- -

Detection of adjacent and non-adjacent bar breakages in induction motors via convolutional analysis of sound signals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Detection of adjacent and non-adjacent bar breakages in induction motors via convolutional analysis of sound signals

Mostrar el registro completo del ítem

Iglesias Martínez, ME.; Fernández De Córdoba, P.; Antonino Daviu, JA.; Conejero, JA. (2020). Detection of adjacent and non-adjacent bar breakages in induction motors via convolutional analysis of sound signals. Applied Sciences. 10(19):1-19. https://doi.org/10.3390/app10196641

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166204

Ficheros en el ítem

Metadatos del ítem

Título: Detection of adjacent and non-adjacent bar breakages in induction motors via convolutional analysis of sound signals
Autor: Iglesias Martínez, Miguel Enrique Fernández de Córdoba, Pedro Antonino Daviu, José Alfonso Conejero, J. Alberto
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We apply power spectral analysis based on covariance function and spectral subtraction to detect adjacent and non-adjacent bar breakages. We get a spectral pattern when the signal presents one or various broken bars, ...[+]
Palabras clave: Electrical machines , Rotor bar breakages , Spectral analysis , Noise
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app10196641
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app10196641
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095747-B-I00/ES/TECNOLOGIAS AVANZADAS BASADAS EN EL ANALISIS DEL FLUJO DE DISPERSION EN REGIMEN TRANSITORIO PARA EL DIAGNOSTICO PRECOZ DE ANOMALIAS ELECTROMECANICAS EN MOTORES ELECTRICOS/
info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F224/
Agradecimientos:
This research was funded by MEC, grant number MTM 2016-7963-P; Spanish `Ministerio de Ciencia Innovacion y Universidades' and FEDER program in the framework of the `Proyectos de I +D de Generacion de Conocimiento del ...[+]
Tipo: Artículo

References

Cusidó, J., Romeral, L., Ortega, J. A., Garcia, A., & Riba, J. (2011). Signal Injection as a Fault Detection Technique. Sensors, 11(3), 3356-3380. doi:10.3390/s110303356

Riera-Guasp, M., Cabanas, M. F., Antonino-Daviu, J. A., Pineda-Sanchez, M., & Garcia, C. H. R. (2010). Influence of Nonconsecutive Bar Breakages in Motor Current Signature Analysis for the Diagnosis of Rotor Faults in Induction Motors. IEEE Transactions on Energy Conversion, 25(1), 80-89. doi:10.1109/tec.2009.2032622

Garcia-Perez, A., Romero-Troncoso, R. J., Cabal-Yepez, E., Osornio-Rios, R. A., & Lucio-Martinez, J. A. (2011). Application of high-resolution spectral analysis for identifying faults in induction motors by means of sound. Journal of Vibration and Control, 18(11), 1585-1594. doi:10.1177/1077546311422925 [+]
Cusidó, J., Romeral, L., Ortega, J. A., Garcia, A., & Riba, J. (2011). Signal Injection as a Fault Detection Technique. Sensors, 11(3), 3356-3380. doi:10.3390/s110303356

Riera-Guasp, M., Cabanas, M. F., Antonino-Daviu, J. A., Pineda-Sanchez, M., & Garcia, C. H. R. (2010). Influence of Nonconsecutive Bar Breakages in Motor Current Signature Analysis for the Diagnosis of Rotor Faults in Induction Motors. IEEE Transactions on Energy Conversion, 25(1), 80-89. doi:10.1109/tec.2009.2032622

Garcia-Perez, A., Romero-Troncoso, R. J., Cabal-Yepez, E., Osornio-Rios, R. A., & Lucio-Martinez, J. A. (2011). Application of high-resolution spectral analysis for identifying faults in induction motors by means of sound. Journal of Vibration and Control, 18(11), 1585-1594. doi:10.1177/1077546311422925

Glowacz, A., Glowacz, W., Glowacz, Z., Kozik, J., Gutten, M., Korenciak, D., … Carletti, E. (2017). Fault Diagnosis of Three Phase Induction Motor Using Current Signal, MSAF-Ratio15 and Selected Classifiers. Archives of Metallurgy and Materials, 62(4), 2413-2419. doi:10.1515/amm-2017-0355

Guezmil, A., Berriri, H., Pusca, R., Sakly, A., Romary, R., & Mimouni, M. F. (2017). Detecting Inter-Turn Short-Circuit Fault in Induction Machine Using High-Order Sliding Mode Observer: Simulation and Experimental Verification. Journal of Control, Automation and Electrical Systems, 28(4), 532-540. doi:10.1007/s40313-017-0314-2

Zhong, J.-H., Wong, P., & Yang, Z.-X. (2016). Simultaneous-Fault Diagnosis of Gearboxes Using Probabilistic Committee Machine. Sensors, 16(2), 185. doi:10.3390/s16020185

Iglesias-Martínez, M., Antonino-Daviu, J., Fernández de Córdoba, P., & Conejero, J. (2019). Rotor Fault Detection in Induction Motors Based on Time-Frequency Analysis Using the Bispectrum and the Autocovariance of Stray Flux Signals. Energies, 12(4), 597. doi:10.3390/en12040597

Glowacz, A., Glowacz, W., Glowacz, Z., & Kozik, J. (2018). Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals. Measurement, 113, 1-9. doi:10.1016/j.measurement.2017.08.036

Samanta, A. K., Naha, A., Routray, A., & Deb, A. K. (2018). Fast and accurate spectral estimation for online detection of partial broken bar in induction motors. Mechanical Systems and Signal Processing, 98, 63-77. doi:10.1016/j.ymssp.2017.04.035

Antonino-Daviu, J., Riera-Guasp, M., Roger-Folch, J., Martínez-Giménez, F., & Peris, A. (2006). Application and optimization of the discrete wavelet transform for the detection of broken rotor bars in induction machines. Applied and Computational Harmonic Analysis, 21(2), 268-279. doi:10.1016/j.acha.2005.12.003

Bazhenov, V. A., Pogorelova, O. S., & Postnikova, T. G. (2018). Intermittent transition to chaos in vibroimpact system. Applied Mathematics and Nonlinear Sciences, 3(2), 475-486. doi:10.2478/amns.2018.2.00037

Gaeid, K. S., Ping, H. W., Khalid, M., & Masaoud, A. (2012). Sensor and Sensorless Fault Tolerant Control for Induction Motors Using a Wavelet Index. Sensors, 12(4), 4031-4050. doi:10.3390/s120404031

Yahia, K., Cardoso, A. J. M., Ghoggal, A., & Zouzou, S. E. (2014). Induction motors airgap-eccentricity detection through the discrete wavelet transform of the apparent power signal under non-stationary operating conditions. ISA Transactions, 53(2), 603-611. doi:10.1016/j.isatra.2013.12.002

Delgado-Arredondo, P. A., Morinigo-Sotelo, D., Osornio-Rios, R. A., Avina-Cervantes, J. G., Rostro-Gonzalez, H., & Romero-Troncoso, R. de J. (2017). Methodology for fault detection in induction motors via sound and vibration signals. Mechanical Systems and Signal Processing, 83, 568-589. doi:10.1016/j.ymssp.2016.06.032

Gu, F., Wang, T., Alwodai, A., Tian, X., Shao, Y., & Ball, A. D. (2015). A new method of accurate broken rotor bar diagnosis based on modulation signal bispectrum analysis of motor current signals. Mechanical Systems and Signal Processing, 50-51, 400-413. doi:10.1016/j.ymssp.2014.05.017

Saidi, L., Fnaiech, F., Henao, H., Capolino, G.-A., & Cirrincione, G. (2013). Diagnosis of broken-bars fault in induction machines using higher order spectral analysis. ISA Transactions, 52(1), 140-148. doi:10.1016/j.isatra.2012.08.003

Głowacz, A., & Głowacz, Z. (2017). Recognition of rotor damages in a DC motor using acoustic signals. Bulletin of the Polish Academy of Sciences Technical Sciences, 65(2), 187-194. doi:10.1515/bpasts-2017-0023

Ondel, O., Boutleux, E., & Clerc, G. (2006). A method to detect broken bars in induction machine using pattern recognition techniques. IEEE Transactions on Industry Applications, 42(4), 916-923. doi:10.1109/tia.2006.876071

Júnior, A. M. G., Silva, V. V. R., Baccarini, L. M. R., & Mendes, L. F. S. (2018). The design of multiple linear regression models using a genetic algorithm to diagnose initial short-circuit faults in 3-phase induction motors. Applied Soft Computing, 63, 50-58. doi:10.1016/j.asoc.2017.11.015

Rezazadeh Mehrjou, M., Mariun, N., Misron, N., Radzi, M., & Musa, S. (2017). Broken Rotor Bar Detection in LS-PMSM Based on Startup Current Analysis Using Wavelet Entropy Features. Applied Sciences, 7(8), 845. doi:10.3390/app7080845

Iglesias-Martinez, M. E., Fernandez de Cordoba, P., Antonino-Daviu, J. A., & Conejero, J. A. (2019). Detection of Nonadjacent Rotor Faults in Induction Motors via Spectral Subtraction and Autocorrelation of Stray Flux Signals. IEEE Transactions on Industry Applications, 55(5), 4585-4594. doi:10.1109/tia.2019.2917861

Iglesias Martínez, M. E., Antonino-Daviu, J. A., de Córdoba, P. F., & Conejero, J. A. (2020). Higher-Order Spectral Analysis of Stray Flux Signals for Faults Detection in Induction Motors. Applied Mathematics and Nonlinear Sciences, 5(2), 1-14. doi:10.2478/amns.2020.1.00032

Dhabu, S., Ambede, A., Agrawal, N., Smitha, K. G., Darak, S., & Vinod, A. P. (2020). Variable cutoff frequency FIR filters: a survey. SN Applied Sciences, 2(3). doi:10.1007/s42452-020-2140-6

Isogawa, K., Ida, T., Shiodera, T., & Takeguchi, T. (2018). Deep Shrinkage Convolutional Neural Network for Adaptive Noise Reduction. IEEE Signal Processing Letters, 25(2), 224-228. doi:10.1109/lsp.2017.2782270

Crouse, M. S., Nowak, R. D., & Baraniuk, R. G. (1998). Wavelet-based statistical signal processing using hidden Markov models. IEEE Transactions on Signal Processing, 46(4), 886-902. doi:10.1109/78.668544

Ge, H., Chen, G., Yu, H., Chen, H., & An, F. (2018). Theoretical Analysis of Empirical Mode Decomposition. Symmetry, 10(11), 623. doi:10.3390/sym10110623

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem