- -

Outdoor microalgae-based urban wastewater treatment: recent advances, applications and future perspectives

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Outdoor microalgae-based urban wastewater treatment: recent advances, applications and future perspectives

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gonzalez-Camejo, Josue es_ES
dc.contributor.author FERRER, J. es_ES
dc.contributor.author Seco, Aurora es_ES
dc.contributor.author Barat, Ramón es_ES
dc.date.accessioned 2021-05-12T03:31:14Z
dc.date.available 2021-05-12T03:31:14Z
dc.date.issued 2021-05 es_ES
dc.identifier.issn 2049-1948 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166194
dc.description.abstract [EN] Although microalgae-based wastewater treatment has been traditionally carried out in extensive waste stabilization ponds, recent trends focus on the use of microalgae to apply the circular economy principles in the wastewater treatment sector due to the capacity of algae to absorb carbon dioxide while recovering nutrients from sewage. To this aim, the development of new intensive microalgae-based systems with higher efficiency and level of process control is required. Results obtained for these systems at lab scale are generally promising. However, upscaling to outdoor conditions is often uncertain. Some advances have been made in terms of applying open systems at large scale. However, there are still some issues related to land requirements and the economic feasibility and robustness of the process that have to be overcome to widely implement these systems. This article aims at describing the main design and operating factors regarding outdoor microalgae cultivation. It will also explain some microalgae cultivation technologies to treat wastewater, showing their advantages, disadvantages, and the possibility to treat different wastewater streams with microalgae cultures. Future perspectives of this biotechnology will be commented as well. es_ES
dc.description.sponsorship This research work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM2014-54980-C2-1-R and CTM2014-54980-C2-2-R) jointly with the European Regional Development Fund (ERDF), both of which are gratefully acknowledged. It was also supported by the Spanish Ministry of Education, Culture, and Sport via a predoctoral FPU fellowship to J. González-Camejo (FPU14/05082). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Wiley Interdisciplinary Reviews Water es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biorefinery es_ES
dc.subject Microalgae es_ES
dc.subject Outdoor es_ES
dc.subject Photobioreactor es_ES
dc.subject Wastewater es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Outdoor microalgae-based urban wastewater treatment: recent advances, applications and future perspectives es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/wat2.1518 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU2014-05082/ES/FPU2014-05082/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Gonzalez-Camejo, J.; Ferrer, J.; Seco, A.; Barat, R. (2021). Outdoor microalgae-based urban wastewater treatment: recent advances, applications and future perspectives. Wiley Interdisciplinary Reviews Water. 8(3):1-24. https://doi.org/10.1002/wat2.1518 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/wat2.1518 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\426044 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references European Comission Directive. (1998).Amending Council Directive 91/271/EEC with respect to certain requirements established in Annex I.Official Journal of the European Communities. 98/15/EC: 29–30. (C. 27 Feb). es_ES
dc.description.references Abinandan, S., & Shanthakumar, S. (2015). Challenges and opportunities in application of microalgae ( Chlorophyta ) for wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 52, 123-132. doi:10.1016/j.rser.2015.07.086 es_ES
dc.description.references Abis, K. L., & Mara, D. D. (2005). Primary facultative ponds in the UK: the effect of operational parameters on performance and algal populations. Water Science and Technology, 51(12), 61-67. doi:10.2166/wst.2005.0427 es_ES
dc.description.references Abu-Ghosh, S., Fixler, D., Dubinsky, Z., & Iluz, D. (2016). Flashing light in microalgae biotechnology. Bioresource Technology, 203, 357-363. doi:10.1016/j.biortech.2015.12.057 es_ES
dc.description.references Acién, F. G., Gómez-Serrano, C., Morales-Amaral, M. M., Fernández-Sevilla, J. M., & Molina-Grima, E. (2016). Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Applied Microbiology and Biotechnology, 100(21), 9013-9022. doi:10.1007/s00253-016-7835-7 es_ES
dc.description.references Fernández, F. G. A., Reis, A., Wijffels, R. H., Barbosa, M., Verdelho, V., & Llamas, B. (2021). The role of microalgae in the bioeconomy. New Biotechnology, 61, 99-107. doi:10.1016/j.nbt.2020.11.011 es_ES
dc.description.references Acién Fernández, F. G., Gómez-Serrano, C., & Fernández-Sevilla, J. M. (2018). Recovery of Nutrients From Wastewaters Using Microalgae. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00059 es_ES
dc.description.references AlMomani, F. A., & Örmeci, B. (2016). Performance Of Chlorella Vulgaris, Neochloris Oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate. Ecological Engineering, 95, 280-289. doi:10.1016/j.ecoleng.2016.06.038 es_ES
dc.description.references Arbib, Z., de Godos, I., Ruiz, J., & Perales, J. A. (2017). Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Science of The Total Environment, 589, 66-72. doi:10.1016/j.scitotenv.2017.02.206 es_ES
dc.description.references Arias, D. M., Rueda, E., García-Galán, M. J., Uggetti, E., & García, J. (2019). Selection of cyanobacteria over green algae in a photo-sequencing batch bioreactor fed with wastewater. Science of The Total Environment, 653, 485-495. doi:10.1016/j.scitotenv.2018.10.342 es_ES
dc.description.references Assunção, J., & Malcata, F. X. (2020). Enclosed «non-conventional» photobioreactors for microalga production: A review. Algal Research, 52, 102107. doi:10.1016/j.algal.2020.102107 es_ES
dc.description.references Barbera, E., Sforza, E., Grandi, A., & Bertucco, A. (2020). Uncoupling solid and hydraulic retention time in photobioreactors for microalgae mass production: A model-based analysis. Chemical Engineering Science, 218, 115578. doi:10.1016/j.ces.2020.115578 es_ES
dc.description.references Barceló-Villalobos, M., Fernández-del Olmo, P., Guzmán, J. L., Fernández-Sevilla, J. M., & Acién Fernández, F. G. (2019). Evaluation of photosynthetic light integration by microalgae in a pilot-scale raceway reactor. Bioresource Technology, 280, 404-411. doi:10.1016/j.biortech.2019.02.032 es_ES
dc.description.references Behera, B., Acharya, A., Gargey, I. A., Aly, N., & P, B. (2019). Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production. Bioresource Technology Reports, 5, 297-316. doi:10.1016/j.biteb.2018.08.001 es_ES
dc.description.references Bhattacharya, M., & Goswami, S. (2020). Microalgae – A green multi-product biorefinery for future industrial prospects. Biocatalysis and Agricultural Biotechnology, 25, 101580. doi:10.1016/j.bcab.2020.101580 es_ES
dc.description.references Bosma, R., de Vree, J. H., Slegers, P. M., Janssen, M., Wijffels, R. H., & Barbosa, M. J. (2014). Design and construction of the microalgal pilot facility AlgaePARC. Algal Research, 6, 160-169. doi:10.1016/j.algal.2014.10.006 es_ES
dc.description.references Butler, E., Hung, Y.-T., Suleiman Al Ahmad, M., Yeh, R. Y.-L., Liu, R. L.-H., & Fu, Y.-P. (2015). Oxidation pond for municipal wastewater treatment. Applied Water Science, 7(1), 31-51. doi:10.1007/s13201-015-0285-z es_ES
dc.description.references Cano R. Rogalla F. Arbib Z. Sauco C. Lara E. (2019).Carbon Footprint Assessment of Microalgae Systems for Wastewater Treatment. IWAlgae 2019: IWA conference. Valladolid Spain. es_ES
dc.description.references Chai, W. S., Tan, W. G., Halimatul Munawaroh, H. S., Gupta, V. K., Ho, S.-H., & Show, P. L. (2021). Multifaceted roles of microalgae in the application of wastewater biotreatment: A review. Environmental Pollution, 269, 116236. doi:10.1016/j.envpol.2020.116236 es_ES
dc.description.references Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306. doi:10.1016/j.biotechadv.2007.02.001 es_ES
dc.description.references Christenson, L. B., & Sims, R. C. (2012). Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnology and Bioengineering, 109(7), 1674-1684. doi:10.1002/bit.24451 es_ES
dc.description.references Cuevas-Castillo, G. A., Navarro-Pineda, F. S., Baz Rodríguez, S. A., & Sacramento Rivero, J. C. (2020). Advances on the processing of microalgal biomass for energy-driven biorefineries. Renewable and Sustainable Energy Reviews, 125, 109606. doi:10.1016/j.rser.2019.109606 es_ES
dc.description.references Dai, W., Xu, X., Liu, B., & Yang, F. (2015). Toward energy-neutral wastewater treatment: A membrane combined process of anaerobic digestion and nitritation–anammox for biogas recovery and nitrogen removal. Chemical Engineering Journal, 279, 725-734. doi:10.1016/j.cej.2015.05.036 es_ES
dc.description.references Day, J. G., Gong, Y., & Hu, Q. (2017). Microzooplanktonic grazers – A potentially devastating threat to the commercial success of microalgal mass culture. Algal Research, 27, 356-365. doi:10.1016/j.algal.2017.08.024 es_ES
dc.description.references De Vree, J. H., Bosma, R., Janssen, M., Barbosa, M. J., & Wijffels, R. H. (2015). Comparison of four outdoor pilot-scale photobioreactors. Biotechnology for Biofuels, 8(1). doi:10.1186/s13068-015-0400-2 es_ES
dc.description.references Delgadillo-Mirquez, L., Lopes, F., Taidi, B., & Pareau, D. (2016). Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnology Reports, 11, 18-26. doi:10.1016/j.btre.2016.04.003 es_ES
dc.description.references Díez-Montero, R., Solimeno, A., Uggetti, E., García-Galán, M. J., & García, J. (2018). Feasibility assessment of energy-neutral microalgae-based wastewater treatment plants under Spanish climatic conditions. Process Safety and Environmental Protection, 119, 242-252. doi:10.1016/j.psep.2018.08.008 es_ES
dc.description.references Eze, V. C., Velasquez-Orta, S. B., Hernández-García, A., Monje-Ramírez, I., & Orta-Ledesma, M. T. (2018). Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration. Algal Research, 32, 131-141. doi:10.1016/j.algal.2018.03.015 es_ES
dc.description.references Faleschini, M., Esteves, J. L., & Camargo Valero, M. A. (2011). The Effects of Hydraulic and Organic Loadings on the Performance of a Full-Scale Facultative Pond in a Temperate Climate Region (Argentine Patagonia). Water, Air, & Soil Pollution, 223(5), 2483-2493. doi:10.1007/s11270-011-1041-0 es_ES
dc.description.references Fasaei, F., Bitter, J. H., Slegers, P. M., & van Boxtel, A. J. B. (2018). Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Research, 31, 347-362. doi:10.1016/j.algal.2017.11.038 es_ES
dc.description.references FCC Aqualia. (2018).All‐gas project. Available fromhttp://www.all-gas.eu/ es_ES
dc.description.references Novoa, A. F., Fortunato, L., Rehman, Z. U., & Leiknes, T. (2020). Evaluating the effect of hydraulic retention time on fouling development and biomass characteristics in an algal membrane photobioreactor treating a secondary wastewater effluent. Bioresource Technology, 309, 123348. doi:10.1016/j.biortech.2020.123348 es_ES
dc.description.references Fernández, I., Acién, F. G., Guzmán, J. L., Berenguel, M., & Mendoza, J. L. (2016). Dynamic model of an industrial raceway reactor for microalgae production. Algal Research, 17, 67-78. doi:10.1016/j.algal.2016.04.021 es_ES
dc.description.references Foladori, P., Petrini, S., & Andreottola, G. (2018). Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chemical Engineering Journal, 345, 507-516. doi:10.1016/j.cej.2018.03.178 es_ES
dc.description.references Galès, A., Bonnafous, A., Carré, C., Jauzein, V., Lanouguère, E., Le Floc’h, E., … Fouilland, E. (2019). Importance of ecological interactions during wastewater treatment using High Rate Algal Ponds under different temperate climates. Algal Research, 40, 101508. doi:10.1016/j.algal.2019.101508 es_ES
dc.description.references Gao, F., Cui, W., Xu, J.-P., Li, C., Jin, W.-H., & Yang, H.-L. (2019). Lipid accumulation properties of Chlorella vulgaris and Scenedesmus obliquus in membrane photobioreactor (MPBR) fed with secondary effluent from municipal wastewater treatment plant. Renewable Energy, 136, 671-676. doi:10.1016/j.renene.2019.01.038 es_ES
dc.description.references Gao, F., Li, C., Yang, Z.-H., Zeng, G.-M., Feng, L.-J., Liu, J., … Cai, H. (2016). Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecological Engineering, 92, 55-61. doi:10.1016/j.ecoleng.2016.03.046 es_ES
dc.description.references García, J., Ortiz, A., Álvarez, E., Belohlav, V., García-Galán, M. J., Díez-Montero, R., … Uggetti, E. (2018). Nutrient removal from agricultural run-off in demonstrative full scale tubular photobioreactors for microalgae growth. Ecological Engineering, 120, 513-521. doi:10.1016/j.ecoleng.2018.07.002 es_ES
dc.description.references Garrido-Cardenas, J. A., Manzano-Agugliaro, F., Acien-Fernandez, F. G., & Molina-Grima, E. (2018). Microalgae research worldwide. Algal Research, 35, 50-60. doi:10.1016/j.algal.2018.08.005 es_ES
dc.description.references Giménez J.B.(2014).Study of the anaerobic treatment of urban wastewater in membrane bioreactors (Estudio del tratamiento anaerobio de aguas residuales urbanas en biorreactores de membranas). (PhD Thesis) University of Valencia Spain. es_ES
dc.description.references González-Camejo, J., Aparicio, S., Ruano, M. V., Borrás, L., Barat, R., & Ferrer, J. (2019). Effect of ambient temperature variations on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. Bioresource Technology, 290, 121788. doi:10.1016/j.biortech.2019.121788 es_ES
dc.description.references González-Camejo, J., Aparicio, S., Jiménez-Benítez, A., Pachés, M., Ruano, M. V., Borrás, L., … Seco, A. (2020). Improving membrane photobioreactor performance by reducing light path: operating conditions and key performance indicators. Water Research, 172, 115518. doi:10.1016/j.watres.2020.115518 es_ES
dc.description.references González-Camejo, J., Barat, R., Aguado, D., & Ferrer, J. (2020). Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor. Water Research, 169, 115238. doi:10.1016/j.watres.2019.115238 es_ES
dc.description.references González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. Journal of Environmental Management, 245, 76-85. doi:10.1016/j.jenvman.2019.05.010 es_ES
dc.description.references González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Preliminary data set to assess the performance of an outdoor membrane photobioreactor. Data in Brief, 27, 104599. doi:10.1016/j.dib.2019.104599 es_ES
dc.description.references González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2013). Effect of organic loading rate on anaerobic digestion of thermally pretreated Scenedesmus sp. biomass. Bioresource Technology, 129, 219-223. doi:10.1016/j.biortech.2012.10.123 es_ES
dc.description.references Goswami, R. K., Mehariya, S., Verma, P., Lavecchia, R., & Zuorro, A. (2021). Microalgae-based biorefineries for sustainable resource recovery from wastewater. Journal of Water Process Engineering, 40, 101747. doi:10.1016/j.jwpe.2020.101747 es_ES
dc.description.references Gross, M., Mascarenhas, V., & Wen, Z. (2015). Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems. Biotechnology and Bioengineering, 112(10), 2040-2050. doi:10.1002/bit.25618 es_ES
dc.description.references Guldhe, A., Kumari, S., Ramanna, L., Ramsundar, P., Singh, P., Rawat, I., & Bux, F. (2017). Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Journal of Environmental Management, 203, 299-315. doi:10.1016/j.jenvman.2017.08.012 es_ES
dc.description.references Gupta, S., Pawar, S. B., & Pandey, R. A. (2019). Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Science of The Total Environment, 687, 1107-1126. doi:10.1016/j.scitotenv.2019.06.115 es_ES
dc.description.references Gupta, S. K., Ansari, F. A., Shriwastav, A., Sahoo, N. K., Rawat, I., & Bux, F. (2016). Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. Journal of Cleaner Production, 115, 255-264. doi:10.1016/j.jclepro.2015.12.040 es_ES
dc.description.references Hemalatha, M., Sravan, J. S., Min, B., & Venkata Mohan, S. (2019). Microalgae-biorefinery with cascading resource recovery design associated to dairy wastewater treatment. Bioresource Technology, 284, 424-429. doi:10.1016/j.biortech.2019.03.106 es_ES
dc.description.references Huang, Q., Jiang, F., Wang, L., & Yang, C. (2017). Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms. Engineering, 3(3), 318-329. doi:10.1016/j.eng.2017.03.020 es_ES
dc.description.references Hussain, F., Shah, S. Z., Ahmad, H., Abubshait, S. A., Abubshait, H. A., Laref, A., … Iqbal, M. (2021). Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review. Renewable and Sustainable Energy Reviews, 137, 110603. doi:10.1016/j.rser.2020.110603 es_ES
dc.description.references Iasimone, F., Panico, A., De Felice, V., Fantasma, F., Iorizzi, M., & Pirozzi, F. (2018). Effect of light intensity and nutrients supply on microalgae cultivated in urban wastewater: Biomass production, lipids accumulation and settleability characteristics. Journal of Environmental Management, 223, 1078-1085. doi:10.1016/j.jenvman.2018.07.024 es_ES
dc.description.references Jacob, J. M., Ravindran, R., Narayanan, M., Samuel, S. M., Pugazhendhi, A., & Kumar, G. (2021). Microalgae: A prospective low cost green alternative for nanoparticle synthesis. Current Opinion in Environmental Science & Health, 20, 100163. doi:10.1016/j.coesh.2019.12.005 es_ES
dc.description.references Javed, F., Aslam, M., Rashid, N., Shamair, Z., Khan, A. L., Yasin, M., … Bazmi, A. A. (2019). Microalgae-based biofuels, resource recovery and wastewater treatment: A pathway towards sustainable biorefinery. Fuel, 255, 115826. doi:10.1016/j.fuel.2019.115826 es_ES
dc.description.references Johnson, D. B., Schideman, L. C., Canam, T., & Hudson, R. J. M. (2018). Pilot-scale demonstration of efficient ammonia removal from a high-strength municipal wastewater treatment sidestream by algal-bacterial biofilms affixed to rotating contactors. Algal Research, 34, 143-153. doi:10.1016/j.algal.2018.07.009 es_ES
dc.description.references Jonker, J. G. G., & Faaij, A. P. C. (2013). Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production. Applied Energy, 102, 461-475. doi:10.1016/j.apenergy.2012.07.053 es_ES
dc.description.references Kohlheb, N., van Afferden, M., Lara, E., Arbib, Z., Conthe, M., Poitzsch, C., … Becker, M.-Y. (2020). Assessing the life-cycle sustainability of algae and bacteria-based wastewater treatment systems: High-rate algae pond and sequencing batch reactor. Journal of Environmental Management, 264, 110459. doi:10.1016/j.jenvman.2020.110459 es_ES
dc.description.references Kumar, A. K., Sharma, S., Dixit, G., Shah, E., & Patel, A. (2020). Techno-economic analysis of microalgae production with simultaneous dairy effluent treatment using a pilot-scale High Volume V-shape pond system. Renewable Energy, 145, 1620-1632. doi:10.1016/j.renene.2019.07.087 es_ES
dc.description.references Kurokawa, M., King, P. M., Wu, X., Joyce, E. M., Mason, T. J., & Yamamoto, K. (2016). Effect of sonication frequency on the disruption of algae. Ultrasonics Sonochemistry, 31, 157-162. doi:10.1016/j.ultsonch.2015.12.011 es_ES
dc.description.references Kwon, G., Kim, H., Song, C., & Jahng, D. (2019). Co-culture of microalgae and enriched nitrifying bacteria for energy-efficient nitrification. Biochemical Engineering Journal, 152, 107385. doi:10.1016/j.bej.2019.107385 es_ES
dc.description.references Ledda, C., Idà, A., Allemand, D., Mariani, P., & Adani, F. (2015). Production of wild Chlorella sp. cultivated in digested and membrane-pretreated swine manure derived from a full-scale operation plant. Algal Research, 12, 68-73. doi:10.1016/j.algal.2015.08.010 es_ES
dc.description.references Li, K., Liu, Q., Fang, F., Luo, R., Lu, Q., Zhou, W., … Ruan, R. (2019). Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresource Technology, 291, 121934. doi:10.1016/j.biortech.2019.121934 es_ES
dc.description.references Ling, Y., Sun, L., Wang, S., Lin, C. S. K., Sun, Z., & Zhou, Z. (2019). Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochemical Engineering Journal, 148, 162-169. doi:10.1016/j.bej.2019.05.012 es_ES
dc.description.references Lin-Lan, Z., Jing-Han, W., & Hong-Ying, H. (2018). Differences between attached and suspended microalgal cells in ssPBR from the perspective of physiological properties. Journal of Photochemistry and Photobiology B: Biology, 181, 164-169. doi:10.1016/j.jphotobiol.2018.03.014 es_ES
dc.description.references Luo, Y., Henderson, R. K., & Le-Clech, P. (2019). Characterisation of organic matter in membrane photobioreactors (MPBRs) and its impact on membrane performance. Algal Research, 44, 101682. doi:10.1016/j.algal.2019.101682 es_ES
dc.description.references Luo, Y., Le-Clech, P., & Henderson, R. K. (2018). Assessment of membrane photobioreactor (MPBR) performance parameters and operating conditions. Water Research, 138, 169-180. doi:10.1016/j.watres.2018.03.050 es_ES
dc.description.references Mantovani, M., Marazzi, F., Fornaroli, R., Bellucci, M., Ficara, E., & Mezzanotte, V. (2020). Outdoor pilot-scale raceway as a microalgae-bacteria sidestream treatment in a WWTP. Science of The Total Environment, 710, 135583. doi:10.1016/j.scitotenv.2019.135583 es_ES
dc.description.references Marazzi, F., Ficara, E., Fornaroli, R., & Mezzanotte, V. (2017). Factors Affecting the Growth of Microalgae on Blackwater from Biosolid Dewatering. Water, Air, & Soil Pollution, 228(2). doi:10.1007/s11270-017-3248-1 es_ES
dc.description.references Martínez, C., Mairet, F., Martinon, P., & Bernard, O. (2019). Dynamics and control of a periodically forced microalgae culture. IFAC-PapersOnLine, 52(1), 922-927. doi:10.1016/j.ifacol.2019.06.180 es_ES
dc.description.references Mazzelli, A., Cicci, A., Di Caprio, F., Altimari, P., Toro, L., Iaquaniello, G., & Pagnanelli, F. (2020). Multivariate modeling for microalgae growth in outdoor photobioreactors. Algal Research, 45, 101663. doi:10.1016/j.algal.2019.101663 es_ES
dc.description.references Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Science of The Total Environment, 752, 142168. doi:10.1016/j.scitotenv.2020.142168 es_ES
dc.description.references Morales-Amaral, M. del M., Gómez-Serrano, C., Acién, F. G., Fernández-Sevilla, J. M., & Molina-Grima, E. (2015). Outdoor production of Scenedesmus sp. in thin-layer and raceway reactors using centrate from anaerobic digestion as the sole nutrient source. Algal Research, 12, 99-108. doi:10.1016/j.algal.2015.08.020 es_ES
dc.description.references Morillas-España, A., Lafarga, T., Gómez-Serrano, C., Acién-Fernández, F. G., & González-López, C. V. (2020). Year-long production of Scenedesmus almeriensis in pilot-scale raceway and thin-layer cascade photobioreactors. Algal Research, 51, 102069. doi:10.1016/j.algal.2020.102069 es_ES
dc.description.references Nagarajan, D., Lee, D.-J., Chen, C.-Y., & Chang, J.-S. (2020). Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Bioresource Technology, 302, 122817. doi:10.1016/j.biortech.2020.122817 es_ES
dc.description.references Novoveská, L., Zapata, A. K. M., Zabolotney, J. B., Atwood, M. C., & Sundstrom, E. R. (2016). Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Research, 18, 86-94. doi:10.1016/j.algal.2016.05.033 es_ES
dc.description.references Olivieri, G., Salatino, P., & Marzocchella, A. (2013). Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. Journal of Chemical Technology & Biotechnology, 89(2), 178-195. doi:10.1002/jctb.4218 es_ES
dc.description.references Oswald, W. J., & Gotaas, H. B. (1957). Photosynthesis in Sewage Treatment. Transactions of the American Society of Civil Engineers, 122(1), 73-97. doi:10.1061/taceat.0007483 es_ES
dc.description.references Pachés, M., Martínez-Guijarro, R., González-Camejo, J., Seco, A., & Barat, R. (2018). Selecting the most suitable microalgae species to treat the effluent from an anaerobic membrane bioreactor. Environmental Technology, 41(3), 267-276. doi:10.1080/09593330.2018.1496148 es_ES
dc.description.references Pérez-López, P., de Vree, J. H., Feijoo, G., Bosma, R., Barbosa, M. J., Moreira, M. T., … Kleinegris, D. M. M. (2017). Comparative life cycle assessment of real pilot reactors for microalgae cultivation in different seasons. Applied Energy, 205, 1151-1164. doi:10.1016/j.apenergy.2017.08.102 es_ES
dc.description.references Préat, N., Taelman, S. E., De Meester, S., Allais, F., & Dewulf, J. (2020). Identification of microalgae biorefinery scenarios and development of mass and energy balance flowsheets. Algal Research, 45, 101737. doi:10.1016/j.algal.2019.101737 es_ES
dc.description.references Raeisossadati, M., Moheimani, N. R., & Parlevliet, D. (2019). Luminescent solar concentrator panels for increasing the efficiency of mass microalgal production. Renewable and Sustainable Energy Reviews, 101, 47-59. doi:10.1016/j.rser.2018.10.029 es_ES
dc.description.references Razzak, S. A., Ali, S. A. M., Hossain, M. M., & deLasa, H. (2017). Biological CO2 fixation with production of microalgae in wastewater – A review. Renewable and Sustainable Energy Reviews, 76, 379-390. doi:10.1016/j.rser.2017.02.038 es_ES
dc.description.references Rebolledo-Oyarce, J., Mejía-López, J., García, G., Rodríguez-Córdova, L., & Sáez-Navarrete, C. (2019). Novel photobioreactor design for the culture of Dunaliella tertiolecta – Impact of color in the growth of microalgae. Bioresource Technology, 289, 121645. doi:10.1016/j.biortech.2019.121645 es_ES
dc.description.references Reynolds, C. S. (2006). The Ecology of Phytoplankton. doi:10.1017/cbo9780511542145 es_ES
dc.description.references Robles, Á., Capson-Tojo, G., Galès, A., Ruano, M. V., Sialve, B., Ferrer, J., & Steyer, J.-P. (2020). Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions. Journal of Environmental Management, 261, 110244. doi:10.1016/j.jenvman.2020.110244 es_ES
dc.description.references Robles, Á., Capson-Tojo, G., Gales, A., Viruela, A., Sialve, B., Seco, A., … Ferrer, J. (2020). Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale. Bioresource Technology, 301, 122672. doi:10.1016/j.biortech.2019.122672 es_ES
dc.description.references Romero-Villegas, G. I., Fiamengo, M., Acién Fernández, F. G., & Molina Grima, E. (2018). Utilization of centrate for the outdoor production of marine microalgae at pilot-scale in flat-panel photobioreactors. Journal of Biotechnology, 284, 102-114. doi:10.1016/j.jbiotec.2018.08.006 es_ES
dc.description.references Romero Villegas, G. I., Fiamengo, M., Acién Fernández, F. G., & Molina Grima, E. (2017). Outdoor production of microalgae biomass at pilot-scale in seawater using centrate as the nutrient source. Algal Research, 25, 538-548. doi:10.1016/j.algal.2017.06.016 es_ES
dc.description.references Romero-Villegas, G. I., Fiamengo, M., Acién-Fernández, F. G., & Molina-Grima, E. (2018). Utilization of centrate for the outdoor production of marine microalgae at the pilot-scale in raceway photobioreactors. Journal of Environmental Management, 228, 506-516. doi:10.1016/j.jenvman.2018.08.020 es_ES
dc.description.references Rossi, S., Díez-Montero, R., Rueda, E., Castillo Cascino, F., Parati, K., García, J., & Ficara, E. (2020). Free ammonia inhibition in microalgae and cyanobacteria grown in wastewaters: Photo-respirometric evaluation and modelling. Bioresource Technology, 305, 123046. doi:10.1016/j.biortech.2020.123046 es_ES
dc.description.references Ruiz, J., Álvarez-Díaz, P. D., Arbib, Z., Garrido-Pérez, C., Barragán, J., & Perales, J. A. (2013). Performance of a flat panel reactor in the continuous culture of microalgae in urban wastewater: Prediction from a batch experiment. Bioresource Technology, 127, 456-463. doi:10.1016/j.biortech.2012.09.103 es_ES
dc.description.references Sauco C. Cano R. Rogalla F. Arbib Z. Lara E. Navarro‐López E. Acien F.G.(2019).Production of Microalgae‐based Biofertilizer and Water for Reuse from Wastewater in El Toyo WWTP. IWAlgae 2019: IWA Conference. Valladolid Spain. es_ES
dc.description.references Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492 es_ES
dc.description.references Serna-García, R., Zamorano-López, N., Seco, A., & Bouzas, A. (2020). Co-digestion of harvested microalgae and primary sludge in a mesophilic anaerobic membrane bioreactor (AnMBR): Methane potential and microbial diversity. Bioresource Technology, 298, 122521. doi:10.1016/j.biortech.2019.122521 es_ES
dc.description.references Shahid, A., Malik, S., Zhu, H., Xu, J., Nawaz, M. Z., Nawaz, S., … Mehmood, M. A. (2020). Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Science of The Total Environment, 704, 135303. doi:10.1016/j.scitotenv.2019.135303 es_ES
dc.description.references Slegers, P. M., Wijffels, R. H., van Straten, G., & van Boxtel, A. J. B. (2011). Design scenarios for flat panel photobioreactors. Applied Energy, 88(10), 3342-3353. doi:10.1016/j.apenergy.2010.12.037 es_ES
dc.description.references Soares, R. B., Martins, M. F., & Gonçalves, R. F. (2019). A conceptual scenario for the use of microalgae biomass for microgeneration in wastewater treatment plants. Journal of Environmental Management, 252, 109639. doi:10.1016/j.jenvman.2019.109639 es_ES
dc.description.references Song, X., Luo, W., Hai, F. I., Price, W. E., Guo, W., Ngo, H. H., & Nghiem, L. D. (2018). Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges. Bioresource Technology, 270, 669-677. doi:10.1016/j.biortech.2018.09.001 es_ES
dc.description.references Straka, L., & Rittmann, B. E. (2018). Light-dependent kinetic model for microalgae experiencing photoacclimation, photodamage, and photodamage repair. Algal Research, 31, 232-238. doi:10.1016/j.algal.2018.02.022 es_ES
dc.description.references Sutherland, D. L., Park, J., Ralph, P. J., & Craggs, R. J. (2020). Improved microalgal productivity and nutrient removal through operating wastewater high rate algal ponds in series. Algal Research, 47, 101850. doi:10.1016/j.algal.2020.101850 es_ES
dc.description.references Tan, X.-B., Zhang, Y.-L., Yang, L.-B., Chu, H.-Q., & Guo, J. (2016). Outdoor cultures of Chlorella pyrenoidosa in the effluent of anaerobically digested activated sludge: The effects of pH and free ammonia. Bioresource Technology, 200, 606-615. doi:10.1016/j.biortech.2015.10.095 es_ES
dc.description.references Tua, C., Ficara, E., Mezzanotte, V., & Rigamonti, L. (2021). Integration of a side-stream microalgae process into a municipal wastewater treatment plant: A life cycle analysis. Journal of Environmental Management, 279, 111605. doi:10.1016/j.jenvman.2020.111605 es_ES
dc.description.references Ubando, A. T., Felix, C. B., & Chen, W.-H. (2020). Biorefineries in circular bioeconomy: A comprehensive review. Bioresource Technology, 299, 122585. doi:10.1016/j.biortech.2019.122585 es_ES
dc.description.references Uggetti, E., García, J., Álvarez, J. A., & García-Galán, M. J. (2018). Start-up of a microalgae-based treatment system within the biorefinery concept: from wastewater to bioproducts. Water Science and Technology, 78(1), 114-124. doi:10.2166/wst.2018.195 es_ES
dc.description.references Umamaheswari, J., & Shanthakumar, S. (2016). Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity. Reviews in Environmental Science and Bio/Technology, 15(2), 265-284. doi:10.1007/s11157-016-9397-7 es_ES
dc.description.references Viruela, A., Robles, Á., Durán, F., Ruano, M. V., Barat, R., Ferrer, J., & Seco, A. (2018). Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage. Journal of Cleaner Production, 178, 665-674. doi:10.1016/j.jclepro.2017.12.223 es_ES
dc.description.references Vo, H. N. P., Ngo, H. H., Guo, W., Nguyen, T. M. H., Liu, Y., Liu, Y., … Chang, S. W. (2019). A critical review on designs and applications of microalgae-based photobioreactors for pollutants treatment. Science of The Total Environment, 651, 1549-1568. doi:10.1016/j.scitotenv.2018.09.282 es_ES
dc.description.references Wágner, D. S., Valverde-Pérez, B., & Plósz, B. G. (2018). Light attenuation in photobioreactors and algal pigmentation under different growth conditions – Model identification and complexity assessment. Algal Research, 35, 488-499. doi:10.1016/j.algal.2018.08.019 es_ES
dc.description.references Wallace, J., Champagne, P., & Hall, G. (2016). Time series relationships between chlorophyll-a, dissolved oxygen, and pH in three facultative wastewater stabilization ponds. Environmental Science: Water Research & Technology, 2(6), 1032-1040. doi:10.1039/c6ew00202a es_ES
dc.description.references Wang, B., Lan, C. Q., & Horsman, M. (2012). Closed photobioreactors for production of microalgal biomasses. Biotechnology Advances, 30(4), 904-912. doi:10.1016/j.biotechadv.2012.01.019 es_ES
dc.description.references Wollmann, F., Dietze, S., Ackermann, J., Bley, T., Walther, T., Steingroewer, J., & Krujatz, F. (2019). Microalgae wastewater treatment: Biological and technological approaches. Engineering in Life Sciences, 19(12), 860-871. doi:10.1002/elsc.201900071 es_ES
dc.description.references Wu, Y.-H., Zhu, S.-F., Yu, Y., Shi, X.-J., Wu, G.-X., & Hu, H.-Y. (2017). Mixed cultivation as an effective approach to enhance microalgal biomass and triacylglycerol production in domestic secondary effluent. Chemical Engineering Journal, 328, 665-672. doi:10.1016/j.cej.2017.07.088 es_ES
dc.description.references Yadav, G., Dubey, B. K., & Sen, R. (2020). A comparative life cycle assessment of microalgae production by CO2 sequestration from flue gas in outdoor raceway ponds under batch and semi-continuous regime. Journal of Cleaner Production, 258, 120703. doi:10.1016/j.jclepro.2020.120703 es_ES
dc.description.references Yeo, U., Lee, I., Seo, I., & Kim, R. (2018). Identification of the key structural parameters for the design of a large-scale PBR. Biosystems Engineering, 171, 165-178. doi:10.1016/j.biosystemseng.2018.04.012 es_ES
dc.description.references Zabed, H. M., Akter, S., Yun, J., Zhang, G., Zhang, Y., & Qi, X. (2020). Biogas from microalgae: Technologies, challenges and opportunities. Renewable and Sustainable Energy Reviews, 117, 109503. doi:10.1016/j.rser.2019.109503 es_ES
dc.description.references Zhang, M., Yao, L., Maleki, E., Liao, B.-Q., & Lin, H. (2019). Membrane technologies for microalgal cultivation and dewatering: Recent progress and challenges. Algal Research, 44, 101686. doi:10.1016/j.algal.2019.101686 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem