypes for CO2/N2 separation. Physical Chemistry Chemical Physics, 19(34), 22801-22812. doi:10.1039/c7cp03841k

García, E. J., Pérez-Pellitero, J., Pirngruber, G. D., Jallut, C., Palomino, M., Rey, F., & Valencia, S. (2014). Tuning the Adsorption Properties of Zeolites as Adsorbents for CO2 Separation: Best Compromise between the Working Capacity and Selectivity. Industrial & Engineering Chemistry Research, 53(23), 9860-9874. doi:10.1021/ie500207s

Girnus, I., Jancke, K., Vetter, R., Richter-Mendau, J., & Caro, J. (1995). Large AlPO4-5 crystals by microwave heating. Zeolites, 15(1), 33-39. doi:10.1016/0144-2449(94)00004-c

Global Status Report of CCS2019

International Zeolite Association Synthesis Commission

Lee, K. B., Beaver, M. G., Caram, H. S., & Sircar, S. (2008). Reversible Chemisorbents for Carbon Dioxide and Their Potential Applications. Industrial & Engineering Chemistry Research, 47(21), 8048-8062. doi:10.1021/ie800795y

Lee, S.-Y., & Park, S.-J. (2015). A review on solid adsorbents for carbon dioxide capture. Journal of Industrial and Engineering Chemistry, 23, 1-11. doi:10.1016/j.jiec.2014.09.001

Lemishko, T., Valencia, S., Rey, F., Jiménez-Ruiz, M., & Sastre, G. (2016). Inelastic Neutron Scattering Study on the Location of Brønsted Acid Sites in High Silica LTA Zeolite. The Journal of Physical Chemistry C, 120(43), 24904-24909. doi:10.1021/acs.jpcc.6b09012

Leung, D. Y. C., Caramanna, G., & Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426-443. doi:10.1016/j.rser.2014.07.093

Liu, X., Vlugt, T. J. H., & Bardow, A. (2011). Maxwell–Stefan diffusivities in liquid mixtures: Using molecular dynamics for testing model predictions. Fluid Phase Equilibria, 301(1), 110-117. doi:10.1016/j.fluid.2010.11.019

Man, P. P., Briend, M., Peltre, M. J., Lamy, A., Beaunier, P., & Barthomeuf, D. (1991). A topological model for the silicon incorporation in SAPO-37 molecular sieves: Correlations with acidity and catalysis. Zeolites, 11(6), 563-572. doi:10.1016/s0144-2449(05)80006-5

Martin, C., Tosi-Pellenq, N., Patarin, J., & Coulomb, J. P. (1998). Sorption Properties of AlPO4-5 and SAPO-5 Zeolite-like Materials. Langmuir, 14(7), 1774-1778. doi:10.1021/la960755c

Martínez-Franco, R., Cantín, Á., Vidal-Moya, A., Moliner, M., & Corma, A. (2015). Self-Assembled Aromatic Molecules as Efficient Organic Structure Directing Agents to Synthesize the Silicoaluminophosphate SAPO-42 with Isolated Si Species. Chemistry of Materials, 27(8), 2981-2989. doi:10.1021/acs.chemmater.5b00337

Martínez-Franco, R., Li, Z., Martínez-Triguero, J., Moliner, M., & Corma, A. (2016). Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size. Catalysis Science & Technology, 6(8), 2796-2806. doi:10.1039/c5cy02298c

Miyamoto, M., Fujioka, Y., & Yogo, K. (2012). Pure silica CHA type zeolite for CO2 separation using pressure swing adsorption at high pressure. Journal of Materials Chemistry, 22(38), 20186. doi:10.1039/c2jm34597h

Van Nordstrand, R. A., Santilli, D. S., & Zones, S. I. (1988). An All-Silica Molecular Sieve That Is Isostructural with AlPO4-5. Perspectives in Molecular Sieve Science, 236-245. doi:10.1021/bk-1988-0368.ch015

Palomino, M., Corma, A., Rey, F., & Valencia, S. (2009). New Insights on CO2−Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 26(3), 1910-1917. doi:10.1021/la9026656

Pham, T. D., Hudson, M. R., Brown, C. M., & Lobo, R. F. (2014). Molecular Basis for the High CO2Adsorption Capacity of Chabazite Zeolites. ChemSusChem, 7(11), 3031-3038. doi:10.1002/cssc.201402555

Prakash, A. M., & Unnikrishnan, S. (1994). Synthesis of SAPO-34: high silicon incorporation in the presence of morpholine as template. Journal of the Chemical Society, Faraday Transactions, 90(15), 2291. doi:10.1039/ft9949002291

Riboldi, L., & Bolland, O. (2017). Overview on Pressure Swing Adsorption (PSA) as CO2 Capture Technology: State-of-the-Art, Limits and Potentials. Energy Procedia, 114, 2390-2400. doi:10.1016/j.egypro.2017.03.1385

Rubin, E. S., Davison, J. E., & Herzog, H. J. (2015). The cost of CO2 capture and storage. International Journal of Greenhouse Gas Control, 40, 378-400. doi:10.1016/j.ijggc.2015.05.018

Schreyeck, L., Stumbe, J., Caullet, P., Mougenel, J.-C., & Marler, B. (1998). The diaza-polyoxa-macrocycle `Kryptofix222’ as a new template for the synthesis of LTA-type AlPO4. Microporous and Mesoporous Materials, 22(1-3), 87-106. doi:10.1016/s1387-1811(98)00082-1

Shang, J., Li, G., Singh, R., Gu, Q., Nairn, K. M., Bastow, T. J., … Webley, P. A. (2012). Discriminative Separation of Gases by a «Molecular Trapdoor» Mechanism in Chabazite Zeolites. Journal of the American Chemical Society, 134(46), 19246-19253. doi:10.1021/ja309274y

Sircar, S., & Myers, A. (2003). Gas Separation by Zeolites. Handbook of Zeolite Science and Technology. doi:10.1201/9780203911167.ch22

Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., … Mirodatos, C. (2009). Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chemical Engineering Journal, 155(3), 553-566. doi:10.1016/j.cej.2009.09.010

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. doi:10.1515/pac-2014-1117

NIST Chemistry WebBook, SRD 69–Carbon Dioxide

Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R., & Flanigen, E. M. (1982). Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 104(4), 1146-1147. doi:10.1021/ja00368a062

Young, D., & Davis, M. E. (1991). Studies on SAPO-5: synthesis with higher silicon contents. Zeolites, 11(3), 277-281. doi:10.1016/s0144-2449(05)80232-5

Zibrowius, B., Löffler, E., & Hunger, M. (1992). Multinuclear MAS n.m.r. and i.r. spectroscopic study of silicon incorporation into SAPO-5, SAPO-31, and SAPO-34 molecular sieves. Zeolites, 12(2), 167-174. doi:10.1016/0144-2449(92)90079-5

Zones, S. I. (1991). Conversion of faujasites to high-silica chabazite SSZ-13 in the presence of N,N,N-trimethyl-1-adamantammonium iodide. Journal of the Chemical Society, Faraday Transactions, 87(22), 3709. doi:10.1039/ft9918703709

Zones, S. I., & Van Nordstrand, R. A. (1988). Novel zeolite transformations: The template-mediated conversion of Cubic P zeolite to SSZ-13. Zeolites, 8(3), 166-174. doi:10.1016/s0144-2449(88)80302-6

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record