Anufrieva, U.A.: A degenerate Cauchy problem for a second-order equation. A well-posedness criterion. Differ. Uravn. 34(8), 1131–1133 (1998) (Russian). Translation in: Differ. Equ. 34(8), 1135–1137 (1999)
Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240(2), 311–343 (2002)
Bu, S., Cai, G.: Periodic solutions of second order degenerate differential equations with delay in Banach spaces. Can. Math. Bull. 61(4), 717–737 (2018)
[+]
Anufrieva, U.A.: A degenerate Cauchy problem for a second-order equation. A well-posedness criterion. Differ. Uravn. 34(8), 1131–1133 (1998) (Russian). Translation in: Differ. Equ. 34(8), 1135–1137 (1999)
Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240(2), 311–343 (2002)
Bu, S., Cai, G.: Periodic solutions of second order degenerate differential equations with delay in Banach spaces. Can. Math. Bull. 61(4), 717–737 (2018)
Carroll, R.W., Showalter, R.E.: Singular and Degenerate Cauchy Problems. Academic Press, New York (1976)
Chipot, M.: ℓ Goes to Plus Infinity. Birkhaüser Advanced Texts: Basler Lehrbücher. Birkhäuser Advanced Texts: Basel Textbooks. Birkhäuser, Basel (2002)
Chipot, M.: Elliptic Equations: An Introductory Course. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Advanced Texts: Basel Textbooks. Birkhäuser, Basel (2009)
Conejero, A., Lizama, C., Murillo, M.: On the existence of chaos for the viscous Van Wijngaarden–Eringen equation. Chaos Solitons Fractals 89, 100–104 (2016)
Denk, R., Hieber, M., Prüss, J.: R-Boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166, 788 (2003)
Denk, R., Nau, T.: Discrete Fourier multipliers and cylindrical boundary-value problems. Proc. R. Soc. Edinb., Sect. A 143(6), 1163–1183 (2013)
Eringen, A.C.: Theory of thermo-microstretch fluids and bubbly liquids. Int. J. Eng. Sci. 28(2), 133–143 (1990)
Favini, A., Yagi, A.: Degenerate Differential Equations in Banach Spaces. Chapman and Hall/CRC Pure and Applied Mathematics, New York (1998)
Guidotti, P.: Elliptic and parabolic problems in unbounded domains. Math. Nachr. 272, 32–45 (2004)
Hayes, M.A., Saccomandi, G.: Finite amplitude transverse waves in special incompressible viscoelastic solids. J. Elast. 59, 213–225 (2000)
Jordan, P.M., Feuillade, C.: On the propagation of harmonic acoustic waves in bubbly liquids. Int. J. Eng. Sci. 42(11–12), 1119–1128 (2004)
Kalton, N., Weis, L.: The $\mathcal{H}^{\infty }$-calculus and sums of closed operators. Math. Ann. 321, 319–345 (2001)
Keyantuo, V., Lizama, C.: Fourier multipliers and integro-differential equations in Banach spaces. J. Lond. Math. Soc. (2) 69(3), 737–750 (2004)
Keyantuo, V., Lizama, C.: Periodic solutions of second order differential equations in Banach spaces. Math. Z. 253(3), 489–514 (2006)
Kostic, M.: Abstract Degenerate Volterra Integro-Differential Equations. Mathematical Institute SANU, Belgrade (2020)
Nau, T.: $L^{p}$-theory of cylindrical boundary value problems. An operator-valued Fourier multiplier and functional calculus approach. Dissertation, University of Konstanz, Konstanz (2012). Springer Spektrum, Wiesbaden (2012)
Nau, T.: The Laplacian on cylindrical domains. Integral Equ. Oper. Theory 75, 409–431 (2013)
Nau, T., Saal, J.: $\mathcal{R}$-Sectoriality of cylindrical boundary value problems. In: Parabolic Problems. Progr. Nonlinear Differential Equations Appl., vol. 80, pp. 479–505. Birkhäuser, Basel (2011)
Nau, T., Saal, J.: Jürgen $\mathcal{H}^{\infty }$-calculus for cylindrical boundary value problems. Adv. Differ. Equ. 17(7–8), 767–800 (2012)
Rubin, M.B., Rosenau, P., Gottlieb, O.: Continuum model of dispersion caused by an inherent material characteristic length. J. Appl. Phys. 77, 4054–4063 (1995)
Sviridyuk, G.A., Fedorov, V.E.: Linear Sobolev Type Equations and Degenerate Semigroups of Operators. Inverse and Ill-Posed Problems, vol. 42. VSP, Utrecht (2003)
Thompson, P.A.: Compressible-Fluid Mechanics. McGraw-Hill, New York (1992)
Wijngaarden, L.V.: One-dimensional flow of liquids containing small gas bubbles. Annu. Rev. Fluid Mech. 4, 369–396 (1972)
Wood, I.: Maximal $L_{p}$-regularity for the Laplacian on Lipschitz domains. Math. Z. 255(4), 855–875 (2007)
[-]