- -

Outdoor microalgae-based urban wastewater treatment: recent advances, applications and future perspectives

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Outdoor microalgae-based urban wastewater treatment: recent advances, applications and future perspectives

Mostrar el registro completo del ítem

Gonzalez-Camejo, J.; Ferrer, J.; Seco, A.; Barat, R. (2021). Outdoor microalgae-based urban wastewater treatment: recent advances, applications and future perspectives. Wiley Interdisciplinary Reviews Water. 8(3):1-24. https://doi.org/10.1002/wat2.1518

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166194

Ficheros en el ítem

Metadatos del ítem

Título: Outdoor microalgae-based urban wastewater treatment: recent advances, applications and future perspectives
Autor: Gonzalez-Camejo, Josue FERRER, J. Seco, Aurora Barat, Ramón
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] Although microalgae-based wastewater treatment has been traditionally carried out in extensive waste stabilization ponds, recent trends focus on the use of microalgae to apply the circular economy principles in the ...[+]
Palabras clave: Biorefinery , Microalgae , Outdoor , Photobioreactor , Wastewater
Derechos de uso: Reserva de todos los derechos
Fuente:
Wiley Interdisciplinary Reviews Water. (issn: 2049-1948 )
DOI: 10.1002/wat2.1518
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/wat2.1518
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/
info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/
info:eu-repo/grantAgreement/MECD//FPU2014-05082/ES/FPU2014-05082/
Agradecimientos:
This research work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM2014-54980-C2-1-R and CTM2014-54980-C2-2-R) jointly with the European Regional Development Fund (ERDF), both ...[+]
Tipo: Artículo

References

European Comission Directive. (1998).Amending Council Directive 91/271/EEC with respect to certain requirements established in Annex I.Official Journal of the European Communities. 98/15/EC: 29–30. (C. 27 Feb).

Abinandan, S., & Shanthakumar, S. (2015). Challenges and opportunities in application of microalgae ( Chlorophyta ) for wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 52, 123-132. doi:10.1016/j.rser.2015.07.086

Abis, K. L., & Mara, D. D. (2005). Primary facultative ponds in the UK: the effect of operational parameters on performance and algal populations. Water Science and Technology, 51(12), 61-67. doi:10.2166/wst.2005.0427 [+]
European Comission Directive. (1998).Amending Council Directive 91/271/EEC with respect to certain requirements established in Annex I.Official Journal of the European Communities. 98/15/EC: 29–30. (C. 27 Feb).

Abinandan, S., & Shanthakumar, S. (2015). Challenges and opportunities in application of microalgae ( Chlorophyta ) for wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 52, 123-132. doi:10.1016/j.rser.2015.07.086

Abis, K. L., & Mara, D. D. (2005). Primary facultative ponds in the UK: the effect of operational parameters on performance and algal populations. Water Science and Technology, 51(12), 61-67. doi:10.2166/wst.2005.0427

Abu-Ghosh, S., Fixler, D., Dubinsky, Z., & Iluz, D. (2016). Flashing light in microalgae biotechnology. Bioresource Technology, 203, 357-363. doi:10.1016/j.biortech.2015.12.057

Acién, F. G., Gómez-Serrano, C., Morales-Amaral, M. M., Fernández-Sevilla, J. M., & Molina-Grima, E. (2016). Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Applied Microbiology and Biotechnology, 100(21), 9013-9022. doi:10.1007/s00253-016-7835-7

Fernández, F. G. A., Reis, A., Wijffels, R. H., Barbosa, M., Verdelho, V., & Llamas, B. (2021). The role of microalgae in the bioeconomy. New Biotechnology, 61, 99-107. doi:10.1016/j.nbt.2020.11.011

Acién Fernández, F. G., Gómez-Serrano, C., & Fernández-Sevilla, J. M. (2018). Recovery of Nutrients From Wastewaters Using Microalgae. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00059

AlMomani, F. A., & Örmeci, B. (2016). Performance Of Chlorella Vulgaris, Neochloris Oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate. Ecological Engineering, 95, 280-289. doi:10.1016/j.ecoleng.2016.06.038

Arbib, Z., de Godos, I., Ruiz, J., & Perales, J. A. (2017). Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Science of The Total Environment, 589, 66-72. doi:10.1016/j.scitotenv.2017.02.206

Arias, D. M., Rueda, E., García-Galán, M. J., Uggetti, E., & García, J. (2019). Selection of cyanobacteria over green algae in a photo-sequencing batch bioreactor fed with wastewater. Science of The Total Environment, 653, 485-495. doi:10.1016/j.scitotenv.2018.10.342

Assunção, J., & Malcata, F. X. (2020). Enclosed «non-conventional» photobioreactors for microalga production: A review. Algal Research, 52, 102107. doi:10.1016/j.algal.2020.102107

Barbera, E., Sforza, E., Grandi, A., & Bertucco, A. (2020). Uncoupling solid and hydraulic retention time in photobioreactors for microalgae mass production: A model-based analysis. Chemical Engineering Science, 218, 115578. doi:10.1016/j.ces.2020.115578

Barceló-Villalobos, M., Fernández-del Olmo, P., Guzmán, J. L., Fernández-Sevilla, J. M., & Acién Fernández, F. G. (2019). Evaluation of photosynthetic light integration by microalgae in a pilot-scale raceway reactor. Bioresource Technology, 280, 404-411. doi:10.1016/j.biortech.2019.02.032

Behera, B., Acharya, A., Gargey, I. A., Aly, N., & P, B. (2019). Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production. Bioresource Technology Reports, 5, 297-316. doi:10.1016/j.biteb.2018.08.001

Bhattacharya, M., & Goswami, S. (2020). Microalgae – A green multi-product biorefinery for future industrial prospects. Biocatalysis and Agricultural Biotechnology, 25, 101580. doi:10.1016/j.bcab.2020.101580

Bosma, R., de Vree, J. H., Slegers, P. M., Janssen, M., Wijffels, R. H., & Barbosa, M. J. (2014). Design and construction of the microalgal pilot facility AlgaePARC. Algal Research, 6, 160-169. doi:10.1016/j.algal.2014.10.006

Butler, E., Hung, Y.-T., Suleiman Al Ahmad, M., Yeh, R. Y.-L., Liu, R. L.-H., & Fu, Y.-P. (2015). Oxidation pond for municipal wastewater treatment. Applied Water Science, 7(1), 31-51. doi:10.1007/s13201-015-0285-z

Cano R. Rogalla F. Arbib Z. Sauco C. Lara E. (2019).Carbon Footprint Assessment of Microalgae Systems for Wastewater Treatment. IWAlgae 2019: IWA conference. Valladolid Spain.

Chai, W. S., Tan, W. G., Halimatul Munawaroh, H. S., Gupta, V. K., Ho, S.-H., & Show, P. L. (2021). Multifaceted roles of microalgae in the application of wastewater biotreatment: A review. Environmental Pollution, 269, 116236. doi:10.1016/j.envpol.2020.116236

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306. doi:10.1016/j.biotechadv.2007.02.001

Christenson, L. B., & Sims, R. C. (2012). Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnology and Bioengineering, 109(7), 1674-1684. doi:10.1002/bit.24451

Cuevas-Castillo, G. A., Navarro-Pineda, F. S., Baz Rodríguez, S. A., & Sacramento Rivero, J. C. (2020). Advances on the processing of microalgal biomass for energy-driven biorefineries. Renewable and Sustainable Energy Reviews, 125, 109606. doi:10.1016/j.rser.2019.109606

Dai, W., Xu, X., Liu, B., & Yang, F. (2015). Toward energy-neutral wastewater treatment: A membrane combined process of anaerobic digestion and nitritation–anammox for biogas recovery and nitrogen removal. Chemical Engineering Journal, 279, 725-734. doi:10.1016/j.cej.2015.05.036

Day, J. G., Gong, Y., & Hu, Q. (2017). Microzooplanktonic grazers – A potentially devastating threat to the commercial success of microalgal mass culture. Algal Research, 27, 356-365. doi:10.1016/j.algal.2017.08.024

De Vree, J. H., Bosma, R., Janssen, M., Barbosa, M. J., & Wijffels, R. H. (2015). Comparison of four outdoor pilot-scale photobioreactors. Biotechnology for Biofuels, 8(1). doi:10.1186/s13068-015-0400-2

Delgadillo-Mirquez, L., Lopes, F., Taidi, B., & Pareau, D. (2016). Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnology Reports, 11, 18-26. doi:10.1016/j.btre.2016.04.003

Díez-Montero, R., Solimeno, A., Uggetti, E., García-Galán, M. J., & García, J. (2018). Feasibility assessment of energy-neutral microalgae-based wastewater treatment plants under Spanish climatic conditions. Process Safety and Environmental Protection, 119, 242-252. doi:10.1016/j.psep.2018.08.008

Eze, V. C., Velasquez-Orta, S. B., Hernández-García, A., Monje-Ramírez, I., & Orta-Ledesma, M. T. (2018). Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration. Algal Research, 32, 131-141. doi:10.1016/j.algal.2018.03.015

Faleschini, M., Esteves, J. L., & Camargo Valero, M. A. (2011). The Effects of Hydraulic and Organic Loadings on the Performance of a Full-Scale Facultative Pond in a Temperate Climate Region (Argentine Patagonia). Water, Air, & Soil Pollution, 223(5), 2483-2493. doi:10.1007/s11270-011-1041-0

Fasaei, F., Bitter, J. H., Slegers, P. M., & van Boxtel, A. J. B. (2018). Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Research, 31, 347-362. doi:10.1016/j.algal.2017.11.038

FCC Aqualia. (2018).All‐gas project. Available fromhttp://www.all-gas.eu/

Novoa, A. F., Fortunato, L., Rehman, Z. U., & Leiknes, T. (2020). Evaluating the effect of hydraulic retention time on fouling development and biomass characteristics in an algal membrane photobioreactor treating a secondary wastewater effluent. Bioresource Technology, 309, 123348. doi:10.1016/j.biortech.2020.123348

Fernández, I., Acién, F. G., Guzmán, J. L., Berenguel, M., & Mendoza, J. L. (2016). Dynamic model of an industrial raceway reactor for microalgae production. Algal Research, 17, 67-78. doi:10.1016/j.algal.2016.04.021

Foladori, P., Petrini, S., & Andreottola, G. (2018). Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chemical Engineering Journal, 345, 507-516. doi:10.1016/j.cej.2018.03.178

Galès, A., Bonnafous, A., Carré, C., Jauzein, V., Lanouguère, E., Le Floc’h, E., … Fouilland, E. (2019). Importance of ecological interactions during wastewater treatment using High Rate Algal Ponds under different temperate climates. Algal Research, 40, 101508. doi:10.1016/j.algal.2019.101508

Gao, F., Cui, W., Xu, J.-P., Li, C., Jin, W.-H., & Yang, H.-L. (2019). Lipid accumulation properties of Chlorella vulgaris and Scenedesmus obliquus in membrane photobioreactor (MPBR) fed with secondary effluent from municipal wastewater treatment plant. Renewable Energy, 136, 671-676. doi:10.1016/j.renene.2019.01.038

Gao, F., Li, C., Yang, Z.-H., Zeng, G.-M., Feng, L.-J., Liu, J., … Cai, H. (2016). Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecological Engineering, 92, 55-61. doi:10.1016/j.ecoleng.2016.03.046

García, J., Ortiz, A., Álvarez, E., Belohlav, V., García-Galán, M. J., Díez-Montero, R., … Uggetti, E. (2018). Nutrient removal from agricultural run-off in demonstrative full scale tubular photobioreactors for microalgae growth. Ecological Engineering, 120, 513-521. doi:10.1016/j.ecoleng.2018.07.002

Garrido-Cardenas, J. A., Manzano-Agugliaro, F., Acien-Fernandez, F. G., & Molina-Grima, E. (2018). Microalgae research worldwide. Algal Research, 35, 50-60. doi:10.1016/j.algal.2018.08.005

Giménez J.B.(2014).Study of the anaerobic treatment of urban wastewater in membrane bioreactors (Estudio del tratamiento anaerobio de aguas residuales urbanas en biorreactores de membranas). (PhD Thesis) University of Valencia Spain.

González-Camejo, J., Aparicio, S., Ruano, M. V., Borrás, L., Barat, R., & Ferrer, J. (2019). Effect of ambient temperature variations on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. Bioresource Technology, 290, 121788. doi:10.1016/j.biortech.2019.121788

González-Camejo, J., Aparicio, S., Jiménez-Benítez, A., Pachés, M., Ruano, M. V., Borrás, L., … Seco, A. (2020). Improving membrane photobioreactor performance by reducing light path: operating conditions and key performance indicators. Water Research, 172, 115518. doi:10.1016/j.watres.2020.115518

González-Camejo, J., Barat, R., Aguado, D., & Ferrer, J. (2020). Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor. Water Research, 169, 115238. doi:10.1016/j.watres.2019.115238

González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. Journal of Environmental Management, 245, 76-85. doi:10.1016/j.jenvman.2019.05.010

González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Preliminary data set to assess the performance of an outdoor membrane photobioreactor. Data in Brief, 27, 104599. doi:10.1016/j.dib.2019.104599

González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2013). Effect of organic loading rate on anaerobic digestion of thermally pretreated Scenedesmus sp. biomass. Bioresource Technology, 129, 219-223. doi:10.1016/j.biortech.2012.10.123

Goswami, R. K., Mehariya, S., Verma, P., Lavecchia, R., & Zuorro, A. (2021). Microalgae-based biorefineries for sustainable resource recovery from wastewater. Journal of Water Process Engineering, 40, 101747. doi:10.1016/j.jwpe.2020.101747

Gross, M., Mascarenhas, V., & Wen, Z. (2015). Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems. Biotechnology and Bioengineering, 112(10), 2040-2050. doi:10.1002/bit.25618

Guldhe, A., Kumari, S., Ramanna, L., Ramsundar, P., Singh, P., Rawat, I., & Bux, F. (2017). Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Journal of Environmental Management, 203, 299-315. doi:10.1016/j.jenvman.2017.08.012

Gupta, S., Pawar, S. B., & Pandey, R. A. (2019). Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Science of The Total Environment, 687, 1107-1126. doi:10.1016/j.scitotenv.2019.06.115

Gupta, S. K., Ansari, F. A., Shriwastav, A., Sahoo, N. K., Rawat, I., & Bux, F. (2016). Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. Journal of Cleaner Production, 115, 255-264. doi:10.1016/j.jclepro.2015.12.040

Hemalatha, M., Sravan, J. S., Min, B., & Venkata Mohan, S. (2019). Microalgae-biorefinery with cascading resource recovery design associated to dairy wastewater treatment. Bioresource Technology, 284, 424-429. doi:10.1016/j.biortech.2019.03.106

Huang, Q., Jiang, F., Wang, L., & Yang, C. (2017). Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms. Engineering, 3(3), 318-329. doi:10.1016/j.eng.2017.03.020

Hussain, F., Shah, S. Z., Ahmad, H., Abubshait, S. A., Abubshait, H. A., Laref, A., … Iqbal, M. (2021). Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review. Renewable and Sustainable Energy Reviews, 137, 110603. doi:10.1016/j.rser.2020.110603

Iasimone, F., Panico, A., De Felice, V., Fantasma, F., Iorizzi, M., & Pirozzi, F. (2018). Effect of light intensity and nutrients supply on microalgae cultivated in urban wastewater: Biomass production, lipids accumulation and settleability characteristics. Journal of Environmental Management, 223, 1078-1085. doi:10.1016/j.jenvman.2018.07.024

Jacob, J. M., Ravindran, R., Narayanan, M., Samuel, S. M., Pugazhendhi, A., & Kumar, G. (2021). Microalgae: A prospective low cost green alternative for nanoparticle synthesis. Current Opinion in Environmental Science & Health, 20, 100163. doi:10.1016/j.coesh.2019.12.005

Javed, F., Aslam, M., Rashid, N., Shamair, Z., Khan, A. L., Yasin, M., … Bazmi, A. A. (2019). Microalgae-based biofuels, resource recovery and wastewater treatment: A pathway towards sustainable biorefinery. Fuel, 255, 115826. doi:10.1016/j.fuel.2019.115826

Johnson, D. B., Schideman, L. C., Canam, T., & Hudson, R. J. M. (2018). Pilot-scale demonstration of efficient ammonia removal from a high-strength municipal wastewater treatment sidestream by algal-bacterial biofilms affixed to rotating contactors. Algal Research, 34, 143-153. doi:10.1016/j.algal.2018.07.009

Jonker, J. G. G., & Faaij, A. P. C. (2013). Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production. Applied Energy, 102, 461-475. doi:10.1016/j.apenergy.2012.07.053

Kohlheb, N., van Afferden, M., Lara, E., Arbib, Z., Conthe, M., Poitzsch, C., … Becker, M.-Y. (2020). Assessing the life-cycle sustainability of algae and bacteria-based wastewater treatment systems: High-rate algae pond and sequencing batch reactor. Journal of Environmental Management, 264, 110459. doi:10.1016/j.jenvman.2020.110459

Kumar, A. K., Sharma, S., Dixit, G., Shah, E., & Patel, A. (2020). Techno-economic analysis of microalgae production with simultaneous dairy effluent treatment using a pilot-scale High Volume V-shape pond system. Renewable Energy, 145, 1620-1632. doi:10.1016/j.renene.2019.07.087

Kurokawa, M., King, P. M., Wu, X., Joyce, E. M., Mason, T. J., & Yamamoto, K. (2016). Effect of sonication frequency on the disruption of algae. Ultrasonics Sonochemistry, 31, 157-162. doi:10.1016/j.ultsonch.2015.12.011

Kwon, G., Kim, H., Song, C., & Jahng, D. (2019). Co-culture of microalgae and enriched nitrifying bacteria for energy-efficient nitrification. Biochemical Engineering Journal, 152, 107385. doi:10.1016/j.bej.2019.107385

Ledda, C., Idà, A., Allemand, D., Mariani, P., & Adani, F. (2015). Production of wild Chlorella sp. cultivated in digested and membrane-pretreated swine manure derived from a full-scale operation plant. Algal Research, 12, 68-73. doi:10.1016/j.algal.2015.08.010

Li, K., Liu, Q., Fang, F., Luo, R., Lu, Q., Zhou, W., … Ruan, R. (2019). Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresource Technology, 291, 121934. doi:10.1016/j.biortech.2019.121934

Ling, Y., Sun, L., Wang, S., Lin, C. S. K., Sun, Z., & Zhou, Z. (2019). Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochemical Engineering Journal, 148, 162-169. doi:10.1016/j.bej.2019.05.012

Lin-Lan, Z., Jing-Han, W., & Hong-Ying, H. (2018). Differences between attached and suspended microalgal cells in ssPBR from the perspective of physiological properties. Journal of Photochemistry and Photobiology B: Biology, 181, 164-169. doi:10.1016/j.jphotobiol.2018.03.014

Luo, Y., Henderson, R. K., & Le-Clech, P. (2019). Characterisation of organic matter in membrane photobioreactors (MPBRs) and its impact on membrane performance. Algal Research, 44, 101682. doi:10.1016/j.algal.2019.101682

Luo, Y., Le-Clech, P., & Henderson, R. K. (2018). Assessment of membrane photobioreactor (MPBR) performance parameters and operating conditions. Water Research, 138, 169-180. doi:10.1016/j.watres.2018.03.050

Mantovani, M., Marazzi, F., Fornaroli, R., Bellucci, M., Ficara, E., & Mezzanotte, V. (2020). Outdoor pilot-scale raceway as a microalgae-bacteria sidestream treatment in a WWTP. Science of The Total Environment, 710, 135583. doi:10.1016/j.scitotenv.2019.135583

Marazzi, F., Ficara, E., Fornaroli, R., & Mezzanotte, V. (2017). Factors Affecting the Growth of Microalgae on Blackwater from Biosolid Dewatering. Water, Air, & Soil Pollution, 228(2). doi:10.1007/s11270-017-3248-1

Martínez, C., Mairet, F., Martinon, P., & Bernard, O. (2019). Dynamics and control of a periodically forced microalgae culture. IFAC-PapersOnLine, 52(1), 922-927. doi:10.1016/j.ifacol.2019.06.180

Mazzelli, A., Cicci, A., Di Caprio, F., Altimari, P., Toro, L., Iaquaniello, G., & Pagnanelli, F. (2020). Multivariate modeling for microalgae growth in outdoor photobioreactors. Algal Research, 45, 101663. doi:10.1016/j.algal.2019.101663

Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Science of The Total Environment, 752, 142168. doi:10.1016/j.scitotenv.2020.142168

Morales-Amaral, M. del M., Gómez-Serrano, C., Acién, F. G., Fernández-Sevilla, J. M., & Molina-Grima, E. (2015). Outdoor production of Scenedesmus sp. in thin-layer and raceway reactors using centrate from anaerobic digestion as the sole nutrient source. Algal Research, 12, 99-108. doi:10.1016/j.algal.2015.08.020

Morillas-España, A., Lafarga, T., Gómez-Serrano, C., Acién-Fernández, F. G., & González-López, C. V. (2020). Year-long production of Scenedesmus almeriensis in pilot-scale raceway and thin-layer cascade photobioreactors. Algal Research, 51, 102069. doi:10.1016/j.algal.2020.102069

Nagarajan, D., Lee, D.-J., Chen, C.-Y., & Chang, J.-S. (2020). Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Bioresource Technology, 302, 122817. doi:10.1016/j.biortech.2020.122817

Novoveská, L., Zapata, A. K. M., Zabolotney, J. B., Atwood, M. C., & Sundstrom, E. R. (2016). Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Research, 18, 86-94. doi:10.1016/j.algal.2016.05.033

Olivieri, G., Salatino, P., & Marzocchella, A. (2013). Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. Journal of Chemical Technology & Biotechnology, 89(2), 178-195. doi:10.1002/jctb.4218

Oswald, W. J., & Gotaas, H. B. (1957). Photosynthesis in Sewage Treatment. Transactions of the American Society of Civil Engineers, 122(1), 73-97. doi:10.1061/taceat.0007483

Pachés, M., Martínez-Guijarro, R., González-Camejo, J., Seco, A., & Barat, R. (2018). Selecting the most suitable microalgae species to treat the effluent from an anaerobic membrane bioreactor. Environmental Technology, 41(3), 267-276. doi:10.1080/09593330.2018.1496148

Pérez-López, P., de Vree, J. H., Feijoo, G., Bosma, R., Barbosa, M. J., Moreira, M. T., … Kleinegris, D. M. M. (2017). Comparative life cycle assessment of real pilot reactors for microalgae cultivation in different seasons. Applied Energy, 205, 1151-1164. doi:10.1016/j.apenergy.2017.08.102

Préat, N., Taelman, S. E., De Meester, S., Allais, F., & Dewulf, J. (2020). Identification of microalgae biorefinery scenarios and development of mass and energy balance flowsheets. Algal Research, 45, 101737. doi:10.1016/j.algal.2019.101737

Raeisossadati, M., Moheimani, N. R., & Parlevliet, D. (2019). Luminescent solar concentrator panels for increasing the efficiency of mass microalgal production. Renewable and Sustainable Energy Reviews, 101, 47-59. doi:10.1016/j.rser.2018.10.029

Razzak, S. A., Ali, S. A. M., Hossain, M. M., & deLasa, H. (2017). Biological CO2 fixation with production of microalgae in wastewater – A review. Renewable and Sustainable Energy Reviews, 76, 379-390. doi:10.1016/j.rser.2017.02.038

Rebolledo-Oyarce, J., Mejía-López, J., García, G., Rodríguez-Córdova, L., & Sáez-Navarrete, C. (2019). Novel photobioreactor design for the culture of Dunaliella tertiolecta – Impact of color in the growth of microalgae. Bioresource Technology, 289, 121645. doi:10.1016/j.biortech.2019.121645

Reynolds, C. S. (2006). The Ecology of Phytoplankton. doi:10.1017/cbo9780511542145

Robles, Á., Capson-Tojo, G., Galès, A., Ruano, M. V., Sialve, B., Ferrer, J., & Steyer, J.-P. (2020). Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions. Journal of Environmental Management, 261, 110244. doi:10.1016/j.jenvman.2020.110244

Robles, Á., Capson-Tojo, G., Gales, A., Viruela, A., Sialve, B., Seco, A., … Ferrer, J. (2020). Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale. Bioresource Technology, 301, 122672. doi:10.1016/j.biortech.2019.122672

Romero-Villegas, G. I., Fiamengo, M., Acién Fernández, F. G., & Molina Grima, E. (2018). Utilization of centrate for the outdoor production of marine microalgae at pilot-scale in flat-panel photobioreactors. Journal of Biotechnology, 284, 102-114. doi:10.1016/j.jbiotec.2018.08.006

Romero Villegas, G. I., Fiamengo, M., Acién Fernández, F. G., & Molina Grima, E. (2017). Outdoor production of microalgae biomass at pilot-scale in seawater using centrate as the nutrient source. Algal Research, 25, 538-548. doi:10.1016/j.algal.2017.06.016

Romero-Villegas, G. I., Fiamengo, M., Acién-Fernández, F. G., & Molina-Grima, E. (2018). Utilization of centrate for the outdoor production of marine microalgae at the pilot-scale in raceway photobioreactors. Journal of Environmental Management, 228, 506-516. doi:10.1016/j.jenvman.2018.08.020

Rossi, S., Díez-Montero, R., Rueda, E., Castillo Cascino, F., Parati, K., García, J., & Ficara, E. (2020). Free ammonia inhibition in microalgae and cyanobacteria grown in wastewaters: Photo-respirometric evaluation and modelling. Bioresource Technology, 305, 123046. doi:10.1016/j.biortech.2020.123046

Ruiz, J., Álvarez-Díaz, P. D., Arbib, Z., Garrido-Pérez, C., Barragán, J., & Perales, J. A. (2013). Performance of a flat panel reactor in the continuous culture of microalgae in urban wastewater: Prediction from a batch experiment. Bioresource Technology, 127, 456-463. doi:10.1016/j.biortech.2012.09.103

Sauco C. Cano R. Rogalla F. Arbib Z. Lara E. Navarro‐López E. Acien F.G.(2019).Production of Microalgae‐based Biofertilizer and Water for Reuse from Wastewater in El Toyo WWTP. IWAlgae 2019: IWA Conference. Valladolid Spain.

Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492

Serna-García, R., Zamorano-López, N., Seco, A., & Bouzas, A. (2020). Co-digestion of harvested microalgae and primary sludge in a mesophilic anaerobic membrane bioreactor (AnMBR): Methane potential and microbial diversity. Bioresource Technology, 298, 122521. doi:10.1016/j.biortech.2019.122521

Shahid, A., Malik, S., Zhu, H., Xu, J., Nawaz, M. Z., Nawaz, S., … Mehmood, M. A. (2020). Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Science of The Total Environment, 704, 135303. doi:10.1016/j.scitotenv.2019.135303

Slegers, P. M., Wijffels, R. H., van Straten, G., & van Boxtel, A. J. B. (2011). Design scenarios for flat panel photobioreactors. Applied Energy, 88(10), 3342-3353. doi:10.1016/j.apenergy.2010.12.037

Soares, R. B., Martins, M. F., & Gonçalves, R. F. (2019). A conceptual scenario for the use of microalgae biomass for microgeneration in wastewater treatment plants. Journal of Environmental Management, 252, 109639. doi:10.1016/j.jenvman.2019.109639

Song, X., Luo, W., Hai, F. I., Price, W. E., Guo, W., Ngo, H. H., & Nghiem, L. D. (2018). Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges. Bioresource Technology, 270, 669-677. doi:10.1016/j.biortech.2018.09.001

Straka, L., & Rittmann, B. E. (2018). Light-dependent kinetic model for microalgae experiencing photoacclimation, photodamage, and photodamage repair. Algal Research, 31, 232-238. doi:10.1016/j.algal.2018.02.022

Sutherland, D. L., Park, J., Ralph, P. J., & Craggs, R. J. (2020). Improved microalgal productivity and nutrient removal through operating wastewater high rate algal ponds in series. Algal Research, 47, 101850. doi:10.1016/j.algal.2020.101850

Tan, X.-B., Zhang, Y.-L., Yang, L.-B., Chu, H.-Q., & Guo, J. (2016). Outdoor cultures of Chlorella pyrenoidosa in the effluent of anaerobically digested activated sludge: The effects of pH and free ammonia. Bioresource Technology, 200, 606-615. doi:10.1016/j.biortech.2015.10.095

Tua, C., Ficara, E., Mezzanotte, V., & Rigamonti, L. (2021). Integration of a side-stream microalgae process into a municipal wastewater treatment plant: A life cycle analysis. Journal of Environmental Management, 279, 111605. doi:10.1016/j.jenvman.2020.111605

Ubando, A. T., Felix, C. B., & Chen, W.-H. (2020). Biorefineries in circular bioeconomy: A comprehensive review. Bioresource Technology, 299, 122585. doi:10.1016/j.biortech.2019.122585

Uggetti, E., García, J., Álvarez, J. A., & García-Galán, M. J. (2018). Start-up of a microalgae-based treatment system within the biorefinery concept: from wastewater to bioproducts. Water Science and Technology, 78(1), 114-124. doi:10.2166/wst.2018.195

Umamaheswari, J., & Shanthakumar, S. (2016). Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity. Reviews in Environmental Science and Bio/Technology, 15(2), 265-284. doi:10.1007/s11157-016-9397-7

Viruela, A., Robles, Á., Durán, F., Ruano, M. V., Barat, R., Ferrer, J., & Seco, A. (2018). Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage. Journal of Cleaner Production, 178, 665-674. doi:10.1016/j.jclepro.2017.12.223

Vo, H. N. P., Ngo, H. H., Guo, W., Nguyen, T. M. H., Liu, Y., Liu, Y., … Chang, S. W. (2019). A critical review on designs and applications of microalgae-based photobioreactors for pollutants treatment. Science of The Total Environment, 651, 1549-1568. doi:10.1016/j.scitotenv.2018.09.282

Wágner, D. S., Valverde-Pérez, B., & Plósz, B. G. (2018). Light attenuation in photobioreactors and algal pigmentation under different growth conditions – Model identification and complexity assessment. Algal Research, 35, 488-499. doi:10.1016/j.algal.2018.08.019

Wallace, J., Champagne, P., & Hall, G. (2016). Time series relationships between chlorophyll-a, dissolved oxygen, and pH in three facultative wastewater stabilization ponds. Environmental Science: Water Research & Technology, 2(6), 1032-1040. doi:10.1039/c6ew00202a

Wang, B., Lan, C. Q., & Horsman, M. (2012). Closed photobioreactors for production of microalgal biomasses. Biotechnology Advances, 30(4), 904-912. doi:10.1016/j.biotechadv.2012.01.019

Wollmann, F., Dietze, S., Ackermann, J., Bley, T., Walther, T., Steingroewer, J., & Krujatz, F. (2019). Microalgae wastewater treatment: Biological and technological approaches. Engineering in Life Sciences, 19(12), 860-871. doi:10.1002/elsc.201900071

Wu, Y.-H., Zhu, S.-F., Yu, Y., Shi, X.-J., Wu, G.-X., & Hu, H.-Y. (2017). Mixed cultivation as an effective approach to enhance microalgal biomass and triacylglycerol production in domestic secondary effluent. Chemical Engineering Journal, 328, 665-672. doi:10.1016/j.cej.2017.07.088

Yadav, G., Dubey, B. K., & Sen, R. (2020). A comparative life cycle assessment of microalgae production by CO2 sequestration from flue gas in outdoor raceway ponds under batch and semi-continuous regime. Journal of Cleaner Production, 258, 120703. doi:10.1016/j.jclepro.2020.120703

Yeo, U., Lee, I., Seo, I., & Kim, R. (2018). Identification of the key structural parameters for the design of a large-scale PBR. Biosystems Engineering, 171, 165-178. doi:10.1016/j.biosystemseng.2018.04.012

Zabed, H. M., Akter, S., Yun, J., Zhang, G., Zhang, Y., & Qi, X. (2020). Biogas from microalgae: Technologies, challenges and opportunities. Renewable and Sustainable Energy Reviews, 117, 109503. doi:10.1016/j.rser.2019.109503

Zhang, M., Yao, L., Maleki, E., Liao, B.-Q., & Lin, H. (2019). Membrane technologies for microalgal cultivation and dewatering: Recent progress and challenges. Algal Research, 44, 101686. doi:10.1016/j.algal.2019.101686

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem