- -

Unusually Low Heat of Adsorption of CO2 on AlPO and SAPO Molecular Sieves

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unusually Low Heat of Adsorption of CO2 on AlPO and SAPO Molecular Sieves

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-Botella, Eduardo es_ES
dc.contributor.author Martínez-Franco, Raquel es_ES
dc.contributor.author Gonzalez-Camuñas, Nuria es_ES
dc.contributor.author Cantin Sanz, Angel es_ES
dc.contributor.author Palomino Roca, Miguel es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Valencia Valencia, Susana es_ES
dc.contributor.author Rey Garcia, Fernando es_ES
dc.date.accessioned 2021-05-11T03:31:57Z
dc.date.available 2021-05-11T03:31:57Z
dc.date.issued 2020-10-28 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166142
dc.description.abstract [EN] The capture of CO2 from post-combustion streams or from other mixtures, such as natural gas, is an effective way of reducing CO2 emissions, which contribute to the greenhouse effect in the atmosphere. One of the developing technologies for this purpose is physisorption on selective solid adsorbents. The ideal adsorbents are selective toward CO2, have a large adsorption capacity at atmospheric pressure and are easily regenerated, resulting in high working capacity. Therefore, adsorbents combining molecular sieving properties and low heats of adsorption of CO2 are of clear interest as they will provide high selectivities and regenerabilities in CO2 separation process. Here we report that some aluminophosphate (AlPO) and silicoaluminophosphate (SAPO) materials with LTA, CHA and AFI structures present lower heats of adsorption of CO2 (13¿25 kJ/mol) than their structurally analogous zeolites at comparable framework charges. In some cases, their heats of adsorption are even lower than those of pure silica composition (20¿25 kJ/mol). This could mean a great improvement in the regeneration process compared to the most frequently used zeolitic adsorbents for this application while maintaining most of their adsorption capacity, if materials with the right stability and pore size and topology are found. es_ES
dc.description.sponsorship We acknowledge the Spanish Ministry of Sciences, Innovation and Universities (MCIU), State Research Agency (AEI), and the European Fund for Regional Development (FEDER) for their funding via projects Multi2HYcat (EU-Horizon 2020 funded project under grant agreement no. 720783), Program Severo Ochoa SEV-2016-0683 and RTI2018-101033-B-I00 and also Fundacion Ramon Areces for funding through a research contract (CIVP18A3908). EP-B thanks the MCIU for his grant (FPU15/01602). NG-C thanks MCIU for her grant (BES-2016-078178). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Chemistry es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Carbon dioxide es_ES
dc.subject Separation es_ES
dc.subject Adsorption es_ES
dc.subject Capture es_ES
dc.subject Molecular sieves es_ES
dc.subject Zeolites es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Unusually Low Heat of Adsorption of CO2 on AlPO and SAPO Molecular Sieves es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fchem.2020.588712 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/720783/EU/MULTI-site organic-inorganic HYbrid CATalysts for MULTI-step chemical processes/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundación Ramón Areces//CIVP18A3908/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F01602/ES/FPU15%2F01602/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2016-078178/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Pérez-Botella, E.; Martínez-Franco, R.; Gonzalez-Camuñas, N.; Cantin Sanz, A.; Palomino Roca, M.; Moliner Marin, M.; Valencia Valencia, S.... (2020). Unusually Low Heat of Adsorption of CO2 on AlPO and SAPO Molecular Sieves. Frontiers in Chemistry. 8:1-10. https://doi.org/10.3389/fchem.2020.588712 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fchem.2020.588712 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.identifier.eissn 2296-2646 es_ES
dc.identifier.pmid 33195090 es_ES
dc.identifier.pmcid PMC7655961 es_ES
dc.relation.pasarela S\425778 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Fundación Ramón Areces es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Bacsik, Z., Cheung, O., Vasiliev, P., & Hedin, N. (2016). Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56. Applied Energy, 162, 613-621. doi:10.1016/j.apenergy.2015.10.109 es_ES
dc.description.references BaerlocherC. H. McCuskerL. B. Database of Zeolite Structures es_ES
dc.description.references Boot-Handford, M. E., Abanades, J. C., Anthony, E. J., Blunt, M. J., Brandani, S., Mac Dowell, N., … Fennell, P. S. (2014). Carbon capture and storage update. Energy Environ. Sci., 7(1), 130-189. doi:10.1039/c3ee42350f es_ES
dc.description.references BourgogneM. GuthJ.-L. WeyR. Process for the Preparation of Synthetic Zeolites, and Zeolites Obtained by Said Process1985 es_ES
dc.description.references Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., … Mac Dowell, N. (2018). Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, 11(5), 1062-1176. doi:10.1039/c7ee02342a es_ES
dc.description.references Cheung, O., Liu, Q., Bacsik, Z., & Hedin, N. (2012). Silicoaluminophosphates as CO2 sorbents. Microporous and Mesoporous Materials, 156, 90-96. doi:10.1016/j.micromeso.2012.02.003 es_ES
dc.description.references Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909 es_ES
dc.description.references Dawson, D. M., Griffin, J. M., Seymour, V. R., Wheatley, P. S., Amri, M., Kurkiewicz, T., … Ashbrook, S. E. (2017). A Multinuclear NMR Study of Six Forms of AlPO-34: Structure and Motional Broadening. The Journal of Physical Chemistry C, 121(3), 1781-1793. doi:10.1021/acs.jpcc.6b11908 es_ES
dc.description.references Díaz-Cabañas, M.-J., & Barrett, P. A. (1998). Synthesis and structure of pure SiO2 chabazite: the SiO2 polymorph with the lowest framework density. Chemical Communications, (17), 1881-1882. doi:10.1039/a804800b es_ES
dc.description.references Fischer, M. (2017). Computational evaluation of aluminophosphate zeotypes for CO2/N2 separation. Physical Chemistry Chemical Physics, 19(34), 22801-22812. doi:10.1039/c7cp03841k es_ES
dc.description.references García, E. J., Pérez-Pellitero, J., Pirngruber, G. D., Jallut, C., Palomino, M., Rey, F., & Valencia, S. (2014). Tuning the Adsorption Properties of Zeolites as Adsorbents for CO2 Separation: Best Compromise between the Working Capacity and Selectivity. Industrial & Engineering Chemistry Research, 53(23), 9860-9874. doi:10.1021/ie500207s es_ES
dc.description.references Girnus, I., Jancke, K., Vetter, R., Richter-Mendau, J., & Caro, J. (1995). Large AlPO4-5 crystals by microwave heating. Zeolites, 15(1), 33-39. doi:10.1016/0144-2449(94)00004-c es_ES
dc.description.references Global Status Report of CCS2019 es_ES
dc.description.references International Zeolite Association Synthesis Commission es_ES
dc.description.references Lee, K. B., Beaver, M. G., Caram, H. S., & Sircar, S. (2008). Reversible Chemisorbents for Carbon Dioxide and Their Potential Applications. Industrial & Engineering Chemistry Research, 47(21), 8048-8062. doi:10.1021/ie800795y es_ES
dc.description.references Lee, S.-Y., & Park, S.-J. (2015). A review on solid adsorbents for carbon dioxide capture. Journal of Industrial and Engineering Chemistry, 23, 1-11. doi:10.1016/j.jiec.2014.09.001 es_ES
dc.description.references Lemishko, T., Valencia, S., Rey, F., Jiménez-Ruiz, M., & Sastre, G. (2016). Inelastic Neutron Scattering Study on the Location of Brønsted Acid Sites in High Silica LTA Zeolite. The Journal of Physical Chemistry C, 120(43), 24904-24909. doi:10.1021/acs.jpcc.6b09012 es_ES
dc.description.references Leung, D. Y. C., Caramanna, G., & Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426-443. doi:10.1016/j.rser.2014.07.093 es_ES
dc.description.references Liu, X., Vlugt, T. J. H., & Bardow, A. (2011). Maxwell–Stefan diffusivities in liquid mixtures: Using molecular dynamics for testing model predictions. Fluid Phase Equilibria, 301(1), 110-117. doi:10.1016/j.fluid.2010.11.019 es_ES
dc.description.references Man, P. P., Briend, M., Peltre, M. J., Lamy, A., Beaunier, P., & Barthomeuf, D. (1991). A topological model for the silicon incorporation in SAPO-37 molecular sieves: Correlations with acidity and catalysis. Zeolites, 11(6), 563-572. doi:10.1016/s0144-2449(05)80006-5 es_ES
dc.description.references Martin, C., Tosi-Pellenq, N., Patarin, J., & Coulomb, J. P. (1998). Sorption Properties of AlPO4-5 and SAPO-5 Zeolite-like Materials. Langmuir, 14(7), 1774-1778. doi:10.1021/la960755c es_ES
dc.description.references Martínez-Franco, R., Cantín, Á., Vidal-Moya, A., Moliner, M., & Corma, A. (2015). Self-Assembled Aromatic Molecules as Efficient Organic Structure Directing Agents to Synthesize the Silicoaluminophosphate SAPO-42 with Isolated Si Species. Chemistry of Materials, 27(8), 2981-2989. doi:10.1021/acs.chemmater.5b00337 es_ES
dc.description.references Martínez-Franco, R., Li, Z., Martínez-Triguero, J., Moliner, M., & Corma, A. (2016). Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size. Catalysis Science & Technology, 6(8), 2796-2806. doi:10.1039/c5cy02298c es_ES
dc.description.references Miyamoto, M., Fujioka, Y., & Yogo, K. (2012). Pure silica CHA type zeolite for CO2 separation using pressure swing adsorption at high pressure. Journal of Materials Chemistry, 22(38), 20186. doi:10.1039/c2jm34597h es_ES
dc.description.references Van Nordstrand, R. A., Santilli, D. S., & Zones, S. I. (1988). An All-Silica Molecular Sieve That Is Isostructural with AlPO4-5. Perspectives in Molecular Sieve Science, 236-245. doi:10.1021/bk-1988-0368.ch015 es_ES
dc.description.references Palomino, M., Corma, A., Rey, F., & Valencia, S. (2009). New Insights on CO2−Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 26(3), 1910-1917. doi:10.1021/la9026656 es_ES
dc.description.references Pham, T. D., Hudson, M. R., Brown, C. M., & Lobo, R. F. (2014). Molecular Basis for the High CO2Adsorption Capacity of Chabazite Zeolites. ChemSusChem, 7(11), 3031-3038. doi:10.1002/cssc.201402555 es_ES
dc.description.references Prakash, A. M., & Unnikrishnan, S. (1994). Synthesis of SAPO-34: high silicon incorporation in the presence of morpholine as template. Journal of the Chemical Society, Faraday Transactions, 90(15), 2291. doi:10.1039/ft9949002291 es_ES
dc.description.references Riboldi, L., & Bolland, O. (2017). Overview on Pressure Swing Adsorption (PSA) as CO2 Capture Technology: State-of-the-Art, Limits and Potentials. Energy Procedia, 114, 2390-2400. doi:10.1016/j.egypro.2017.03.1385 es_ES
dc.description.references Rubin, E. S., Davison, J. E., & Herzog, H. J. (2015). The cost of CO2 capture and storage. International Journal of Greenhouse Gas Control, 40, 378-400. doi:10.1016/j.ijggc.2015.05.018 es_ES
dc.description.references Schreyeck, L., Stumbe, J., Caullet, P., Mougenel, J.-C., & Marler, B. (1998). The diaza-polyoxa-macrocycle `Kryptofix222’ as a new template for the synthesis of LTA-type AlPO4. Microporous and Mesoporous Materials, 22(1-3), 87-106. doi:10.1016/s1387-1811(98)00082-1 es_ES
dc.description.references Shang, J., Li, G., Singh, R., Gu, Q., Nairn, K. M., Bastow, T. J., … Webley, P. A. (2012). Discriminative Separation of Gases by a «Molecular Trapdoor» Mechanism in Chabazite Zeolites. Journal of the American Chemical Society, 134(46), 19246-19253. doi:10.1021/ja309274y es_ES
dc.description.references Sircar, S., & Myers, A. (2003). Gas Separation by Zeolites. Handbook of Zeolite Science and Technology. doi:10.1201/9780203911167.ch22 es_ES
dc.description.references Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., … Mirodatos, C. (2009). Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chemical Engineering Journal, 155(3), 553-566. doi:10.1016/j.cej.2009.09.010 es_ES
dc.description.references Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. doi:10.1515/pac-2014-1117 es_ES
dc.description.references NIST Chemistry WebBook, SRD 69–Carbon Dioxide es_ES
dc.description.references Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R., & Flanigen, E. M. (1982). Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 104(4), 1146-1147. doi:10.1021/ja00368a062 es_ES
dc.description.references Young, D., & Davis, M. E. (1991). Studies on SAPO-5: synthesis with higher silicon contents. Zeolites, 11(3), 277-281. doi:10.1016/s0144-2449(05)80232-5 es_ES
dc.description.references Zibrowius, B., Löffler, E., & Hunger, M. (1992). Multinuclear MAS n.m.r. and i.r. spectroscopic study of silicon incorporation into SAPO-5, SAPO-31, and SAPO-34 molecular sieves. Zeolites, 12(2), 167-174. doi:10.1016/0144-2449(92)90079-5 es_ES
dc.description.references Zones, S. I. (1991). Conversion of faujasites to high-silica chabazite SSZ-13 in the presence of N,N,N-trimethyl-1-adamantammonium iodide. Journal of the Chemical Society, Faraday Transactions, 87(22), 3709. doi:10.1039/ft9918703709 es_ES
dc.description.references Zones, S. I., & Van Nordstrand, R. A. (1988). Novel zeolite transformations: The template-mediated conversion of Cubic P zeolite to SSZ-13. Zeolites, 8(3), 166-174. doi:10.1016/s0144-2449(88)80302-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem