- -

Multi-field variational formulations and mixed finite element approximations for electrostatics and magnetostatics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-field variational formulations and mixed finite element approximations for electrostatics and magnetostatics

Mostrar el registro completo del ítem

Moreno-Navarro, P.; Ibrahimbegovic, A.; Ospina, A. (2020). Multi-field variational formulations and mixed finite element approximations for electrostatics and magnetostatics. Computational Mechanics. 65(1):41-59. https://doi.org/10.1007/s00466-019-01751-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166203

Ficheros en el ítem

Metadatos del ítem

Título: Multi-field variational formulations and mixed finite element approximations for electrostatics and magnetostatics
Autor: Moreno-Navarro, Pablo Ibrahimbegovic, Adnan Ospina, Alejandro
Entidad UPV: Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures
Fecha difusión:
Resumen:
[EN] In this paper we propose different multi-field variational formulations for electrostatics and magnetostatics, which can provide optimal discrete approximation of any particular vector field. The proposed formulations ...[+]
Palabras clave: Electrostatics , Magnetostatics , Variational method , Whitney's element , Homogenization , Elasticity , Framework
Derechos de uso: Reserva de todos los derechos
Fuente:
Computational Mechanics. (issn: 0178-7675 )
DOI: 10.1007/s00466-019-01751-x
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00466-019-01751-x
Código del Proyecto:
info:eu-repo/grantAgreement/EC//RDISTRUCTI-000004/
info:eu-repo/grantAgreement/EC//120-2015-RDISTRUCTF-000010/
Descripción: The final publication is available at link.springer.com
Agradecimientos:
This work was supported jointly by Haut-deFrance Region (CR Picardie) (120-2015-RDISTRUCT-000010 and RDISTRUCT-000010) and EU funding (FEDER) for Chaire-deMecanique (120-2015-RDISTRUCTF-000010 and RDISTRUCTI000004). AI was ...[+]
Tipo: Artículo

References

Albanese R, Rubinacci G (1997) Finite element methods for the solution of 3d eddy current problems. In: Advances in imaging and electron physics, vol 102, pp 1–86. Elsevier

Alotto P, Freschi F, Repetto M, Rosso C (2013) The cell method for electrical engineering and multiphysics problems: an introduction, vol 230. Springer, Berlin

Angoshtari A, Shojaei MF, Yavari A (2017) Compatible-strain mixed finite element methods for 2d compressible nonlinear elasticity. Comput Methods Appl Mech Eng 313:596–631 [+]
Albanese R, Rubinacci G (1997) Finite element methods for the solution of 3d eddy current problems. In: Advances in imaging and electron physics, vol 102, pp 1–86. Elsevier

Alotto P, Freschi F, Repetto M, Rosso C (2013) The cell method for electrical engineering and multiphysics problems: an introduction, vol 230. Springer, Berlin

Angoshtari A, Shojaei MF, Yavari A (2017) Compatible-strain mixed finite element methods for 2d compressible nonlinear elasticity. Comput Methods Appl Mech Eng 313:596–631

Arnold DN, Falk RS, Winther R (2006) Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15:1–155

Balanis CA (1999) Advanced engineering electromagnetics. Wiley, Hoboken

Bamberg P, Sternberg S (1991) A course in mathematics for students of physics, vol 2. Cambridge University Press, Cambridge

Bochev PB, Robinson AC (2002) Matching algorithms with physics: exact sequences of finite element spaces. Collected Lectures on Preservation of Stability Under Discretization, pp 145–166

Bossavit A (1988) A rationale for ‘edge-elements’ in 3-d fields computations. IEEE Trans Magn 24(1):74–79

Bossavit A (1988) Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proc 135(8):493–500

Bossavit A (2010) Discrete magneto-elasticity: a geometrical approach. IEEE Trans Magn 46(8):3485–3491

Desbrun M, Kanso E, Tong Y (2008) Discrete differential forms for computational modeling. In: Discrete differential geometry, pp 287–324. Springer

Dular P, Geuzaine C (1997) Getdp: a general environment for the treatment of discrete problems

Dular P, Hody J-Y, Nicolet A, Genon A, Legros W (1994) Mixed finite elements associated with a collection of tetrahedra, hexahedra and prisms. IEEE Trans Magn 30(5):2980–2983

Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190(24–25):3247–3270

Gil AJ, Ortigosa R (2016) A new framework for large strain electromechanics based on convex multi-variable strain energies: variational formulation and material characterisation. Comput Methods Appl Mech Eng 302:293–328

Golias NA, Tsiboukis TD, Bossavit A (1994) Constitutive inconsistency: rigorous solution of maxwell equations based on a dual approach. IEEE Trans Magn 30(5):3586–3589

Gradinaru V, Hiptmair R (1999) Whitney elements on pyramids. Electron Trans Numer Anal 8:154–168

Hale HW (1961) A logic for identifying the trees of a graph. Trans Am Inst Electr Eng Part III Power Apparatus Syst 80(3):195–197

Hammond P (2013) Electromagnetism for engineers: an introductory course. Elsevier, Amsterdam

Hammond P, Penman J (1976) Calculation of inductance and capacitance by means of dual energy principles. In: Proceedings of the Institution of Electrical Engineers, vol 123, pp 554–559. IET

Hammond P, Tsiboukis TD (1983) Dual finite-element calculations for static electric and magnetic fields. IEE Proc A (Phys Sci Measurement Instrum Manag Educ Rev) 130(3):105–111

Ibrahimbegovic A (2009) Nonlinear solid mechanics: theoretical formulations and finite element solution methods, vol 160. Springer, Dordrecht

Jackson JD (1999) Classical electrodynamics. Wiley, New York

Kameari A (1989) Three dimensional eddy current calculation using edge elements for magnetic vector potential. In: Applied electromagnetics in materials, pp 225–236. Elsevier

Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG (2011) Nonlinear fluid–structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples. Comput Mech 47(3):305–323

Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG (2011) Nonlinear fluid–structure interaction problem. Part II: space discretization, implementation aspects, nested parallelization and application examples. Comput Mech 47(3):335–357

Keip Marc-André, Steinmann Paul, Schröder Jörg (2014) Two-scale computational homogenization of electro-elasticity at finite strains. Comput Methods Appl Mech Eng 278:62–79

Ladevèze P, Pelle J-P (2005) Mastering calculations in linear and nonlinear mechanics, vol 171. Springer, New York

Macneal RH, Harder Robert L (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1(1):3–20

Manges J, Cendes Z (1996) Generation of tangential vector finite elements. Int Compumag Soc Newsl 3(1):4–10

Mitchell BS (2004) An introduction to materials engineering and science for chemical and materials engineers. Wiley, Hoboken

Moreno-Navarro P, Ibrahimbegovic A, Pérez-Aparicio JL (2017) Plasticity coupled with thermo-electric fields: thermodynamics framework and finite element method computations. Comput Methods Appl Mech Eng 315:50–72

Moreno-Navarro P, Ibrahimbegovic A, Pérez-Aparicio JL (2018) Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields. Coupled Syst Mech 7(1):5–25

Nédélec J-C (1980) Mixed finite elements in $$\mathbb{R}^3$$. Numer Math 35(3):315–341

Penman J, Fraser J (1982) Complementary and dual energy finite element principles in magnetostatics. IEEE Trans Magn 18(2):319–324

Razek A (1995) Computation of 3d electrostatic local fields and forces using complementarity of dual formulations. Application for capacitance and torque calculations in micromotors

Ren Z (1995) A 3d vector potential formulation using edge element for electrostatic field computation. IEEE Trans Magn 31(3):1520–1523

Ren Z (2009) On the complementarity of dual formulations on dual meshes. IEEE Trans Magn 45(3):1284–1287

Repetto M, Trevisan F (2004) Global formulation of 3d magnetostatics using flux and gauged potentials. Int J Numer Meth Eng 60(4):755–772

Schröder J, Keip M-A (2012) Two-scale homogenization of electromechanically coupled boundary value problems. Comput Mech 50(2):229–244

Stark S, Semenov AS, Balke H (2015) On the boundary conditions for the vector potential formulation in electrostatics. Int J Numer Meth Eng 102(11):1704–1732

Taylor RL (2012) Feap–a finite element analysis program. Version 8.4 Theory Manual

Tonti E (2013) The mathematical structure of classical and relativistic physics. Springer, New York

Vogel F, Bustamante R, Steinmann P (2012) On some mixed variational principles in electro-elastostatics. Int J Nonlinear Mech 47(2):341–354

Wang J-S, Ida N (1993) Curvilinear and higher order ‘edge’ finite elements in electromagnetic field computation. IEEE Trans Magn 29(2):1491–1494

Webb JP, Forgahani B (1993) Hierarchal scalar and vector tetrahedra. IEEE Trans Magn 29(2):1495–1498

Yioultsis TV, Tsiboukis TD (1996) The mystery and magic of Whitney elements—an insight in their properties and construction. ICS Newsl 3:1389–1392

Zienkiewicz OC, Taylor RL (1977) The finite element method, vol 36. McGraw-Hill, London

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem