- -

Characterization of atrial arrhythmias in body surface potential mapping: A computational study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterization of atrial arrhythmias in body surface potential mapping: A computational study

Mostrar el registro completo del ítem

Gonçalves Marques, V.; Rodrigo Bort, M.; Guillem Sánchez, MS.; Salinet, J. (2020). Characterization of atrial arrhythmias in body surface potential mapping: A computational study. Computers in Biology and Medicine. 127:1-13. https://doi.org/10.1016/j.compbiomed.2020.103904

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166209

Ficheros en el ítem

Metadatos del ítem

Título: Characterization of atrial arrhythmias in body surface potential mapping: A computational study
Autor: Gonçalves Marques, Victor RODRIGO BORT, MIGUEL Guillem Sánchez, María Salud Salinet, Joao
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Purpose: Atrial tachycardia (AT), flutter (AFL) and fibrillation (AF) are very common cardiac arrhythmias and are driven by localized sources that can be ablation targets. Non-invasive body surface potential mapping ...[+]
Palabras clave: Atrial fibrillation , Atrial tachycardia , Atrial flutter , Non-invasive , Signal processing , Body surface potential mapping
Derechos de uso: Cerrado
Fuente:
Computers in Biology and Medicine. (issn: 0010-4825 )
DOI: 10.1016/j.compbiomed.2020.103904
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.compbiomed.2020.103904
Código del Proyecto:
info:eu-repo/grantAgreement/FAPESP//2017%2F19775-3/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2017
info:eu-repo/grantAgreement/ISCIII//PI17%2F01106/ES/Estratificación y tratamiento de la fibrilación auricular basada en los mecanismos de perpetuación de la arritmia/
info:eu-repo/grantAgreement/GVA//GV%2F2018%2F103/
info:eu-repo/grantAgreement/GVA//AICO%2F2018%2F267/
Agradecimientos:
This study was supported in part by grants from Sao Paulo Research Foundation (2017/19775-3), Instituto de Salud Carlos III Research Foundation, Fondo Europeo de Desarrollo Regional FEDER, Spain (PI17/01106), and Generalitat ...[+]
Tipo: Artículo

References

Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003

Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., … Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40. doi:10.1016/j.hrthm.2008.10.024

Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022 [+]
Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003

Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., … Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40. doi:10.1016/j.hrthm.2008.10.024

Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022

Guillem, M. S., Climent, A. M., Rodrigo, M., Fernández-Avilés, F., Atienza, F., & Berenfeld, O. (2016). Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovascular Research, 109(4), 480-492. doi:10.1093/cvr/cvw011

Alday, E. A. P., Colman, M. A., Langley, P., & Zhang, H. (2017). Novel non-invasive algorithm to identify the origins of re-entry and ectopic foci in the atria from 64-lead ECGs: A computational study. PLOS Computational Biology, 13(3), e1005270. doi:10.1371/journal.pcbi.1005270

Guillem, M. S., Climent, A. M., Millet, J., Arenal, Á., Fernández-Avilés, F., Jalife, J., … Berenfeld, O. (2013). Noninvasive Localization of Maximal Frequency Sites of Atrial Fibrillation by Body Surface Potential Mapping. Circulation: Arrhythmia and Electrophysiology, 6(2), 294-301. doi:10.1161/circep.112.000167

Rodrigo, M., Guillem, M. S., Climent, A. M., Pedrón-Torrecilla, J., Liberos, A., Millet, J., … Berenfeld, O. (2014). Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm, 11(9), 1584-1591. doi:10.1016/j.hrthm.2014.05.013

Vanheusden, F. J., Chu, G. S., Li, X., Salinet, J., Almeida, T. P., Dastagir, N., … Schlindwein, F. S. (2019). Systematic differences of non-invasive dominant frequency estimation compared to invasive dominant frequency estimation in atrial fibrillation. Computers in Biology and Medicine, 104, 299-309. doi:10.1016/j.compbiomed.2018.11.017

Ng, J., Kadish, A. H., & Goldberger, J. J. (2006). Effect of electrogram characteristics on the relationship of dominant frequency to atrial activation rate in atrial fibrillation. Heart Rhythm, 3(11), 1295-1305. doi:10.1016/j.hrthm.2006.07.027

Atienza, F., Almendral, J., Ormaetxe, J. M., Moya, Á., Martínez-Alday, J. D., Hernández-Madrid, A., … Jalife, J. (2014). Comparison of Radiofrequency Catheter Ablation of Drivers and Circumferential Pulmonary Vein Isolation in Atrial Fibrillation. Journal of the American College of Cardiology, 64(23), 2455-2467. doi:10.1016/j.jacc.2014.09.053

Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms. Circulation: Arrhythmia and Electrophysiology, 10(9). doi:10.1161/circep.117.005008

Dössel, O., Krueger, M. W., Weber, F. M., Wilhelms, M., & Seemann, G. (2012). Computational modeling of the human atrial anatomy and electrophysiology. Medical & Biological Engineering & Computing, 50(8), 773-799. doi:10.1007/s11517-012-0924-6

Marques, V. G., Rodrigo, M., Guillem, M. S., & Salinet, J. (2020). A robust wavelet-based approach for dominant frequency analysis of atrial fibrillation in body surface signals. Physiological Measurement, 41(7), 075004. doi:10.1088/1361-6579/ab97c1

Mallat, S., & Hwang, W. L. (1992). Singularity detection and processing with wavelets. IEEE Transactions on Information Theory, 38(2), 617-643. doi:10.1109/18.119727

Vijayakumar, R., Vasireddi, S. K., Cuculich, P. S., Faddis, M. N., & Rudy, Y. (2016). Methodology Considerations in Phase Mapping of Human Cardiac Arrhythmias. Circulation: Arrhythmia and Electrophysiology, 9(11). doi:10.1161/circep.116.004409

Everett, T. H., Moorman, J. R., Kok, L.-C., Akar, J. G., & Haines, D. E. (2001). Assessment of Global Atrial Fibrillation Organization to Optimize Timing of Atrial Defibrillation. Circulation, 103(23), 2857-2861. doi:10.1161/01.cir.103.23.2857

Haissaguerre, M., Hocini, M., Denis, A., Shah, A. J., Komatsu, Y., Yamashita, S., … Dubois, R. (2014). Driver Domains in Persistent Atrial Fibrillation. Circulation, 130(7), 530-538. doi:10.1161/circulationaha.113.005421

Van Oosterom, A., Ihara, Z., Jacquemet, V., & Hoekema, R. (2007). Vectorcardiographic lead systems for the characterization of atrial fibrillation. Journal of Electrocardiology, 40(4), 343.e1-343.e11. doi:10.1016/j.jelectrocard.2006.08.002

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4), 600-612. doi:10.1109/tip.2003.819861

Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Highest dominant frequency and rotor positions are robust markers of driver location during noninvasive mapping of atrial fibrillation: A computational study. Heart Rhythm, 14(8), 1224-1233. doi:10.1016/j.hrthm.2017.04.017

Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Aviles, F., Atienza, F., Guillem, M. S., & Berenfeld, O. (2017). Minimal configuration of body surface potential mapping for discrimination of left versus right dominant frequencies during atrial fibrillation. Pacing and Clinical Electrophysiology, 40(8), 940-946. doi:10.1111/pace.13133

McGillivray, M. F., Cheng, W., Peters, N. S., & Christensen, K. (2018). Machine learning methods for locating re-entrant drivers from electrograms in a model of atrial fibrillation. Royal Society Open Science, 5(4), 172434. doi:10.1098/rsos.172434

Cai, W., Chen, Y., Guo, J., Han, B., Shi, Y., Ji, L., … Luo, J. (2020). Accurate detection of atrial fibrillation from 12-lead ECG using deep neural network. Computers in Biology and Medicine, 116, 103378. doi:10.1016/j.compbiomed.2019.103378

Yıldırım, Ö., Pławiak, P., Tan, R.-S., & Acharya, U. R. (2018). Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Computers in Biology and Medicine, 102, 411-420. doi:10.1016/j.compbiomed.2018.09.009

Parvaneh, S., Rubin, J., Babaeizadeh, S., & Xu-Wilson, M. (2019). Cardiac arrhythmia detection using deep learning: A review. Journal of Electrocardiology, 57, S70-S74. doi:10.1016/j.jelectrocard.2019.08.004

Kumar Sahoo, S., Wenmiao Lu, Teddy, S. D., Desok Kim, & Mengling Feng. (2011). Detection of Atrial fibrillation from non-episodic ECG data: A review of methods. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2011.6091237

NG, J., & GOLDBERGER, J. J. (2007). Understanding and Interpreting Dominant Frequency Analysis of AF Electrograms. Journal of Cardiovascular Electrophysiology, 18(6), 680-685. doi:10.1111/j.1540-8167.2007.00832.x

Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem