- -

Multi-field variational formulations and mixed finite element approximations for electrostatics and magnetostatics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-field variational formulations and mixed finite element approximations for electrostatics and magnetostatics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moreno-Navarro, Pablo es_ES
dc.contributor.author Ibrahimbegovic, Adnan es_ES
dc.contributor.author Ospina, Alejandro es_ES
dc.date.accessioned 2021-05-12T03:31:47Z
dc.date.available 2021-05-12T03:31:47Z
dc.date.issued 2020-01 es_ES
dc.identifier.issn 0178-7675 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166203
dc.description The final publication is available at link.springer.com es_ES
dc.description.abstract [EN] In this paper we propose different multi-field variational formulations for electrostatics and magnetostatics, which can provide optimal discrete approximation of any particular vector field. The proposed formulations are constructed by appealing to mechanics point of view amenable to using general constitutive equations, which is quite different from electrostatics and magnetostatics formulations typical of physics and electrical engineering focusing on the corresponding global form suitable only for linear case. In particular, the formulations we propose can be combined with mixed discrete approximations that can ensure the continuity of tangential component of electric ormagnetic field and normal component of electric displacement and magnetic flux even for low order interpolations. The choice of this kind is quite different from currently favorite choice of high order finite element interpolations used for coupling electromagnetism with mechanics. The discrete approximation is based upon Whitney's interpolations representing the vector fields in terms of corresponding differential forms, with electric and magnetic fields as one-form and electric displacement and magnetic flux as two-form. The implementation of interpolations of this kind is made for 3D tetrahedron elements with non-standard approximation parameters defined not only at vertices (for zero-form), but at edges (for one-form) and at facets (for two-form). The results of several numerical simulations are presented to illustrate the performance of different formulations proposed herein. es_ES
dc.description.sponsorship This work was supported jointly by Haut-deFrance Region (CR Picardie) (120-2015-RDISTRUCT-000010 and RDISTRUCT-000010) and EU funding (FEDER) for Chaire-deMecanique (120-2015-RDISTRUCTF-000010 and RDISTRUCTI000004). AI was also supported by IUF. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Computational Mechanics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electrostatics es_ES
dc.subject Magnetostatics es_ES
dc.subject Variational method es_ES
dc.subject Whitney's element es_ES
dc.subject Homogenization es_ES
dc.subject Elasticity es_ES
dc.subject Framework es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Multi-field variational formulations and mixed finite element approximations for electrostatics and magnetostatics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00466-019-01751-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//RDISTRUCTI-000004/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//120-2015-RDISTRUCTF-000010/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.description.bibliographicCitation Moreno-Navarro, P.; Ibrahimbegovic, A.; Ospina, A. (2020). Multi-field variational formulations and mixed finite element approximations for electrostatics and magnetostatics. Computational Mechanics. 65(1):41-59. https://doi.org/10.1007/s00466-019-01751-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00466-019-01751-x es_ES
dc.description.upvformatpinicio 41 es_ES
dc.description.upvformatpfin 59 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 65 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\411687 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Conseil Régional Hauts-de-France es_ES
dc.contributor.funder Institut Universitaire de France es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Albanese R, Rubinacci G (1997) Finite element methods for the solution of 3d eddy current problems. In: Advances in imaging and electron physics, vol 102, pp 1–86. Elsevier es_ES
dc.description.references Alotto P, Freschi F, Repetto M, Rosso C (2013) The cell method for electrical engineering and multiphysics problems: an introduction, vol 230. Springer, Berlin es_ES
dc.description.references Angoshtari A, Shojaei MF, Yavari A (2017) Compatible-strain mixed finite element methods for 2d compressible nonlinear elasticity. Comput Methods Appl Mech Eng 313:596–631 es_ES
dc.description.references Arnold DN, Falk RS, Winther R (2006) Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15:1–155 es_ES
dc.description.references Balanis CA (1999) Advanced engineering electromagnetics. Wiley, Hoboken es_ES
dc.description.references Bamberg P, Sternberg S (1991) A course in mathematics for students of physics, vol 2. Cambridge University Press, Cambridge es_ES
dc.description.references Bochev PB, Robinson AC (2002) Matching algorithms with physics: exact sequences of finite element spaces. Collected Lectures on Preservation of Stability Under Discretization, pp 145–166 es_ES
dc.description.references Bossavit A (1988) A rationale for ‘edge-elements’ in 3-d fields computations. IEEE Trans Magn 24(1):74–79 es_ES
dc.description.references Bossavit A (1988) Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proc 135(8):493–500 es_ES
dc.description.references Bossavit A (2010) Discrete magneto-elasticity: a geometrical approach. IEEE Trans Magn 46(8):3485–3491 es_ES
dc.description.references Desbrun M, Kanso E, Tong Y (2008) Discrete differential forms for computational modeling. In: Discrete differential geometry, pp 287–324. Springer es_ES
dc.description.references Dular P, Geuzaine C (1997) Getdp: a general environment for the treatment of discrete problems es_ES
dc.description.references Dular P, Hody J-Y, Nicolet A, Genon A, Legros W (1994) Mixed finite elements associated with a collection of tetrahedra, hexahedra and prisms. IEEE Trans Magn 30(5):2980–2983 es_ES
dc.description.references Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190(24–25):3247–3270 es_ES
dc.description.references Gil AJ, Ortigosa R (2016) A new framework for large strain electromechanics based on convex multi-variable strain energies: variational formulation and material characterisation. Comput Methods Appl Mech Eng 302:293–328 es_ES
dc.description.references Golias NA, Tsiboukis TD, Bossavit A (1994) Constitutive inconsistency: rigorous solution of maxwell equations based on a dual approach. IEEE Trans Magn 30(5):3586–3589 es_ES
dc.description.references Gradinaru V, Hiptmair R (1999) Whitney elements on pyramids. Electron Trans Numer Anal 8:154–168 es_ES
dc.description.references Hale HW (1961) A logic for identifying the trees of a graph. Trans Am Inst Electr Eng Part III Power Apparatus Syst 80(3):195–197 es_ES
dc.description.references Hammond P (2013) Electromagnetism for engineers: an introductory course. Elsevier, Amsterdam es_ES
dc.description.references Hammond P, Penman J (1976) Calculation of inductance and capacitance by means of dual energy principles. In: Proceedings of the Institution of Electrical Engineers, vol 123, pp 554–559. IET es_ES
dc.description.references Hammond P, Tsiboukis TD (1983) Dual finite-element calculations for static electric and magnetic fields. IEE Proc A (Phys Sci Measurement Instrum Manag Educ Rev) 130(3):105–111 es_ES
dc.description.references Ibrahimbegovic A (2009) Nonlinear solid mechanics: theoretical formulations and finite element solution methods, vol 160. Springer, Dordrecht es_ES
dc.description.references Jackson JD (1999) Classical electrodynamics. Wiley, New York es_ES
dc.description.references Kameari A (1989) Three dimensional eddy current calculation using edge elements for magnetic vector potential. In: Applied electromagnetics in materials, pp 225–236. Elsevier es_ES
dc.description.references Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG (2011) Nonlinear fluid–structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples. Comput Mech 47(3):305–323 es_ES
dc.description.references Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG (2011) Nonlinear fluid–structure interaction problem. Part II: space discretization, implementation aspects, nested parallelization and application examples. Comput Mech 47(3):335–357 es_ES
dc.description.references Keip Marc-André, Steinmann Paul, Schröder Jörg (2014) Two-scale computational homogenization of electro-elasticity at finite strains. Comput Methods Appl Mech Eng 278:62–79 es_ES
dc.description.references Ladevèze P, Pelle J-P (2005) Mastering calculations in linear and nonlinear mechanics, vol 171. Springer, New York es_ES
dc.description.references Macneal RH, Harder Robert L (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1(1):3–20 es_ES
dc.description.references Manges J, Cendes Z (1996) Generation of tangential vector finite elements. Int Compumag Soc Newsl 3(1):4–10 es_ES
dc.description.references Mitchell BS (2004) An introduction to materials engineering and science for chemical and materials engineers. Wiley, Hoboken es_ES
dc.description.references Moreno-Navarro P, Ibrahimbegovic A, Pérez-Aparicio JL (2017) Plasticity coupled with thermo-electric fields: thermodynamics framework and finite element method computations. Comput Methods Appl Mech Eng 315:50–72 es_ES
dc.description.references Moreno-Navarro P, Ibrahimbegovic A, Pérez-Aparicio JL (2018) Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields. Coupled Syst Mech 7(1):5–25 es_ES
dc.description.references Nédélec J-C (1980) Mixed finite elements in $$\mathbb{R}^3$$. Numer Math 35(3):315–341 es_ES
dc.description.references Penman J, Fraser J (1982) Complementary and dual energy finite element principles in magnetostatics. IEEE Trans Magn 18(2):319–324 es_ES
dc.description.references Razek A (1995) Computation of 3d electrostatic local fields and forces using complementarity of dual formulations. Application for capacitance and torque calculations in micromotors es_ES
dc.description.references Ren Z (1995) A 3d vector potential formulation using edge element for electrostatic field computation. IEEE Trans Magn 31(3):1520–1523 es_ES
dc.description.references Ren Z (2009) On the complementarity of dual formulations on dual meshes. IEEE Trans Magn 45(3):1284–1287 es_ES
dc.description.references Repetto M, Trevisan F (2004) Global formulation of 3d magnetostatics using flux and gauged potentials. Int J Numer Meth Eng 60(4):755–772 es_ES
dc.description.references Schröder J, Keip M-A (2012) Two-scale homogenization of electromechanically coupled boundary value problems. Comput Mech 50(2):229–244 es_ES
dc.description.references Stark S, Semenov AS, Balke H (2015) On the boundary conditions for the vector potential formulation in electrostatics. Int J Numer Meth Eng 102(11):1704–1732 es_ES
dc.description.references Taylor RL (2012) Feap–a finite element analysis program. Version 8.4 Theory Manual es_ES
dc.description.references Tonti E (2013) The mathematical structure of classical and relativistic physics. Springer, New York es_ES
dc.description.references Vogel F, Bustamante R, Steinmann P (2012) On some mixed variational principles in electro-elastostatics. Int J Nonlinear Mech 47(2):341–354 es_ES
dc.description.references Wang J-S, Ida N (1993) Curvilinear and higher order ‘edge’ finite elements in electromagnetic field computation. IEEE Trans Magn 29(2):1491–1494 es_ES
dc.description.references Webb JP, Forgahani B (1993) Hierarchal scalar and vector tetrahedra. IEEE Trans Magn 29(2):1495–1498 es_ES
dc.description.references Yioultsis TV, Tsiboukis TD (1996) The mystery and magic of Whitney elements—an insight in their properties and construction. ICS Newsl 3:1389–1392 es_ES
dc.description.references Zienkiewicz OC, Taylor RL (1977) The finite element method, vol 36. McGraw-Hill, London es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem