- -

L-p - L-q-Maximal regularity of the Van Wijngaarden-Eringen equation in a cylindrical domain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

L-p - L-q-Maximal regularity of the Van Wijngaarden-Eringen equation in a cylindrical domain

Mostrar el registro completo del ítem

Lizama, C.; Murillo Arcila, M. (2020). L-p - L-q-Maximal regularity of the Van Wijngaarden-Eringen equation in a cylindrical domain. Advances in Difference Equations. 2020(1):1-10. https://doi.org/10.1186/s13662-020-03054-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166208

Ficheros en el ítem

Metadatos del ítem

Título: L-p - L-q-Maximal regularity of the Van Wijngaarden-Eringen equation in a cylindrical domain
Autor: Lizama, Carlos Murillo Arcila, Marina
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We consider the maximal regularity problem for a PDE of linear acoustics, named the Van Wijngaarden-Eringen equation, that models the propagation of linear acoustic waves in isothermal bubbly liquids, wherein the ...[+]
Palabras clave: Maximal regularity , Van Wijngaarden-Eringen equation , Degenerate evolution equations , R-boundedness
Derechos de uso: Reconocimiento (by)
Fuente:
Advances in Difference Equations. (issn: 1687-1847 )
DOI: 10.1186/s13662-020-03054-5
Versión del editor: https://doi.org/10.1186/s13662-020-03054-5
Código del Proyecto:
info:eu-repo/grantAgreement/FONDECYT//1180041/
info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105011GB-I00/ES/DINAMICA DE OPERADORES/
Agradecimientos:
The first author is partially supported by FONDECYT grant number 1180041 and DICYT, Universidad de Santiago de Chile, USACH. The second author is supported by MEC, grants MTM2016-75963-P and PID2019-105011GB-I00.
Tipo: Artículo

References

Anufrieva, U.A.: A degenerate Cauchy problem for a second-order equation. A well-posedness criterion. Differ. Uravn. 34(8), 1131–1133 (1998) (Russian). Translation in: Differ. Equ. 34(8), 1135–1137 (1999)

Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240(2), 311–343 (2002)

Bu, S., Cai, G.: Periodic solutions of second order degenerate differential equations with delay in Banach spaces. Can. Math. Bull. 61(4), 717–737 (2018) [+]
Anufrieva, U.A.: A degenerate Cauchy problem for a second-order equation. A well-posedness criterion. Differ. Uravn. 34(8), 1131–1133 (1998) (Russian). Translation in: Differ. Equ. 34(8), 1135–1137 (1999)

Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240(2), 311–343 (2002)

Bu, S., Cai, G.: Periodic solutions of second order degenerate differential equations with delay in Banach spaces. Can. Math. Bull. 61(4), 717–737 (2018)

Carroll, R.W., Showalter, R.E.: Singular and Degenerate Cauchy Problems. Academic Press, New York (1976)

Chipot, M.: ℓ Goes to Plus Infinity. Birkhaüser Advanced Texts: Basler Lehrbücher. Birkhäuser Advanced Texts: Basel Textbooks. Birkhäuser, Basel (2002)

Chipot, M.: Elliptic Equations: An Introductory Course. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Advanced Texts: Basel Textbooks. Birkhäuser, Basel (2009)

Conejero, A., Lizama, C., Murillo, M.: On the existence of chaos for the viscous Van Wijngaarden–Eringen equation. Chaos Solitons Fractals 89, 100–104 (2016)

Denk, R., Hieber, M., Prüss, J.: R-Boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166, 788 (2003)

Denk, R., Nau, T.: Discrete Fourier multipliers and cylindrical boundary-value problems. Proc. R. Soc. Edinb., Sect. A 143(6), 1163–1183 (2013)

Eringen, A.C.: Theory of thermo-microstretch fluids and bubbly liquids. Int. J. Eng. Sci. 28(2), 133–143 (1990)

Favini, A., Yagi, A.: Degenerate Differential Equations in Banach Spaces. Chapman and Hall/CRC Pure and Applied Mathematics, New York (1998)

Guidotti, P.: Elliptic and parabolic problems in unbounded domains. Math. Nachr. 272, 32–45 (2004)

Hayes, M.A., Saccomandi, G.: Finite amplitude transverse waves in special incompressible viscoelastic solids. J. Elast. 59, 213–225 (2000)

Jordan, P.M., Feuillade, C.: On the propagation of harmonic acoustic waves in bubbly liquids. Int. J. Eng. Sci. 42(11–12), 1119–1128 (2004)

Kalton, N., Weis, L.: The $\mathcal{H}^{\infty }$-calculus and sums of closed operators. Math. Ann. 321, 319–345 (2001)

Keyantuo, V., Lizama, C.: Fourier multipliers and integro-differential equations in Banach spaces. J. Lond. Math. Soc. (2) 69(3), 737–750 (2004)

Keyantuo, V., Lizama, C.: Periodic solutions of second order differential equations in Banach spaces. Math. Z. 253(3), 489–514 (2006)

Kostic, M.: Abstract Degenerate Volterra Integro-Differential Equations. Mathematical Institute SANU, Belgrade (2020)

Nau, T.: $L^{p}$-theory of cylindrical boundary value problems. An operator-valued Fourier multiplier and functional calculus approach. Dissertation, University of Konstanz, Konstanz (2012). Springer Spektrum, Wiesbaden (2012)

Nau, T.: The Laplacian on cylindrical domains. Integral Equ. Oper. Theory 75, 409–431 (2013)

Nau, T., Saal, J.: $\mathcal{R}$-Sectoriality of cylindrical boundary value problems. In: Parabolic Problems. Progr. Nonlinear Differential Equations Appl., vol. 80, pp. 479–505. Birkhäuser, Basel (2011)

Nau, T., Saal, J.: Jürgen $\mathcal{H}^{\infty }$-calculus for cylindrical boundary value problems. Adv. Differ. Equ. 17(7–8), 767–800 (2012)

Rubin, M.B., Rosenau, P., Gottlieb, O.: Continuum model of dispersion caused by an inherent material characteristic length. J. Appl. Phys. 77, 4054–4063 (1995)

Sviridyuk, G.A., Fedorov, V.E.: Linear Sobolev Type Equations and Degenerate Semigroups of Operators. Inverse and Ill-Posed Problems, vol. 42. VSP, Utrecht (2003)

Thompson, P.A.: Compressible-Fluid Mechanics. McGraw-Hill, New York (1992)

Wijngaarden, L.V.: One-dimensional flow of liquids containing small gas bubbles. Annu. Rev. Fluid Mech. 4, 369–396 (1972)

Wood, I.: Maximal $L_{p}$-regularity for the Laplacian on Lipschitz domains. Math. Z. 255(4), 855–875 (2007)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem