Mostrar el registro sencillo del ítem
dc.contributor.author | Moreno-Navarro, Pablo![]() |
es_ES |
dc.contributor.author | Ibrahimbegovic, Adnan![]() |
es_ES |
dc.contributor.author | Ospina, Alejandro![]() |
es_ES |
dc.date.accessioned | 2021-05-12T03:31:47Z | |
dc.date.available | 2021-05-12T03:31:47Z | |
dc.date.issued | 2020-01 | es_ES |
dc.identifier.issn | 0178-7675 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166203 | |
dc.description | The final publication is available at link.springer.com | es_ES |
dc.description.abstract | [EN] In this paper we propose different multi-field variational formulations for electrostatics and magnetostatics, which can provide optimal discrete approximation of any particular vector field. The proposed formulations are constructed by appealing to mechanics point of view amenable to using general constitutive equations, which is quite different from electrostatics and magnetostatics formulations typical of physics and electrical engineering focusing on the corresponding global form suitable only for linear case. In particular, the formulations we propose can be combined with mixed discrete approximations that can ensure the continuity of tangential component of electric ormagnetic field and normal component of electric displacement and magnetic flux even for low order interpolations. The choice of this kind is quite different from currently favorite choice of high order finite element interpolations used for coupling electromagnetism with mechanics. The discrete approximation is based upon Whitney's interpolations representing the vector fields in terms of corresponding differential forms, with electric and magnetic fields as one-form and electric displacement and magnetic flux as two-form. The implementation of interpolations of this kind is made for 3D tetrahedron elements with non-standard approximation parameters defined not only at vertices (for zero-form), but at edges (for one-form) and at facets (for two-form). The results of several numerical simulations are presented to illustrate the performance of different formulations proposed herein. | es_ES |
dc.description.sponsorship | This work was supported jointly by Haut-deFrance Region (CR Picardie) (120-2015-RDISTRUCT-000010 and RDISTRUCT-000010) and EU funding (FEDER) for Chaire-deMecanique (120-2015-RDISTRUCTF-000010 and RDISTRUCTI000004). AI was also supported by IUF. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Computational Mechanics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Electrostatics | es_ES |
dc.subject | Magnetostatics | es_ES |
dc.subject | Variational method | es_ES |
dc.subject | Whitney's element | es_ES |
dc.subject | Homogenization | es_ES |
dc.subject | Elasticity | es_ES |
dc.subject | Framework | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Multi-field variational formulations and mixed finite element approximations for electrostatics and magnetostatics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00466-019-01751-x | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC//RDISTRUCTI-000004/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC//120-2015-RDISTRUCTF-000010/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.description.bibliographicCitation | Moreno-Navarro, P.; Ibrahimbegovic, A.; Ospina, A. (2020). Multi-field variational formulations and mixed finite element approximations for electrostatics and magnetostatics. Computational Mechanics. 65(1):41-59. https://doi.org/10.1007/s00466-019-01751-x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00466-019-01751-x | es_ES |
dc.description.upvformatpinicio | 41 | es_ES |
dc.description.upvformatpfin | 59 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 65 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\411687 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Conseil Régional Hauts-de-France | es_ES |
dc.contributor.funder | Institut Universitaire de France | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Albanese R, Rubinacci G (1997) Finite element methods for the solution of 3d eddy current problems. In: Advances in imaging and electron physics, vol 102, pp 1–86. Elsevier | es_ES |
dc.description.references | Alotto P, Freschi F, Repetto M, Rosso C (2013) The cell method for electrical engineering and multiphysics problems: an introduction, vol 230. Springer, Berlin | es_ES |
dc.description.references | Angoshtari A, Shojaei MF, Yavari A (2017) Compatible-strain mixed finite element methods for 2d compressible nonlinear elasticity. Comput Methods Appl Mech Eng 313:596–631 | es_ES |
dc.description.references | Arnold DN, Falk RS, Winther R (2006) Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15:1–155 | es_ES |
dc.description.references | Balanis CA (1999) Advanced engineering electromagnetics. Wiley, Hoboken | es_ES |
dc.description.references | Bamberg P, Sternberg S (1991) A course in mathematics for students of physics, vol 2. Cambridge University Press, Cambridge | es_ES |
dc.description.references | Bochev PB, Robinson AC (2002) Matching algorithms with physics: exact sequences of finite element spaces. Collected Lectures on Preservation of Stability Under Discretization, pp 145–166 | es_ES |
dc.description.references | Bossavit A (1988) A rationale for ‘edge-elements’ in 3-d fields computations. IEEE Trans Magn 24(1):74–79 | es_ES |
dc.description.references | Bossavit A (1988) Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proc 135(8):493–500 | es_ES |
dc.description.references | Bossavit A (2010) Discrete magneto-elasticity: a geometrical approach. IEEE Trans Magn 46(8):3485–3491 | es_ES |
dc.description.references | Desbrun M, Kanso E, Tong Y (2008) Discrete differential forms for computational modeling. In: Discrete differential geometry, pp 287–324. Springer | es_ES |
dc.description.references | Dular P, Geuzaine C (1997) Getdp: a general environment for the treatment of discrete problems | es_ES |
dc.description.references | Dular P, Hody J-Y, Nicolet A, Genon A, Legros W (1994) Mixed finite elements associated with a collection of tetrahedra, hexahedra and prisms. IEEE Trans Magn 30(5):2980–2983 | es_ES |
dc.description.references | Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190(24–25):3247–3270 | es_ES |
dc.description.references | Gil AJ, Ortigosa R (2016) A new framework for large strain electromechanics based on convex multi-variable strain energies: variational formulation and material characterisation. Comput Methods Appl Mech Eng 302:293–328 | es_ES |
dc.description.references | Golias NA, Tsiboukis TD, Bossavit A (1994) Constitutive inconsistency: rigorous solution of maxwell equations based on a dual approach. IEEE Trans Magn 30(5):3586–3589 | es_ES |
dc.description.references | Gradinaru V, Hiptmair R (1999) Whitney elements on pyramids. Electron Trans Numer Anal 8:154–168 | es_ES |
dc.description.references | Hale HW (1961) A logic for identifying the trees of a graph. Trans Am Inst Electr Eng Part III Power Apparatus Syst 80(3):195–197 | es_ES |
dc.description.references | Hammond P (2013) Electromagnetism for engineers: an introductory course. Elsevier, Amsterdam | es_ES |
dc.description.references | Hammond P, Penman J (1976) Calculation of inductance and capacitance by means of dual energy principles. In: Proceedings of the Institution of Electrical Engineers, vol 123, pp 554–559. IET | es_ES |
dc.description.references | Hammond P, Tsiboukis TD (1983) Dual finite-element calculations for static electric and magnetic fields. IEE Proc A (Phys Sci Measurement Instrum Manag Educ Rev) 130(3):105–111 | es_ES |
dc.description.references | Ibrahimbegovic A (2009) Nonlinear solid mechanics: theoretical formulations and finite element solution methods, vol 160. Springer, Dordrecht | es_ES |
dc.description.references | Jackson JD (1999) Classical electrodynamics. Wiley, New York | es_ES |
dc.description.references | Kameari A (1989) Three dimensional eddy current calculation using edge elements for magnetic vector potential. In: Applied electromagnetics in materials, pp 225–236. Elsevier | es_ES |
dc.description.references | Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG (2011) Nonlinear fluid–structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples. Comput Mech 47(3):305–323 | es_ES |
dc.description.references | Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG (2011) Nonlinear fluid–structure interaction problem. Part II: space discretization, implementation aspects, nested parallelization and application examples. Comput Mech 47(3):335–357 | es_ES |
dc.description.references | Keip Marc-André, Steinmann Paul, Schröder Jörg (2014) Two-scale computational homogenization of electro-elasticity at finite strains. Comput Methods Appl Mech Eng 278:62–79 | es_ES |
dc.description.references | Ladevèze P, Pelle J-P (2005) Mastering calculations in linear and nonlinear mechanics, vol 171. Springer, New York | es_ES |
dc.description.references | Macneal RH, Harder Robert L (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1(1):3–20 | es_ES |
dc.description.references | Manges J, Cendes Z (1996) Generation of tangential vector finite elements. Int Compumag Soc Newsl 3(1):4–10 | es_ES |
dc.description.references | Mitchell BS (2004) An introduction to materials engineering and science for chemical and materials engineers. Wiley, Hoboken | es_ES |
dc.description.references | Moreno-Navarro P, Ibrahimbegovic A, Pérez-Aparicio JL (2017) Plasticity coupled with thermo-electric fields: thermodynamics framework and finite element method computations. Comput Methods Appl Mech Eng 315:50–72 | es_ES |
dc.description.references | Moreno-Navarro P, Ibrahimbegovic A, Pérez-Aparicio JL (2018) Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields. Coupled Syst Mech 7(1):5–25 | es_ES |
dc.description.references | Nédélec J-C (1980) Mixed finite elements in $$\mathbb{R}^3$$. Numer Math 35(3):315–341 | es_ES |
dc.description.references | Penman J, Fraser J (1982) Complementary and dual energy finite element principles in magnetostatics. IEEE Trans Magn 18(2):319–324 | es_ES |
dc.description.references | Razek A (1995) Computation of 3d electrostatic local fields and forces using complementarity of dual formulations. Application for capacitance and torque calculations in micromotors | es_ES |
dc.description.references | Ren Z (1995) A 3d vector potential formulation using edge element for electrostatic field computation. IEEE Trans Magn 31(3):1520–1523 | es_ES |
dc.description.references | Ren Z (2009) On the complementarity of dual formulations on dual meshes. IEEE Trans Magn 45(3):1284–1287 | es_ES |
dc.description.references | Repetto M, Trevisan F (2004) Global formulation of 3d magnetostatics using flux and gauged potentials. Int J Numer Meth Eng 60(4):755–772 | es_ES |
dc.description.references | Schröder J, Keip M-A (2012) Two-scale homogenization of electromechanically coupled boundary value problems. Comput Mech 50(2):229–244 | es_ES |
dc.description.references | Stark S, Semenov AS, Balke H (2015) On the boundary conditions for the vector potential formulation in electrostatics. Int J Numer Meth Eng 102(11):1704–1732 | es_ES |
dc.description.references | Taylor RL (2012) Feap–a finite element analysis program. Version 8.4 Theory Manual | es_ES |
dc.description.references | Tonti E (2013) The mathematical structure of classical and relativistic physics. Springer, New York | es_ES |
dc.description.references | Vogel F, Bustamante R, Steinmann P (2012) On some mixed variational principles in electro-elastostatics. Int J Nonlinear Mech 47(2):341–354 | es_ES |
dc.description.references | Wang J-S, Ida N (1993) Curvilinear and higher order ‘edge’ finite elements in electromagnetic field computation. IEEE Trans Magn 29(2):1491–1494 | es_ES |
dc.description.references | Webb JP, Forgahani B (1993) Hierarchal scalar and vector tetrahedra. IEEE Trans Magn 29(2):1495–1498 | es_ES |
dc.description.references | Yioultsis TV, Tsiboukis TD (1996) The mystery and magic of Whitney elements—an insight in their properties and construction. ICS Newsl 3:1389–1392 | es_ES |
dc.description.references | Zienkiewicz OC, Taylor RL (1977) The finite element method, vol 36. McGraw-Hill, London | es_ES |