Mostrar el registro sencillo del ítem
dc.contributor.author | Lizama, Carlos | es_ES |
dc.contributor.author | Murillo Arcila, Marina | es_ES |
dc.date.accessioned | 2021-05-12T03:31:59Z | |
dc.date.available | 2021-05-12T03:31:59Z | |
dc.date.issued | 2020-10-20 | es_ES |
dc.identifier.issn | 1687-1847 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166208 | |
dc.description.abstract | [EN] We consider the maximal regularity problem for a PDE of linear acoustics, named the Van Wijngaarden-Eringen equation, that models the propagation of linear acoustic waves in isothermal bubbly liquids, wherein the bubbles are of uniform radius. If the dimensionless bubble radius is greater than one, we prove that the inhomogeneous version of the Van Wijngaarden-Eringen equation, in a cylindrical domain, admits maximal regularity in Lebesgue spaces. Our methods are based on the theory of operator-valued Fourier multipliers. | es_ES |
dc.description.sponsorship | The first author is partially supported by FONDECYT grant number 1180041 and DICYT, Universidad de Santiago de Chile, USACH. The second author is supported by MEC, grants MTM2016-75963-P and PID2019-105011GB-I00. | es_ES |
dc.language | Inglés | es_ES |
dc.relation.ispartof | Advances in Difference Equations | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Maximal regularity | es_ES |
dc.subject | Van Wijngaarden-Eringen equation | es_ES |
dc.subject | Degenerate evolution equations | es_ES |
dc.subject | R-boundedness | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | L-p - L-q-Maximal regularity of the Van Wijngaarden-Eringen equation in a cylindrical domain | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s13662-020-03054-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//1180041/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105011GB-I00/ES/DINAMICA DE OPERADORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Lizama, C.; Murillo Arcila, M. (2020). L-p - L-q-Maximal regularity of the Van Wijngaarden-Eringen equation in a cylindrical domain. Advances in Difference Equations. 2020(1):1-10. https://doi.org/10.1186/s13662-020-03054-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s13662-020-03054-5 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2020 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\427223 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico y Tecnológico, Chile | es_ES |
dc.contributor.funder | Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Santiago de Chile | es_ES |
dc.description.references | Anufrieva, U.A.: A degenerate Cauchy problem for a second-order equation. A well-posedness criterion. Differ. Uravn. 34(8), 1131–1133 (1998) (Russian). Translation in: Differ. Equ. 34(8), 1135–1137 (1999) | es_ES |
dc.description.references | Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240(2), 311–343 (2002) | es_ES |
dc.description.references | Bu, S., Cai, G.: Periodic solutions of second order degenerate differential equations with delay in Banach spaces. Can. Math. Bull. 61(4), 717–737 (2018) | es_ES |
dc.description.references | Carroll, R.W., Showalter, R.E.: Singular and Degenerate Cauchy Problems. Academic Press, New York (1976) | es_ES |
dc.description.references | Chipot, M.: ℓ Goes to Plus Infinity. Birkhaüser Advanced Texts: Basler Lehrbücher. Birkhäuser Advanced Texts: Basel Textbooks. Birkhäuser, Basel (2002) | es_ES |
dc.description.references | Chipot, M.: Elliptic Equations: An Introductory Course. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Advanced Texts: Basel Textbooks. Birkhäuser, Basel (2009) | es_ES |
dc.description.references | Conejero, A., Lizama, C., Murillo, M.: On the existence of chaos for the viscous Van Wijngaarden–Eringen equation. Chaos Solitons Fractals 89, 100–104 (2016) | es_ES |
dc.description.references | Denk, R., Hieber, M., Prüss, J.: R-Boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166, 788 (2003) | es_ES |
dc.description.references | Denk, R., Nau, T.: Discrete Fourier multipliers and cylindrical boundary-value problems. Proc. R. Soc. Edinb., Sect. A 143(6), 1163–1183 (2013) | es_ES |
dc.description.references | Eringen, A.C.: Theory of thermo-microstretch fluids and bubbly liquids. Int. J. Eng. Sci. 28(2), 133–143 (1990) | es_ES |
dc.description.references | Favini, A., Yagi, A.: Degenerate Differential Equations in Banach Spaces. Chapman and Hall/CRC Pure and Applied Mathematics, New York (1998) | es_ES |
dc.description.references | Guidotti, P.: Elliptic and parabolic problems in unbounded domains. Math. Nachr. 272, 32–45 (2004) | es_ES |
dc.description.references | Hayes, M.A., Saccomandi, G.: Finite amplitude transverse waves in special incompressible viscoelastic solids. J. Elast. 59, 213–225 (2000) | es_ES |
dc.description.references | Jordan, P.M., Feuillade, C.: On the propagation of harmonic acoustic waves in bubbly liquids. Int. J. Eng. Sci. 42(11–12), 1119–1128 (2004) | es_ES |
dc.description.references | Kalton, N., Weis, L.: The $\mathcal{H}^{\infty }$-calculus and sums of closed operators. Math. Ann. 321, 319–345 (2001) | es_ES |
dc.description.references | Keyantuo, V., Lizama, C.: Fourier multipliers and integro-differential equations in Banach spaces. J. Lond. Math. Soc. (2) 69(3), 737–750 (2004) | es_ES |
dc.description.references | Keyantuo, V., Lizama, C.: Periodic solutions of second order differential equations in Banach spaces. Math. Z. 253(3), 489–514 (2006) | es_ES |
dc.description.references | Kostic, M.: Abstract Degenerate Volterra Integro-Differential Equations. Mathematical Institute SANU, Belgrade (2020) | es_ES |
dc.description.references | Nau, T.: $L^{p}$-theory of cylindrical boundary value problems. An operator-valued Fourier multiplier and functional calculus approach. Dissertation, University of Konstanz, Konstanz (2012). Springer Spektrum, Wiesbaden (2012) | es_ES |
dc.description.references | Nau, T.: The Laplacian on cylindrical domains. Integral Equ. Oper. Theory 75, 409–431 (2013) | es_ES |
dc.description.references | Nau, T., Saal, J.: $\mathcal{R}$-Sectoriality of cylindrical boundary value problems. In: Parabolic Problems. Progr. Nonlinear Differential Equations Appl., vol. 80, pp. 479–505. Birkhäuser, Basel (2011) | es_ES |
dc.description.references | Nau, T., Saal, J.: Jürgen $\mathcal{H}^{\infty }$-calculus for cylindrical boundary value problems. Adv. Differ. Equ. 17(7–8), 767–800 (2012) | es_ES |
dc.description.references | Rubin, M.B., Rosenau, P., Gottlieb, O.: Continuum model of dispersion caused by an inherent material characteristic length. J. Appl. Phys. 77, 4054–4063 (1995) | es_ES |
dc.description.references | Sviridyuk, G.A., Fedorov, V.E.: Linear Sobolev Type Equations and Degenerate Semigroups of Operators. Inverse and Ill-Posed Problems, vol. 42. VSP, Utrecht (2003) | es_ES |
dc.description.references | Thompson, P.A.: Compressible-Fluid Mechanics. McGraw-Hill, New York (1992) | es_ES |
dc.description.references | Wijngaarden, L.V.: One-dimensional flow of liquids containing small gas bubbles. Annu. Rev. Fluid Mech. 4, 369–396 (1972) | es_ES |
dc.description.references | Wood, I.: Maximal $L_{p}$-regularity for the Laplacian on Lipschitz domains. Math. Z. 255(4), 855–875 (2007) | es_ES |